{"article_processing_charge":"No","date_created":"2023-08-25T15:04:29Z","month":"11","citation":{"ieee":"G. Goranci and M. H. Henzinger, “Incremental approximate maximum flow in m1/2+o(1) update time,” arXiv. .","ama":"Goranci G, Henzinger MH. Incremental approximate maximum flow in m1/2+o(1) update time. arXiv. doi:10.48550/arXiv.2211.09606","mla":"Goranci, Gramoz, and Monika H. Henzinger. “Incremental Approximate Maximum Flow in M1/2+o(1) Update Time.” ArXiv, 2211.09606, doi:10.48550/arXiv.2211.09606.","short":"G. Goranci, M.H. Henzinger, ArXiv (n.d.).","apa":"Goranci, G., & Henzinger, M. H. (n.d.). Incremental approximate maximum flow in m1/2+o(1) update time. arXiv. https://doi.org/10.48550/arXiv.2211.09606","chicago":"Goranci, Gramoz, and Monika H Henzinger. “Incremental Approximate Maximum Flow in M1/2+o(1) Update Time.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2211.09606.","ista":"Goranci G, Henzinger MH. Incremental approximate maximum flow in m1/2+o(1) update time. arXiv, 2211.09606."},"external_id":{"arxiv":["2211.09606"]},"day":"17","status":"public","year":"2022","oa":1,"date_published":"2022-11-17T00:00:00Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","type":"preprint","extern":"1","date_updated":"2023-09-04T08:31:19Z","language":[{"iso":"eng"}],"title":"Incremental approximate maximum flow in m1/2+o(1) update time","doi":"10.48550/arXiv.2211.09606","author":[{"full_name":"Goranci, Gramoz","first_name":"Gramoz","last_name":"Goranci"},{"last_name":"Henzinger","id":"540c9bbd-f2de-11ec-812d-d04a5be85630","first_name":"Monika H","full_name":"Henzinger, Monika H","orcid":"0000-0002-5008-6530"}],"main_file_link":[{"url":"https://doi.org/10.48550/arXiv.2211.09606","open_access":"1"}],"_id":"14236","article_number":"2211.09606","abstract":[{"text":"We show an $(1+\\epsilon)$-approximation algorithm for maintaining maximum $s$-$t$ flow under $m$ edge insertions in $m^{1/2+o(1)} \\epsilon^{-1/2}$ amortized update time for directed, unweighted graphs. This constitutes the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good approximation guarantee.","lang":"eng"}],"oa_version":"Preprint","publication_status":"submitted","publication":"arXiv"}