{"citation":{"short":"V. Cohen Addad, A.N. de Mesmay, in:, Springer, 2015, pp. 386–398.","ama":"Cohen Addad V, de Mesmay AN. A fixed parameter tractable approximation scheme for the optimal cut graph of a surface. In: Vol 9294. Springer; 2015:386-398. doi:10.1007/978-3-662-48350-3_33","ista":"Cohen Addad V, de Mesmay AN. 2015. A fixed parameter tractable approximation scheme for the optimal cut graph of a surface. ESA: European Symposium on Algorithms, LNCS, vol. 9294, 386–398.","apa":"Cohen Addad, V., & de Mesmay, A. N. (2015). A fixed parameter tractable approximation scheme for the optimal cut graph of a surface (Vol. 9294, pp. 386–398). Presented at the ESA: European Symposium on Algorithms, Patras, Greece: Springer. https://doi.org/10.1007/978-3-662-48350-3_33","chicago":"Cohen Addad, Vincent, and Arnaud N de Mesmay. “A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface,” 9294:386–98. Springer, 2015. https://doi.org/10.1007/978-3-662-48350-3_33.","ieee":"V. Cohen Addad and A. N. de Mesmay, “A fixed parameter tractable approximation scheme for the optimal cut graph of a surface,” presented at the ESA: European Symposium on Algorithms, Patras, Greece, 2015, vol. 9294, pp. 386–398.","mla":"Cohen Addad, Vincent, and Arnaud N. de Mesmay. A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface. Vol. 9294, Springer, 2015, pp. 386–98, doi:10.1007/978-3-662-48350-3_33."},"conference":{"end_date":"2015-09-16","location":"Patras, Greece","name":"ESA: European Symposium on Algorithms","start_date":"2015-09-14"},"ec_funded":1,"_id":"1685","language":[{"iso":"eng"}],"author":[{"full_name":"Cohen Addad, Vincent","last_name":"Cohen Addad","first_name":"Vincent"},{"first_name":"Arnaud N","last_name":"De Mesmay","full_name":"De Mesmay, Arnaud N","id":"3DB2F25C-F248-11E8-B48F-1D18A9856A87"}],"doi":"10.1007/978-3-662-48350-3_33","page":"386 - 398","project":[{"call_identifier":"FP7","grant_number":"291734","_id":"25681D80-B435-11E9-9278-68D0E5697425","name":"International IST Postdoc Fellowship Programme"}],"volume":9294,"publist_id":"5462","intvolume":" 9294","year":"2015","date_published":"2015-09-01T00:00:00Z","publication_status":"published","main_file_link":[{"url":"http://arxiv.org/abs/1507.01688","open_access":"1"}],"abstract":[{"text":"Given a graph G cellularly embedded on a surface Σ of genus g, a cut graph is a subgraph of G such that cutting Σ along G yields a topological disk. We provide a fixed parameter tractable approximation scheme for the problem of computing the shortest cut graph, that is, for any ε > 0, we show how to compute a (1 + ε) approximation of the shortest cut graph in time f(ε, g)n3.\r\nOur techniques first rely on the computation of a spanner for the problem using the technique of brick decompositions, to reduce the problem to the case of bounded tree-width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut decomposition of Rué, Sau and Thilikos, which may be of independent interest.","lang":"eng"}],"department":[{"_id":"UlWa"}],"day":"01","type":"conference","date_updated":"2021-01-12T06:52:31Z","month":"09","status":"public","title":"A fixed parameter tractable approximation scheme for the optimal cut graph of a surface","quality_controlled":"1","alternative_title":["LNCS"],"date_created":"2018-12-11T11:53:27Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa_version":"Preprint","oa":1,"scopus_import":1,"publisher":"Springer"}