{"pmid":1,"keyword":["General Chemistry"],"article_type":"original","publisher":"Wiley","year":"2016","day":"01","date_published":"2016-01-01T00:00:00Z","intvolume":" 81","language":[{"iso":"eng"}],"scopus_import":"1","quality_controlled":"1","title":"Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch","issue":"1","oa_version":"None","article_processing_charge":"No","citation":{"short":"N. Amdursky, P.K. Kundu, J. Ahrens, D. Huppert, R. Klajn, ChemPlusChem 81 (2016) 44–48.","ama":"Amdursky N, Kundu PK, Ahrens J, Huppert D, Klajn R. Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch. ChemPlusChem. 2016;81(1):44-48. doi:10.1002/cplu.201500417","mla":"Amdursky, Nadav, et al. “Noncovalent Interactions with Proteins Modify the Physicochemical Properties of a Molecular Switch.” ChemPlusChem, vol. 81, no. 1, Wiley, 2016, pp. 44–48, doi:10.1002/cplu.201500417.","ieee":"N. Amdursky, P. K. Kundu, J. Ahrens, D. Huppert, and R. Klajn, “Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch,” ChemPlusChem, vol. 81, no. 1. Wiley, pp. 44–48, 2016.","chicago":"Amdursky, Nadav, Pintu K. Kundu, Johannes Ahrens, Dan Huppert, and Rafal Klajn. “Noncovalent Interactions with Proteins Modify the Physicochemical Properties of a Molecular Switch.” ChemPlusChem. Wiley, 2016. https://doi.org/10.1002/cplu.201500417.","ista":"Amdursky N, Kundu PK, Ahrens J, Huppert D, Klajn R. 2016. Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch. ChemPlusChem. 81(1), 44–48.","apa":"Amdursky, N., Kundu, P. K., Ahrens, J., Huppert, D., & Klajn, R. (2016). Noncovalent interactions with proteins modify the physicochemical properties of a molecular switch. ChemPlusChem. Wiley. https://doi.org/10.1002/cplu.201500417"},"month":"01","date_created":"2023-08-01T09:43:46Z","status":"public","page":"44-48","external_id":{"pmid":["31968727"]},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_updated":"2023-08-07T12:51:56Z","volume":81,"extern":"1","type":"journal_article","publication_identifier":{"eissn":["2192-6506"]},"_id":"13391","doi":"10.1002/cplu.201500417","author":[{"first_name":"Nadav","full_name":"Amdursky, Nadav","last_name":"Amdursky"},{"last_name":"Kundu","first_name":"Pintu K.","full_name":"Kundu, Pintu K."},{"full_name":"Ahrens, Johannes","first_name":"Johannes","last_name":"Ahrens"},{"first_name":"Dan","full_name":"Huppert, Dan","last_name":"Huppert"},{"first_name":"Rafal","full_name":"Klajn, Rafal","last_name":"Klajn","id":"8e84690e-1e48-11ed-a02b-a1e6fb8bb53b"}],"publication":"ChemPlusChem","publication_status":"published","abstract":[{"lang":"eng","text":"It is reported that spiropyran—a widely investigated molecular photoswitch—can be stabilized in aqueous environments in the presence of a variety of proteins, including human serum albumin, insulin fibrils, lysozyme, and glucose oxidase. The optical properties of the complexed photoswitch are protein dependent, with human serum albumin providing the spiropyran with emission features previously observed for a photoswitch confined in media of high viscosity. Despite being bound to the protein molecules, spiropyran can undergo a ring-opening reaction upon exposure to UV light. This photoisomerization process can affect the properties of the proteins: here, it is shown that the electrical conduction through human serum albumin to which the spiropyran is bound increases following the ring-opening reaction."}]}