{"quality_controlled":"1","title":"Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles","status":"public","publisher":"Springer Nature","scopus_import":"1","oa_version":"Published Version","oa":1,"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","date_created":"2023-08-01T09:32:40Z","abstract":[{"lang":"eng","text":"Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane–electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics."}],"main_file_link":[{"open_access":"1","url":"https://hal.science/hal-03623036/"}],"extern":"1","publication_status":"published","date_published":"2022-03-14T00:00:00Z","issue":"4","month":"03","article_processing_charge":"No","pmid":1,"date_updated":"2023-08-02T09:44:31Z","type":"journal_article","day":"14","keyword":["Electrical and Electronic Engineering","Condensed Matter Physics","General Materials Science","Biomedical Engineering","Atomic and Molecular Physics","and Optics","Bioengineering"],"year":"2022","intvolume":" 17","volume":17,"_id":"13352","language":[{"iso":"eng"}],"citation":{"mla":"Cai, Jiarong, et al. “Polarization-Sensitive Optoionic Membranes from Chiral Plasmonic Nanoparticles.” Nature Nanotechnology, vol. 17, no. 4, Springer Nature, 2022, pp. 408–16, doi:10.1038/s41565-022-01079-3.","ieee":"J. Cai et al., “Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles,” Nature Nanotechnology, vol. 17, no. 4. Springer Nature, pp. 408–416, 2022.","ama":"Cai J, Zhang W, Xu L, et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. 2022;17(4):408-416. doi:10.1038/s41565-022-01079-3","ista":"Cai J, Zhang W, Xu L, Hao C, Ma W, Sun M, Wu X, Qin X, Colombari FM, de Moura AF, Xu J, Silva MC, Carneiro-Neto EB, Gomes WR, Vallée RAL, Pereira EC, Liu X, Xu C, Klajn R, Kotov NA, Kuang H. 2022. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. 17(4), 408–416.","apa":"Cai, J., Zhang, W., Xu, L., Hao, C., Ma, W., Sun, M., … Kuang, H. (2022). Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/s41565-022-01079-3","chicago":"Cai, Jiarong, Wei Zhang, Liguang Xu, Changlong Hao, Wei Ma, Maozhong Sun, Xiaoling Wu, et al. “Polarization-Sensitive Optoionic Membranes from Chiral Plasmonic Nanoparticles.” Nature Nanotechnology. Springer Nature, 2022. https://doi.org/10.1038/s41565-022-01079-3.","short":"J. Cai, W. Zhang, L. Xu, C. Hao, W. Ma, M. Sun, X. Wu, X. Qin, F.M. Colombari, A.F. de Moura, J. Xu, M.C. Silva, E.B. Carneiro-Neto, W.R. Gomes, R.A.L. Vallée, E.C. Pereira, X. Liu, C. Xu, R. Klajn, N.A. Kotov, H. Kuang, Nature Nanotechnology 17 (2022) 408–416."},"article_type":"original","external_id":{"pmid":["35288671"]},"publication_identifier":{"issn":["1748-3387"],"eissn":["1748-3395"]},"publication":"Nature Nanotechnology","author":[{"full_name":"Cai, Jiarong","last_name":"Cai","first_name":"Jiarong"},{"full_name":"Zhang, Wei","last_name":"Zhang","first_name":"Wei"},{"full_name":"Xu, Liguang","first_name":"Liguang","last_name":"Xu"},{"full_name":"Hao, Changlong","last_name":"Hao","first_name":"Changlong"},{"last_name":"Ma","first_name":"Wei","full_name":"Ma, Wei"},{"last_name":"Sun","first_name":"Maozhong","full_name":"Sun, Maozhong"},{"full_name":"Wu, Xiaoling","last_name":"Wu","first_name":"Xiaoling"},{"first_name":"Xian","last_name":"Qin","full_name":"Qin, Xian"},{"last_name":"Colombari","first_name":"Felippe Mariano","full_name":"Colombari, Felippe Mariano"},{"full_name":"de Moura, André Farias","first_name":"André Farias","last_name":"de Moura"},{"first_name":"Jiahui","last_name":"Xu","full_name":"Xu, Jiahui"},{"last_name":"Silva","first_name":"Mariana Cristina","full_name":"Silva, Mariana Cristina"},{"full_name":"Carneiro-Neto, Evaldo Batista","last_name":"Carneiro-Neto","first_name":"Evaldo Batista"},{"first_name":"Weverson Rodrigues","last_name":"Gomes","full_name":"Gomes, Weverson Rodrigues"},{"last_name":"Vallée","first_name":"Renaud A. L.","full_name":"Vallée, Renaud A. L."},{"last_name":"Pereira","first_name":"Ernesto Chaves","full_name":"Pereira, Ernesto Chaves"},{"last_name":"Liu","first_name":"Xiaogang","full_name":"Liu, Xiaogang"},{"full_name":"Xu, Chuanlai","last_name":"Xu","first_name":"Chuanlai"},{"full_name":"Klajn, Rafal","id":"8e84690e-1e48-11ed-a02b-a1e6fb8bb53b","first_name":"Rafal","last_name":"Klajn"},{"full_name":"Kotov, Nicholas A.","first_name":"Nicholas A.","last_name":"Kotov"},{"full_name":"Kuang, Hua","last_name":"Kuang","first_name":"Hua"}],"page":"408-416","doi":"10.1038/s41565-022-01079-3"}