{"file_date_updated":"2020-07-14T12:44:47Z","date_created":"2018-12-11T11:51:41Z","status":"public","citation":{"ieee":"B. Burton, A. N. de Mesmay, and U. Wagner, “Finding non-orientable surfaces in 3-manifolds,” presented at the SoCG: Symposium on Computational Geometry, Medford, MA, USA, 2016, vol. 51, p. 24.1-24.15.","ista":"Burton B, de Mesmay AN, Wagner U. 2016. Finding non-orientable surfaces in 3-manifolds. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 51, 24.1-24.15.","mla":"Burton, Benjamin, et al. Finding Non-Orientable Surfaces in 3-Manifolds. Vol. 51, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2016, p. 24.1-24.15, doi:10.4230/LIPIcs.SoCG.2016.24.","chicago":"Burton, Benjamin, Arnaud N de Mesmay, and Uli Wagner. “Finding Non-Orientable Surfaces in 3-Manifolds,” 51:24.1-24.15. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2016. https://doi.org/10.4230/LIPIcs.SoCG.2016.24.","ama":"Burton B, de Mesmay AN, Wagner U. Finding non-orientable surfaces in 3-manifolds. In: Vol 51. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing; 2016:24.1-24.15. doi:10.4230/LIPIcs.SoCG.2016.24","short":"B. Burton, A.N. de Mesmay, U. Wagner, in:, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2016, p. 24.1-24.15.","apa":"Burton, B., de Mesmay, A. N., & Wagner, U. (2016). Finding non-orientable surfaces in 3-manifolds (Vol. 51, p. 24.1-24.15). Presented at the SoCG: Symposium on Computational Geometry, Medford, MA, USA: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.SoCG.2016.24"},"day":"01","year":"2016","publication_status":"published","quality_controlled":"1","oa":1,"abstract":[{"lang":"eng","text":"We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case."}],"has_accepted_license":"1","date_updated":"2023-02-23T12:23:20Z","related_material":{"record":[{"id":"534","status":"public","relation":"later_version"}]},"language":[{"iso":"eng"}],"intvolume":" 51","publisher":"Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing","author":[{"first_name":"Benjamin","full_name":"Burton, Benjamin","last_name":"Burton"},{"id":"3DB2F25C-F248-11E8-B48F-1D18A9856A87","first_name":"Arnaud N","full_name":"De Mesmay, Arnaud N","last_name":"De Mesmay"},{"first_name":"Uli","full_name":"Wagner, Uli","id":"36690CA2-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-1494-0568","last_name":"Wagner"}],"scopus_import":1,"ddc":["510"],"_id":"1379","alternative_title":["LIPIcs"],"doi":"10.4230/LIPIcs.SoCG.2016.24","conference":{"start_date":"2016-06-14","location":"Medford, MA, USA","name":"SoCG: Symposium on Computational Geometry","end_date":"2016-06-17"},"department":[{"_id":"UlWa"}],"type":"conference","date_published":"2016-06-01T00:00:00Z","pubrep_id":"622","title":"Finding non-orientable surfaces in 3-manifolds","publist_id":"5832","volume":51,"oa_version":"Published Version","tmp":{"name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","image":"/images/cc_by.png","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode","short":"CC BY (4.0)"},"page":"24.1 - 24.15","file":[{"file_name":"IST-2016-622-v1+1_LIPIcs-SoCG-2016-24.pdf","checksum":"f04248a61c24297cfabd30c5f8e0deb9","date_updated":"2020-07-14T12:44:47Z","relation":"main_file","date_created":"2018-12-12T10:12:12Z","content_type":"application/pdf","access_level":"open_access","file_id":"4930","creator":"system","file_size":574770}],"month":"06","user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87"}