{"volume":103,"publication_status":"published","main_file_link":[{"open_access":"1","url":"http://arxiv.org/abs/math/0511163"}],"_id":"1462","publication":"PNAS","extern":1,"day":"18","date_updated":"2021-01-12T06:50:55Z","date_published":"2006-04-18T00:00:00Z","status":"public","date_created":"2018-12-11T11:52:10Z","intvolume":" 103","citation":{"short":"T. Hausel, PNAS 103 (2006) 6120–6124.","ista":"Hausel T. 2006. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform. PNAS. 103(16), 6120–6124.","apa":"Hausel, T. (2006). Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.0601337103","chicago":"Hausel, Tamás. “Betti Numbers of Holomorphic Symplectic Quotients via Arithmetic Fourier Transform.” PNAS. National Academy of Sciences, 2006. https://doi.org/10.1073/pnas.0601337103.","mla":"Hausel, Tamás. “Betti Numbers of Holomorphic Symplectic Quotients via Arithmetic Fourier Transform.” PNAS, vol. 103, no. 16, National Academy of Sciences, 2006, pp. 6120–24, doi:10.1073/pnas.0601337103.","ieee":"T. Hausel, “Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform,” PNAS, vol. 103, no. 16. National Academy of Sciences, pp. 6120–6124, 2006.","ama":"Hausel T. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform. PNAS. 2006;103(16):6120-6124. doi:10.1073/pnas.0601337103"},"quality_controlled":0,"title":"Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform","publist_id":"5734","publisher":"National Academy of Sciences","month":"04","oa":1,"type":"journal_article","page":"6120 - 6124","acknowledgement":"This work was supported by a Royal Society University Research Fellowship, National Science Foundation Grant DMS-0305505, an Alfred P. Sloan Research Fellowship, and a Summer Research Assignment of the University of Texas at Austin.","year":"2006","author":[{"last_name":"Hausel","first_name":"Tamas","id":"4A0666D8-F248-11E8-B48F-1D18A9856A87","full_name":"Tamas Hausel"}],"doi":"10.1073/pnas.0601337103","issue":"16","abstract":[{"text":"A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hubert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on ℂ2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.","lang":"eng"}]}