{"has_accepted_license":"1","publication":"Leibniz International Proceedings in Informatics, LIPIcs","author":[{"orcid":"0000−0002−2985−7724","full_name":"Henzinger, Thomas A","id":"40876CD8-F248-11E8-B48F-1D18A9856A87","first_name":"Thomas A","last_name":"Henzinger"},{"full_name":"Otop, Jan","id":"2FC5DA74-F248-11E8-B48F-1D18A9856A87","last_name":"Otop","first_name":"Jan"},{"first_name":"Roopsha","last_name":"Samanta","id":"3D2AAC08-F248-11E8-B48F-1D18A9856A87","full_name":"Samanta, Roopsha"}],"doi":"10.4230/LIPIcs.FSTTCS.2014.431","page":"431 - 443","_id":"1870","language":[{"iso":"eng"}],"pubrep_id":"804","conference":{"start_date":"2014-12-15","name":"FSTTCS: Foundations of Software Technology and Theoretical Computer Science","location":"Delhi, India","end_date":"2014-12-17"},"citation":{"ieee":"T. A. Henzinger, J. Otop, and R. Samanta, “Lipschitz robustness of finite-state transducers,” in Leibniz International Proceedings in Informatics, LIPIcs, Delhi, India, 2014, vol. 29, pp. 431–443.","mla":"Henzinger, Thomas A., et al. “Lipschitz Robustness of Finite-State Transducers.” Leibniz International Proceedings in Informatics, LIPIcs, vol. 29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 431–43, doi:10.4230/LIPIcs.FSTTCS.2014.431.","short":"T.A. Henzinger, J. Otop, R. Samanta, in:, Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014, pp. 431–443.","apa":"Henzinger, T. A., Otop, J., & Samanta, R. (2014). Lipschitz robustness of finite-state transducers. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 29, pp. 431–443). Delhi, India: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2014.431","ista":"Henzinger TA, Otop J, Samanta R. 2014. Lipschitz robustness of finite-state transducers. Leibniz International Proceedings in Informatics, LIPIcs. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 29, 431–443.","chicago":"Henzinger, Thomas A, Jan Otop, and Roopsha Samanta. “Lipschitz Robustness of Finite-State Transducers.” In Leibniz International Proceedings in Informatics, LIPIcs, 29:431–43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. https://doi.org/10.4230/LIPIcs.FSTTCS.2014.431.","ama":"Henzinger TA, Otop J, Samanta R. Lipschitz robustness of finite-state transducers. In: Leibniz International Proceedings in Informatics, LIPIcs. Vol 29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2014:431-443. doi:10.4230/LIPIcs.FSTTCS.2014.431"},"year":"2014","volume":29,"publist_id":"5227","intvolume":" 29","ddc":["004"],"file_date_updated":"2020-07-14T12:45:19Z","date_updated":"2021-01-12T06:53:45Z","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"month":"12","day":"01","type":"conference","file":[{"content_type":"application/pdf","creator":"system","access_level":"open_access","file_name":"IST-2017-804-v1+1_37.pdf","checksum":"7b1aff1710a8bffb7080ec07f62d9a17","relation":"main_file","file_id":"4734","date_created":"2018-12-12T10:09:11Z","file_size":562151,"date_updated":"2020-07-14T12:45:19Z"}],"abstract":[{"lang":"eng","text":"We investigate the problem of checking if a finite-state transducer is robust to uncertainty in its input. Our notion of robustness is based on the analytic notion of Lipschitz continuity - a transducer is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions. We show that K-robustness is undecidable even for deterministic transducers. We identify a class of functional transducers, which admits a polynomial time automata-theoretic decision procedure for K-robustness. This class includes Mealy machines and functional letter-to-letter transducers. We also study K-robustness of nondeterministic transducers. Since a nondeterministic transducer generates a set of output words for each input word, we quantify output perturbation using setsimilarity functions. We show that K-robustness of nondeterministic transducers is undecidable, even for letter-to-letter transducers. We identify a class of set-similarity functions which admit decidable K-robustness of letter-to-letter transducers."}],"department":[{"_id":"ToHe"}],"publication_status":"published","date_published":"2014-12-01T00:00:00Z","publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","date_created":"2018-12-11T11:54:27Z","user_id":"4435EBFC-F248-11E8-B48F-1D18A9856A87","oa_version":"Published Version","oa":1,"alternative_title":["LIPIcs"],"status":"public","quality_controlled":"1","title":"Lipschitz robustness of finite-state transducers"}