{"year":"2024","acknowledged_ssus":[{"_id":"EM-Fac"},{"_id":"PreCl"},{"_id":"M-Shop"}],"acknowledgement":"We thank Drs. David DiGregorio and Erwin Neher for critically reading an earlier version of the manuscript, Ralf Schneggenburger for helpful discussions, Benjamin Suter and Katharina Lichter for support with image analysis, Chris Wojtan for advice on numerical solution of partial differential equations, Maria Reva for help with Ripley analysis, Alois Schlögl for programming, and Akari Hagiwara and Toshihisa Ohtsuka for anti-ELKS antibody. We are grateful to Florian Marr, Christina Altmutter, and Vanessa Zheden for excellent technical assistance and to Eleftheria Kralli-Beller for manuscript editing. This research was supported by the Scientific Services Units (SSUs) of ISTA (Electron Microscopy Facility, Preclinical Facility, and Machine Shop). The project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 692692), the Fonds zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award; P 36232-B), all to P.J., and a DOC fellowship of the Austrian Academy of Sciences to J.-J.C.","project":[{"name":"Biophysics and circuit function of a giant cortical glumatergic synapse","_id":"25B7EB9E-B435-11E9-9278-68D0E5697425","grant_number":"692692","call_identifier":"H2020"},{"call_identifier":"FWF","name":"The Wittgenstein Prize","_id":"25C5A090-B435-11E9-9278-68D0E5697425","grant_number":"Z00312"},{"name":"Mechanisms of GABA release in hippocampal circuits","_id":"bd88be38-d553-11ed-ba76-81d5a70a6ef5","grant_number":"P36232"},{"_id":"26B66A3E-B435-11E9-9278-68D0E5697425","name":"Development of nanodomain coupling between Ca2+ channels and release sensors at a central inhibitory synapse","grant_number":"25383"}],"doi":"10.1016/j.neuron.2023.12.002","publication":"Neuron","author":[{"full_name":"Chen, JingJing","id":"2C4E65C8-F248-11E8-B48F-1D18A9856A87","first_name":"JingJing","last_name":"Chen"},{"orcid":"0000-0001-9735-5315","full_name":"Kaufmann, Walter","id":"3F99E422-F248-11E8-B48F-1D18A9856A87","first_name":"Walter","last_name":"Kaufmann"},{"id":"3DFD581A-F248-11E8-B48F-1D18A9856A87","full_name":"Chen, Chong","last_name":"Chen","first_name":"Chong"},{"full_name":"Arai, Itaru","id":"32A73F6C-F248-11E8-B48F-1D18A9856A87","last_name":"Arai","first_name":"Itaru"},{"last_name":"Kim","first_name":"Olena","full_name":"Kim, Olena","id":"3F8ABDDA-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0001-8761-9444","id":"499F3ABC-F248-11E8-B48F-1D18A9856A87","full_name":"Shigemoto, Ryuichi","last_name":"Shigemoto","first_name":"Ryuichi"},{"orcid":"0000-0001-5001-4804","first_name":"Peter M","last_name":"Jonas","full_name":"Jonas, Peter M","id":"353C1B58-F248-11E8-B48F-1D18A9856A87"}],"external_id":{"pmid":["38215739"]},"publication_identifier":{"issn":["0896-6273"],"eissn":["1097-4199"]},"ec_funded":1,"article_type":"original","citation":{"ama":"Chen J, Kaufmann W, Chen C, et al. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. doi:10.1016/j.neuron.2023.12.002","ista":"Chen J, Kaufmann W, Chen C, Arai itaru, Kim O, Shigemoto R, Jonas PM. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron.","chicago":"Chen, JingJing, Walter Kaufmann, Chong Chen, itaru Arai, Olena Kim, Ryuichi Shigemoto, and Peter M Jonas. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron. Elsevier, n.d. https://doi.org/10.1016/j.neuron.2023.12.002.","apa":"Chen, J., Kaufmann, W., Chen, C., Arai, itaru, Kim, O., Shigemoto, R., & Jonas, P. M. (n.d.). Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2023.12.002","short":"J. Chen, W. Kaufmann, C. Chen, itaru Arai, O. Kim, R. Shigemoto, P.M. Jonas, Neuron (n.d.).","mla":"Chen, JingJing, et al. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron, Elsevier, doi:10.1016/j.neuron.2023.12.002.","ieee":"J. Chen et al., “Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse,” Neuron. Elsevier."},"language":[{"iso":"eng"}],"_id":"14843","oa_version":"None","date_created":"2024-01-21T23:00:56Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","publisher":"Elsevier","scopus_import":"1","quality_controlled":"1","title":"Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse","related_material":{"link":[{"url":"https://ista.ac.at/en/news/synapses-brought-to-the-point/","description":"News on ISTA Website","relation":"press_release"}]},"status":"public","type":"journal_article","day":"11","article_processing_charge":"No","month":"01","pmid":1,"date_updated":"2024-03-05T09:31:24Z","publication_status":"inpress","date_published":"2024-01-11T00:00:00Z","department":[{"_id":"PeJo"},{"_id":"EM-Fac"},{"_id":"RySh"}],"abstract":[{"text":"The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.","lang":"eng"}]}