{"date_published":"2011-01-21T00:00:00Z","main_file_link":[{"open_access":"1","url":"http://arxiv.org/abs/1005.0998"}],"type":"journal_article","extern":"1","user_id":"8b945eb4-e2f2-11eb-945a-df72226e66a9","month":"01","issue":"2","page":"405 - 427","volume":11,"oa_version":"None","title":"A Trotter product formula for gradient flows in metric spaces","publist_id":"4911","article_processing_charge":"No","oa":1,"publication_status":"published","year":"2011","day":"21","citation":{"ama":"Clément P, Maas J. A Trotter product formula for gradient flows in metric spaces. Journal of Evolution Equations. 2011;11(2):405-427. doi:10.1007/s00028-010-0096-5","short":"P. Clément, J. Maas, Journal of Evolution Equations 11 (2011) 405–427.","chicago":"Clément, Philippe, and Jan Maas. “A Trotter Product Formula for Gradient Flows in Metric Spaces.” Journal of Evolution Equations. Birkhäuser, 2011. https://doi.org/10.1007/s00028-010-0096-5.","apa":"Clément, P., & Maas, J. (2011). A Trotter product formula for gradient flows in metric spaces. Journal of Evolution Equations. Birkhäuser. https://doi.org/10.1007/s00028-010-0096-5","ista":"Clément P, Maas J. 2011. A Trotter product formula for gradient flows in metric spaces. Journal of Evolution Equations. 11(2), 405–427.","ieee":"P. Clément and J. Maas, “A Trotter product formula for gradient flows in metric spaces,” Journal of Evolution Equations, vol. 11, no. 2. Birkhäuser, pp. 405–427, 2011.","mla":"Clément, Philippe, and Jan Maas. “A Trotter Product Formula for Gradient Flows in Metric Spaces.” Journal of Evolution Equations, vol. 11, no. 2, Birkhäuser, 2011, pp. 405–27, doi:10.1007/s00028-010-0096-5."},"status":"public","date_created":"2018-12-11T11:55:51Z","publication":"Journal of Evolution Equations","_id":"2123","doi":"10.1007/s00028-010-0096-5","publisher":"Birkhäuser","author":[{"first_name":"Philippe","full_name":"Clément, Philippe","last_name":"Clément"},{"orcid":"0000-0002-0845-1338","last_name":"Maas","id":"4C5696CE-F248-11E8-B48F-1D18A9856A87","first_name":"Jan","full_name":"Maas, Jan"}],"intvolume":" 11","language":[{"iso":"eng"}],"date_updated":"2021-11-16T08:05:46Z","related_material":{"link":[{"url":"https://doi.org/10.1007/s00028-012-0173-z","relation":"erratum"}]},"acknowledgement":"The second named author is supported by Rubicon subsidy 680-50-0901 of the Netherlands Organisation for Scientific Research (NWO).","abstract":[{"text":"We prove a Trotter product formula for gradient flows in metric spaces. This result is applied to establish convergence in the L 2-Wasserstein metric of the splitting method for some Fokker-Planck equations and porous medium type equations perturbed by a potential.","lang":"eng"}]}