{"issue":"680","publication":"Journal fur die Reine und Angewandte Mathematik","publication_status":"published","abstract":[{"lang":"eng","text":"For given non-zero integers a, b, q we investigate the density of solutions (x, y) ∈ ℤ2 to the binary cubic congruence ax2 + by3 ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over ℚ."}],"doi":"https://doi.org/10.1515/crelle.2012.039","author":[{"id":"35827D50-F248-11E8-B48F-1D18A9856A87","last_name":"Browning","orcid":"0000-0002-8314-0177","full_name":"Timothy Browning","first_name":"Timothy D"},{"last_name":"Baier","first_name":"Stephan","full_name":"Baier, Stephan"}],"_id":"171","main_file_link":[{"open_access":"1","url":"https://arxiv.org/abs/1011.3434"}],"title":"Inhomogeneous cubic congruences and rational points on del Pezzo surfaces","quality_controlled":0,"intvolume":" 2013","volume":2013,"date_updated":"2021-01-12T06:52:41Z","publist_id":"7750","type":"journal_article","extern":1,"date_published":"2012-04-03T00:00:00Z","oa":1,"page":"1 - 65","publisher":"Walter de Gruyter","year":"2012","status":"public","day":"03","citation":{"ama":"Browning TD, Baier S. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. 2012;2013(680):1-65. doi:https://doi.org/10.1515/crelle.2012.039","mla":"Browning, Timothy D., and Stephan Baier. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik, vol. 2013, no. 680, Walter de Gruyter, 2012, pp. 1–65, doi:https://doi.org/10.1515/crelle.2012.039.","short":"T.D. Browning, S. Baier, Journal Fur Die Reine Und Angewandte Mathematik 2013 (2012) 1–65.","ieee":"T. D. Browning and S. Baier, “Inhomogeneous cubic congruences and rational points on del Pezzo surfaces,” Journal fur die Reine und Angewandte Mathematik, vol. 2013, no. 680. Walter de Gruyter, pp. 1–65, 2012.","chicago":"Browning, Timothy D, and Stephan Baier. “Inhomogeneous Cubic Congruences and Rational Points on Del Pezzo Surfaces.” Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter, 2012. https://doi.org/10.1515/crelle.2012.039.","ista":"Browning TD, Baier S. 2012. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal fur die Reine und Angewandte Mathematik. 2013(680), 1–65.","apa":"Browning, T. D., & Baier, S. (2012). Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. Journal Fur Die Reine Und Angewandte Mathematik. Walter de Gruyter. https://doi.org/10.1515/crelle.2012.039"},"date_created":"2018-12-11T11:45:00Z","month":"04"}