{"department":[{"_id":"HeEd"}],"acknowledgement":"The authors are veryg rateful to Hansj ̈org Geiges \r\nfor fruitful discussions and advice and Christian Evers for helpful remarks on a draft version.","month":"12","date_created":"2018-12-11T11:51:11Z","citation":{"ieee":"S. Durst, M. Kegel, and M. D. Klukas, “Computing the Thurston–Bennequin invariant in open books,” Acta Mathematica Hungarica, vol. 150, no. 2. Springer, pp. 441–455, 2016.","mla":"Durst, Sebastian, et al. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica, vol. 150, no. 2, Springer, 2016, pp. 441–55, doi:10.1007/s10474-016-0648-4.","ama":"Durst S, Kegel M, Klukas MD. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 2016;150(2):441-455. doi:10.1007/s10474-016-0648-4","short":"S. Durst, M. Kegel, M.D. Klukas, Acta Mathematica Hungarica 150 (2016) 441–455.","apa":"Durst, S., Kegel, M., & Klukas, M. D. (2016). Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. Springer. https://doi.org/10.1007/s10474-016-0648-4","ista":"Durst S, Kegel M, Klukas MD. 2016. Computing the Thurston–Bennequin invariant in open books. Acta Mathematica Hungarica. 150(2), 441–455.","chicago":"Durst, Sebastian, Marc Kegel, and Mirko D Klukas. “Computing the Thurston–Bennequin Invariant in Open Books.” Acta Mathematica Hungarica. Springer, 2016. https://doi.org/10.1007/s10474-016-0648-4."},"status":"public","page":"441 - 455","oa":1,"user_id":"3E5EF7F0-F248-11E8-B48F-1D18A9856A87","type":"journal_article","date_updated":"2021-01-12T06:49:40Z","volume":150,"_id":"1292","doi":"10.1007/s10474-016-0648-4","author":[{"first_name":"Sebastian","full_name":"Durst, Sebastian","last_name":"Durst"},{"full_name":"Kegel, Marc","first_name":"Marc","last_name":"Kegel"},{"last_name":"Klukas","id":"34927512-F248-11E8-B48F-1D18A9856A87","first_name":"Mirko D","full_name":"Klukas, Mirko D"}],"abstract":[{"text":"We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.","lang":"eng"}],"publication_status":"published","publication":"Acta Mathematica Hungarica","day":"01","publisher":"Springer","year":"2016","date_published":"2016-12-01T00:00:00Z","publist_id":"6023","language":[{"iso":"eng"}],"intvolume":" 150","scopus_import":1,"quality_controlled":"1","title":"Computing the Thurston–Bennequin invariant in open books","main_file_link":[{"url":"https://arxiv.org/abs/1605.00794","open_access":"1"}],"oa_version":"Preprint","issue":"2"}