{"project":[{"grant_number":"291734","name":"International IST Postdoc Fellowship Programme","_id":"25681D80-B435-11E9-9278-68D0E5697425","call_identifier":"FP7"}],"year":"2015","volume":252,"publist_id":"5449","intvolume":" 252","language":[{"iso":"eng"}],"_id":"1695","ec_funded":1,"citation":{"ista":"Kaczmarczyk J, Schickling T, Bünemann J. 2015. Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. 252(9), 2059–2071.","chicago":"Kaczmarczyk, Jan, Tobias Schickling, and Jörg Bünemann. “Evaluation Techniques for Gutzwiller Wave Functions in Finite Dimensions.” Physica Status Solidi (B): Basic Solid State Physics. Wiley, 2015. https://doi.org/10.1002/pssb.201552082.","apa":"Kaczmarczyk, J., Schickling, T., & Bünemann, J. (2015). Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. Wiley. https://doi.org/10.1002/pssb.201552082","ama":"Kaczmarczyk J, Schickling T, Bünemann J. Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. 2015;252(9):2059-2071. doi:10.1002/pssb.201552082","short":"J. Kaczmarczyk, T. Schickling, J. Bünemann, Physica Status Solidi (B): Basic Solid State Physics 252 (2015) 2059–2071.","mla":"Kaczmarczyk, Jan, et al. “Evaluation Techniques for Gutzwiller Wave Functions in Finite Dimensions.” Physica Status Solidi (B): Basic Solid State Physics, vol. 252, no. 9, Wiley, 2015, pp. 2059–71, doi:10.1002/pssb.201552082.","ieee":"J. Kaczmarczyk, T. Schickling, and J. Bünemann, “Evaluation techniques for Gutzwiller wave functions in finite dimensions,” Physica Status Solidi (B): Basic Solid State Physics, vol. 252, no. 9. Wiley, pp. 2059–2071, 2015."},"page":"2059 - 2071","doi":"10.1002/pssb.201552082","publication":"Physica Status Solidi (B): Basic Solid State Physics","author":[{"last_name":"Kaczmarczyk","first_name":"Jan","full_name":"Kaczmarczyk, Jan","id":"46C405DE-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-1629-3675"},{"full_name":"Schickling, Tobias","last_name":"Schickling","first_name":"Tobias"},{"first_name":"Jörg","last_name":"Bünemann","full_name":"Bünemann, Jörg"}],"status":"public","title":"Evaluation techniques for Gutzwiller wave functions in finite dimensions","quality_controlled":"1","scopus_import":1,"publisher":"Wiley","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2018-12-11T11:53:31Z","oa":1,"oa_version":"Preprint","main_file_link":[{"url":"http://arxiv.org/abs/1503.03738","open_access":"1"}],"abstract":[{"text":"We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.","lang":"eng"}],"department":[{"_id":"MiLe"}],"issue":"9","date_published":"2015-09-01T00:00:00Z","publication_status":"published","date_updated":"2021-01-12T06:52:34Z","month":"09","day":"01","type":"journal_article"}