{"date_published":"2005-11-26T00:00:00Z","oa":1,"status":"public","year":"2005","publisher":"Walter de Gruyter and Co ","page":"83 - 115","day":"26","citation":{"ista":"Browning TD, Heath Brown R. 2005. Counting rational points on hypersurfaces. Journal fur die Reine und Angewandte Mathematik. (584), 83–115.","chicago":"Browning, Timothy D, and Roger Heath Brown. “Counting Rational Points on Hypersurfaces.” Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter and Co , 2005. https://doi.org/10.1515/crll.2005.2005.584.83.","apa":"Browning, T. D., & Heath Brown, R. (2005). Counting rational points on hypersurfaces. Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter and Co . https://doi.org/10.1515/crll.2005.2005.584.83","short":"T.D. Browning, R. Heath Brown, Journal Fur Die Reine Und Angewandte Mathematik (2005) 83–115.","mla":"Browning, Timothy D., and Roger Heath Brown. “Counting Rational Points on Hypersurfaces.” Journal Fur Die Reine Und Angewandte Mathematik, no. 584, Walter de Gruyter and Co , 2005, pp. 83–115, doi:https://doi.org/10.1515/crll.2005.2005.584.83.","ama":"Browning TD, Heath Brown R. Counting rational points on hypersurfaces. Journal fur die Reine und Angewandte Mathematik. 2005;(584):83-115. doi:https://doi.org/10.1515/crll.2005.2005.584.83","ieee":"T. D. Browning and R. Heath Brown, “Counting rational points on hypersurfaces,” Journal fur die Reine und Angewandte Mathematik, no. 584. Walter de Gruyter and Co , pp. 83–115, 2005."},"month":"11","date_created":"2018-12-11T11:45:14Z","publication":"Journal fur die Reine und Angewandte Mathematik","publication_status":"published","issue":"584","abstract":[{"lang":"eng","text":"For any n ≧ 2, let F ∈ ℤ [ x 1, … , xn ] be a form of degree d≧ 2, which produces a geometrically irreducible hypersurface in ℙn–1. This paper is concerned with the number N(F;B) of rational points on F = 0 which have height at most B. For any ε > 0 we establish the estimate N(F; B) = O(B n− 2+ ε ), whenever either n ≦ 5 or the hypersurface is not a union of lines. Here the implied constant depends at most upon d, n and ε."}],"_id":"212","main_file_link":[{"url":"https://arxiv.org/abs/0707.2296","open_access":"1"}],"doi":"https://doi.org/10.1515/crll.2005.2005.584.83","author":[{"full_name":"Timothy Browning","first_name":"Timothy D","orcid":"0000-0002-8314-0177","last_name":"Browning","id":"35827D50-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Roger","full_name":"Heath-Brown, Roger","last_name":"Heath Brown"}],"quality_controlled":0,"title":"Counting rational points on hypersurfaces","publist_id":"7701","date_updated":"2021-01-12T06:55:25Z","extern":1,"type":"journal_article"}