{"publist_id":"5886","volume":113,"intvolume":" 113","year":"2016","project":[{"_id":"25B07788-B435-11E9-9278-68D0E5697425","name":"Limits to selection in biology and in evolutionary computation","grant_number":"250152","call_identifier":"FP7"},{"grant_number":"618091","name":"Speed of Adaptation in Population Genetics and Evolutionary Computation","_id":"25B1EC9E-B435-11E9-9278-68D0E5697425","call_identifier":"FP7"}],"publication":"PNAS","author":[{"orcid":"0000-0003-2361-3953","last_name":"Paixao","first_name":"Tiago","id":"2C5658E6-F248-11E8-B48F-1D18A9856A87","full_name":"Paixao, Tiago"},{"orcid":"0000-0002-8548-5240","id":"4880FE40-F248-11E8-B48F-1D18A9856A87","full_name":"Barton, Nicholas H","first_name":"Nicholas H","last_name":"Barton"}],"page":"4422 - 4427","doi":"10.1073/pnas.1518830113","external_id":{"pmid":["27044080"]},"citation":{"mla":"Paixao, Tiago, and Nicholas H. Barton. “The Effect of Gene Interactions on the Long-Term Response to Selection.” PNAS, vol. 113, no. 16, National Academy of Sciences, 2016, pp. 4422–27, doi:10.1073/pnas.1518830113.","ieee":"T. Paixao and N. H. Barton, “The effect of gene interactions on the long-term response to selection,” PNAS, vol. 113, no. 16. National Academy of Sciences, pp. 4422–4427, 2016.","ama":"Paixao T, Barton NH. The effect of gene interactions on the long-term response to selection. PNAS. 2016;113(16):4422-4427. doi:10.1073/pnas.1518830113","ista":"Paixao T, Barton NH. 2016. The effect of gene interactions on the long-term response to selection. PNAS. 113(16), 4422–4427.","apa":"Paixao, T., & Barton, N. H. (2016). The effect of gene interactions on the long-term response to selection. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1518830113","chicago":"Paixao, Tiago, and Nicholas H Barton. “The Effect of Gene Interactions on the Long-Term Response to Selection.” PNAS. National Academy of Sciences, 2016. https://doi.org/10.1073/pnas.1518830113.","short":"T. Paixao, N.H. Barton, PNAS 113 (2016) 4422–4427."},"article_type":"original","ec_funded":1,"_id":"1359","language":[{"iso":"eng"}],"date_created":"2018-12-11T11:51:34Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa_version":"Published Version","oa":1,"scopus_import":1,"publisher":"National Academy of Sciences","status":"public","quality_controlled":"1","title":"The effect of gene interactions on the long-term response to selection","day":"19","type":"journal_article","pmid":1,"date_updated":"2021-01-12T06:50:08Z","month":"04","article_processing_charge":"No","issue":"16","date_published":"2016-04-19T00:00:00Z","publication_status":"published","abstract":[{"text":"The role of gene interactions in the evolutionary process has long\r\nbeen controversial. Although some argue that they are not of\r\nimportance, because most variation is additive, others claim that\r\ntheir effect in the long term can be substantial. Here, we focus on\r\nthe long-term effects of genetic interactions under directional\r\nselection assuming no mutation or dominance, and that epistasis is\r\nsymmetrical overall. We ask by how much the mean of a complex\r\ntrait can be increased by selection and analyze two extreme\r\nregimes, in which either drift or selection dominate the dynamics\r\nof allele frequencies. In both scenarios, epistatic interactions affect\r\nthe long-term response to selection by modulating the additive\r\ngenetic variance. When drift dominates, we extend Robertson\r\n’\r\ns\r\n[Robertson A (1960)\r\nProc R Soc Lond B Biol Sci\r\n153(951):234\r\n−\r\n249]\r\nargument to show that, for any form of epistasis, the total response\r\nof a haploid population is proportional to the initial total genotypic\r\nvariance. In contrast, the total response of a diploid population is\r\nincreased by epistasis, for a given initial genotypic variance. When\r\nselection dominates, we show that the total selection response can\r\nonly be increased by epistasis when s\r\nome initially deleterious alleles\r\nbecome favored as the genetic background changes. We find a sim-\r\nple approximation for this effect and show that, in this regime, it is\r\nthe structure of the genotype - phenotype map that matters and not\r\nthe variance components of the population.","lang":"eng"}],"main_file_link":[{"open_access":"1","url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843425/"}],"department":[{"_id":"NiBa"},{"_id":"CaGu"}]}