{"_id":"188","doi":"10.4230/LIPIcs.SoCG.2018.35","conference":{"location":"Budapest, Hungary","name":"SoCG: Symposium on Computational Geometry","end_date":"2018-06-14","start_date":"2018-06-11"},"author":[{"last_name":"Edelsbrunner","id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","first_name":"Herbert","full_name":"Edelsbrunner, Herbert","orcid":"0000-0002-9823-6833"},{"last_name":"Virk","full_name":"Virk, Ziga","first_name":"Ziga"},{"last_name":"Wagner","id":"379CA8B8-F248-11E8-B48F-1D18A9856A87","full_name":"Wagner, Hubert","first_name":"Hubert"}],"alternative_title":["Leibniz International Proceedings in Information, LIPIcs"],"publication_status":"published","abstract":[{"lang":"eng","text":"Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex."}],"date_updated":"2021-01-12T06:53:48Z","volume":99,"type":"conference","has_accepted_license":"1","status":"public","project":[{"grant_number":"I02979-N35","_id":"2561EBF4-B435-11E9-9278-68D0E5697425","call_identifier":"FWF","name":"Persistence and stability of geometric complexes"}],"page":"35:1 - 35:13","ddc":["000"],"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"file_date_updated":"2020-07-14T12:45:20Z","acknowledgement":"This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund","department":[{"_id":"HeEd"}],"citation":{"apa":"Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35","ista":"Edelsbrunner H, Virk Z, Wagner H. 2018. Smallest enclosing spheres and Chernoff points in Bregman geometry. SoCG: Symposium on Computational Geometry, Leibniz International Proceedings in Information, LIPIcs, vol. 99, 35:1-35:13.","chicago":"Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry,” 99:35:1-35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.35.","ieee":"H. Edelsbrunner, Z. Virk, and H. Wagner, “Smallest enclosing spheres and Chernoff points in Bregman geometry,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99, p. 35:1-35:13.","short":"H. Edelsbrunner, Z. Virk, H. Wagner, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13.","ama":"Edelsbrunner H, Virk Z, Wagner H. Smallest enclosing spheres and Chernoff points in Bregman geometry. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018:35:1-35:13. doi:10.4230/LIPIcs.SoCG.2018.35","mla":"Edelsbrunner, Herbert, et al. Smallest Enclosing Spheres and Chernoff Points in Bregman Geometry. Vol. 99, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, p. 35:1-35:13, doi:10.4230/LIPIcs.SoCG.2018.35."},"month":"06","date_created":"2018-12-11T11:45:05Z","quality_controlled":"1","scopus_import":1,"title":"Smallest enclosing spheres and Chernoff points in Bregman geometry","oa_version":"Published Version","publist_id":"7733","file":[{"checksum":"7509403803b3ac1aee94bbc2ad293d21","date_created":"2018-12-17T16:31:31Z","file_name":"2018_LIPIcs_Edelsbrunner.pdf","relation":"main_file","access_level":"open_access","date_updated":"2020-07-14T12:45:20Z","file_id":"5724","creator":"dernst","content_type":"application/pdf","file_size":489080}],"intvolume":" 99","language":[{"iso":"eng"}],"publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","year":"2018","day":"11","tmp":{"short":"CC BY (4.0)","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_published":"2018-06-11T00:00:00Z"}