{"project":[{"name":"NSERC Postdoctoral fellowship","_id":"26450934-B435-11E9-9278-68D0E5697425"}],"volume":68,"publist_id":"5598","intvolume":" 68","year":"2015","citation":{"short":"T. Chen, C. Hainzl, N. Pavlović, R. Seiringer, Communications on Pure and Applied Mathematics 68 (2015) 1845–1884.","ama":"Chen T, Hainzl C, Pavlović N, Seiringer R. Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti. Communications on Pure and Applied Mathematics. 2015;68(10):1845-1884. doi:10.1002/cpa.21552","ista":"Chen T, Hainzl C, Pavlović N, Seiringer R. 2015. Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti. Communications on Pure and Applied Mathematics. 68(10), 1845–1884.","chicago":"Chen, Thomas, Christian Hainzl, Nataša Pavlović, and Robert Seiringer. “Unconditional Uniqueness for the Cubic Gross Pitaevskii Hierarchy via Quantum de Finetti.” Communications on Pure and Applied Mathematics. Wiley, 2015. https://doi.org/10.1002/cpa.21552.","apa":"Chen, T., Hainzl, C., Pavlović, N., & Seiringer, R. (2015). Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti. Communications on Pure and Applied Mathematics. Wiley. https://doi.org/10.1002/cpa.21552","ieee":"T. Chen, C. Hainzl, N. Pavlović, and R. Seiringer, “Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti,” Communications on Pure and Applied Mathematics, vol. 68, no. 10. Wiley, pp. 1845–1884, 2015.","mla":"Chen, Thomas, et al. “Unconditional Uniqueness for the Cubic Gross Pitaevskii Hierarchy via Quantum de Finetti.” Communications on Pure and Applied Mathematics, vol. 68, no. 10, Wiley, 2015, pp. 1845–84, doi:10.1002/cpa.21552."},"_id":"1573","language":[{"iso":"eng"}],"author":[{"last_name":"Chen","first_name":"Thomas","full_name":"Chen, Thomas"},{"first_name":"Christian","last_name":"Hainzl","full_name":"Hainzl, Christian"},{"full_name":"Pavlović, Nataša","last_name":"Pavlović","first_name":"Nataša"},{"full_name":"Seiringer, Robert","id":"4AFD0470-F248-11E8-B48F-1D18A9856A87","first_name":"Robert","last_name":"Seiringer","orcid":"0000-0002-6781-0521"}],"publication":"Communications on Pure and Applied Mathematics","page":"1845 - 1884","doi":"10.1002/cpa.21552","status":"public","title":"Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti","quality_controlled":"1","date_created":"2018-12-11T11:52:48Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa_version":"Preprint","oa":1,"scopus_import":1,"publisher":"Wiley","issue":"10","date_published":"2015-10-01T00:00:00Z","publication_status":"published","abstract":[{"lang":"eng","text":"We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in ℝ3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erdos, Schlein, and Yau."}],"main_file_link":[{"url":"http://arxiv.org/abs/1307.3168","open_access":"1"}],"department":[{"_id":"RoSe"}],"day":"01","type":"journal_article","date_updated":"2021-01-12T06:51:41Z","month":"10"}