{"status":"public","title":"VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis","quality_controlled":"1","scopus_import":1,"publisher":"Oxford University Press","user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","date_created":"2018-12-11T11:56:24Z","oa_version":"None","abstract":[{"text":"Leaf venation develops complex patterns in angiosperms, but the mechanism underlying this process is largely unknown. To elucidate the molecular mechanisms governing vein pattern formation, we previously isolated vascular network defective (van) mutants that displayed venation discontinuities. Here, we report the phenotypic analysis of van4 mutants, and we identify and characterize the VAN4 gene. Detailed phenotypic analysis shows that van4 mutants are defective in procambium cell differentiation and subsequent vascular cell differentiation. Reduced shoot and root cell growth is observed in van4 mutants, suggesting that VAN4 function is important for cell growth and the establishment of venation continuity. Consistent with these phenotypes, the VAN4 gene is strongly expressed in vascular and meristematic cells. VAN4 encodes a putative TRS120, which is a known guanine nucleotide exchange factor (GEF) for Rab GTPase involved in regulating vesicle transport, and a known tethering factor that determines the specificity of membrane fusion. VAN4 protein localizes at the trans-Golgi network/early endosome (TGN/EE). Aberrant recycling of the auxin efflux carrier PIN proteins is observed in van4 mutants. These results suggest that VAN4-mediated exocytosis at the TGN plays important roles in plant vascular development and cell growth in shoot and root. Our identification of VAN4 as a putative TRS120 shows that Rab GTPases are crucial (in addition to ARF GTPases) for continuous vascular development, and provides further evidence for the importance of vesicle transport in leaf vascular formation.","lang":"eng"}],"department":[{"_id":"JiFr"}],"issue":"4","publication_status":"published","date_published":"2014-04-01T00:00:00Z","date_updated":"2021-01-12T06:56:06Z","month":"04","day":"01","type":"journal_article","project":[{"call_identifier":"FP7","grant_number":"282300","_id":"25716A02-B435-11E9-9278-68D0E5697425","name":"Polarity and subcellular dynamics in plants"}],"year":"2014","publist_id":"4742","volume":55,"intvolume":" 55","_id":"2222","language":[{"iso":"eng"}],"citation":{"short":"S. Naramoto, T. Nodzyński, T. Dainobu, H. Takatsuka, T. Okada, J. Friml, H. Fukuda, Plant and Cell Physiology 55 (2014) 750–763.","ama":"Naramoto S, Nodzyński T, Dainobu T, et al. VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis. Plant and Cell Physiology. 2014;55(4):750-763. doi:10.1093/pcp/pcu012","apa":"Naramoto, S., Nodzyński, T., Dainobu, T., Takatsuka, H., Okada, T., Friml, J., & Fukuda, H. (2014). VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis. Plant and Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcu012","ista":"Naramoto S, Nodzyński T, Dainobu T, Takatsuka H, Okada T, Friml J, Fukuda H. 2014. VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis. Plant and Cell Physiology. 55(4), 750–763.","chicago":"Naramoto, Satoshi, Tomasz Nodzyński, Tomoko Dainobu, Hirotomo Takatsuka, Teruyo Okada, Jiří Friml, and Hiroo Fukuda. “VAN4 Encodes a Putative TRS120 That Is Required for Normal Cell Growth and Vein Development in Arabidopsis.” Plant and Cell Physiology. Oxford University Press, 2014. https://doi.org/10.1093/pcp/pcu012.","ieee":"S. Naramoto et al., “VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis,” Plant and Cell Physiology, vol. 55, no. 4. Oxford University Press, pp. 750–763, 2014.","mla":"Naramoto, Satoshi, et al. “VAN4 Encodes a Putative TRS120 That Is Required for Normal Cell Growth and Vein Development in Arabidopsis.” Plant and Cell Physiology, vol. 55, no. 4, Oxford University Press, 2014, pp. 750–63, doi:10.1093/pcp/pcu012."},"ec_funded":1,"publication_identifier":{"issn":["00320781"]},"publication":"Plant and Cell Physiology","author":[{"full_name":"Naramoto, Satoshi","last_name":"Naramoto","first_name":"Satoshi"},{"full_name":"Nodzyński, Tomasz","first_name":"Tomasz","last_name":"Nodzyński"},{"last_name":"Dainobu","first_name":"Tomoko","full_name":"Dainobu, Tomoko"},{"first_name":"Hirotomo","last_name":"Takatsuka","full_name":"Takatsuka, Hirotomo"},{"first_name":"Teruyo","last_name":"Okada","full_name":"Okada, Teruyo"},{"id":"4159519E-F248-11E8-B48F-1D18A9856A87","full_name":"Friml, Jirí","first_name":"Jirí","last_name":"Friml","orcid":"0000-0002-8302-7596"},{"first_name":"Hiroo","last_name":"Fukuda","full_name":"Fukuda, Hiroo"}],"page":"750 - 763","doi":"10.1093/pcp/pcu012"}