{"acknowledgement":"The authors are grateful to Joscha Henheik for his help with the formulas in Appendix B.","main_file_link":[{"open_access":"1","url":"https://doi.org/10.48550/arXiv.2210.12060"}],"day":"28","publication":"Probability Theory and Related Fields","publisher":"Springer Nature","author":[{"first_name":"Giorgio","full_name":"Cipolloni, Giorgio","last_name":"Cipolloni","id":"42198EFA-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-4901-7992"},{"full_name":"Erdös, László","last_name":"Erdös","first_name":"László","orcid":"0000-0001-5366-9603","id":"4DBD5372-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Dominik J","last_name":"Schröder","full_name":"Schröder, Dominik J","id":"408ED176-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-2904-1856"}],"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","department":[{"_id":"LaEr"}],"type":"journal_article","abstract":[{"text":"We prove that the mesoscopic linear statistics ∑if(na(σi−z0)) of the eigenvalues {σi}i of large n×n non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H20-functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-023-01229-1","mla":"Cipolloni, Giorgio, et al. “Mesoscopic Central Limit Theorem for Non-Hermitian Random Matrices.” Probability Theory and Related Fields, Springer Nature, 2023, doi:10.1007/s00440-023-01229-1.","ista":"Cipolloni G, Erdös L, Schröder DJ. 2023. Mesoscopic central limit theorem for non-Hermitian random matrices. Probability Theory and Related Fields.","short":"G. Cipolloni, L. Erdös, D.J. Schröder, Probability Theory and Related Fields (2023).","ama":"Cipolloni G, Erdös L, Schröder DJ. Mesoscopic central limit theorem for non-Hermitian random matrices. Probability Theory and Related Fields. 2023. doi:10.1007/s00440-023-01229-1","ieee":"G. Cipolloni, L. Erdös, and D. J. Schröder, “Mesoscopic central limit theorem for non-Hermitian random matrices,” Probability Theory and Related Fields. Springer Nature, 2023.","chicago":"Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Mesoscopic Central Limit Theorem for Non-Hermitian Random Matrices.” Probability Theory and Related Fields. Springer Nature, 2023. https://doi.org/10.1007/s00440-023-01229-1."},"article_processing_charge":"No","month":"09","date_updated":"2023-10-09T07:19:01Z","date_created":"2023-10-08T22:01:17Z","title":"Mesoscopic central limit theorem for non-Hermitian random matrices","oa":1,"publication_identifier":{"eissn":["1432-2064"],"issn":["0178-8051"]},"year":"2023","language":[{"iso":"eng"}]}