{"volume":144,"publication_status":"published","quality_controlled":0,"intvolume":" 144","publist_id":"7687","status":"public","day":"01","date_updated":"2021-01-12T06:56:17Z","_id":"225","year":"2008","extern":1,"publication":"Compositio Mathematica","doi":"10.1112/S0010437X08003692","type":"journal_article","issue":"6","date_created":"2018-12-11T11:45:18Z","acknowledgement":"EP/E053262/1\tEngineering and Physical Sciences Research Council","title":"Binary linear forms as sums of two squares","date_published":"2008-11-01T00:00:00Z","page":"1375 - 1402","author":[{"full_name":"de la Bretèche, Régis","first_name":"Régis","last_name":"De La Bretèche"},{"first_name":"Timothy D","last_name":"Browning","id":"35827D50-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-8314-0177","full_name":"Timothy Browning"}],"month":"11","citation":{"short":"R. De La Bretèche, T.D. Browning, Compositio Mathematica 144 (2008) 1375–1402.","chicago":"De La Bretèche, Régis, and Timothy D Browning. “Binary Linear Forms as Sums of Two Squares.” Compositio Mathematica. Cambridge University Press, 2008. https://doi.org/10.1112/S0010437X08003692.","ama":"De La Bretèche R, Browning TD. Binary linear forms as sums of two squares. Compositio Mathematica. 2008;144(6):1375-1402. doi:10.1112/S0010437X08003692","ista":"De La Bretèche R, Browning TD. 2008. Binary linear forms as sums of two squares. Compositio Mathematica. 144(6), 1375–1402.","ieee":"R. De La Bretèche and T. D. Browning, “Binary linear forms as sums of two squares,” Compositio Mathematica, vol. 144, no. 6. Cambridge University Press, pp. 1375–1402, 2008.","apa":"De La Bretèche, R., & Browning, T. D. (2008). Binary linear forms as sums of two squares. Compositio Mathematica. Cambridge University Press. https://doi.org/10.1112/S0010437X08003692","mla":"De La Bretèche, Régis, and Timothy D. Browning. “Binary Linear Forms as Sums of Two Squares.” Compositio Mathematica, vol. 144, no. 6, Cambridge University Press, 2008, pp. 1375–402, doi:10.1112/S0010437X08003692."},"abstract":[{"text":"We revisit recent work of Heath-Brown on the average order of the quantity r(L1(x))⋯r(L4(x)), for suitable binary linear forms L1,...,L4, as x=(x1,x2) ranges over quite general regions in ℤ2. In addition to improving the error term in Heath-Browns estimate, we generalise his result to cover a wider class of linear forms.","lang":"eng"}],"publisher":"Cambridge University Press"}