{"page":"287-298","doi":"10.1016/j.ensm.2023.03.022","publication":"Energy Storage Materials","author":[{"full_name":"He, Ren","first_name":"Ren","last_name":"He"},{"full_name":"Yang, Linlin","last_name":"Yang","first_name":"Linlin"},{"last_name":"Zhang","first_name":"Yu","full_name":"Zhang, Yu"},{"first_name":"Xiang","last_name":"Wang","full_name":"Wang, Xiang"},{"first_name":"Seungho","last_name":"Lee","full_name":"Lee, Seungho","id":"BB243B88-D767-11E9-B658-BC13E6697425","orcid":"0000-0002-6962-8598"},{"full_name":"Zhang, Ting","first_name":"Ting","last_name":"Zhang"},{"first_name":"Lingxiao","last_name":"Li","full_name":"Li, Lingxiao"},{"full_name":"Liang, Zhifu","first_name":"Zhifu","last_name":"Liang"},{"full_name":"Chen, Jingwei","last_name":"Chen","first_name":"Jingwei"},{"full_name":"Li, Junshan","first_name":"Junshan","last_name":"Li"},{"full_name":"Ostovari Moghaddam, Ahmad","last_name":"Ostovari Moghaddam","first_name":"Ahmad"},{"first_name":"Jordi","last_name":"Llorca","full_name":"Llorca, Jordi"},{"full_name":"Ibáñez, Maria","id":"43C61214-F248-11E8-B48F-1D18A9856A87","last_name":"Ibáñez","first_name":"Maria","orcid":"0000-0001-5013-2843"},{"last_name":"Arbiol","first_name":"Jordi","full_name":"Arbiol, Jordi"},{"full_name":"Xu, Ying","first_name":"Ying","last_name":"Xu"},{"full_name":"Cabot, Andreu","first_name":"Andreu","last_name":"Cabot"}],"publication_identifier":{"eissn":["2405-8297"]},"external_id":{"isi":["000967601700001"]},"citation":{"ieee":"R. He et al., “A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance,” Energy Storage Materials, vol. 58, no. 4. Elsevier, pp. 287–298, 2023.","mla":"He, Ren, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials, vol. 58, no. 4, Elsevier, 2023, pp. 287–98, doi:10.1016/j.ensm.2023.03.022.","short":"R. He, L. Yang, Y. Zhang, X. Wang, S. Lee, T. Zhang, L. Li, Z. Liang, J. Chen, J. Li, A. Ostovari Moghaddam, J. Llorca, M. Ibáñez, J. Arbiol, Y. Xu, A. Cabot, Energy Storage Materials 58 (2023) 287–298.","ama":"He R, Yang L, Zhang Y, et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 2023;58(4):287-298. doi:10.1016/j.ensm.2023.03.022","apa":"He, R., Yang, L., Zhang, Y., Wang, X., Lee, S., Zhang, T., … Cabot, A. (2023). A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. Elsevier. https://doi.org/10.1016/j.ensm.2023.03.022","ista":"He R, Yang L, Zhang Y, Wang X, Lee S, Zhang T, Li L, Liang Z, Chen J, Li J, Ostovari Moghaddam A, Llorca J, Ibáñez M, Arbiol J, Xu Y, Cabot A. 2023. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 58(4), 287–298.","chicago":"He, Ren, Linlin Yang, Yu Zhang, Xiang Wang, Seungho Lee, Ting Zhang, Lingxiao Li, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials. Elsevier, 2023. https://doi.org/10.1016/j.ensm.2023.03.022."},"article_type":"original","language":[{"iso":"eng"}],"_id":"12832","volume":58,"intvolume":" 58","acknowledged_ssus":[{"_id":"EM-Fac"}],"year":"2023","acknowledgement":"The authors thank the support from the project COMBENERGY, PID2019-105490RB-C32, from the Spanish Ministerio de Ciencia e Innovación. The authors acknowledge funding from Generalitat de Catalunya 2021 SGR 01581 and 2021 SGR 00457. ICN2 acknowledges the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). IREC and ICN2 are funded by the CERCA Programme from the Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX2021-001214-S). ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. The authors thank the support from the project NANOGEN (PID2020-116093RB-C43), funded by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, by the “European Union”. Part of the present work has been performed in the frameworks of Universitat de Barcelona Nanoscience PhD program. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Electron Microscopy Facility (EMF). S. Lee. and M. Ibáñez acknowledge funding by IST Austria and the Werner Siemens Foundation. J. Llorca is a Serra Húnter Fellow and is grateful to ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and GC 2017 SGR 128. L. L.Yang thanks the China Scholarship Council (CSC) for the scholarship support (202008130132). Z. F. Liang acknowledges funding from MINECO SO-FPT PhD grant (SEV-2013-0295-17-1). J. W. Chen and Y. Xu thank the support from The Key Research and Development Program of Hebei Province (No. 20314305D) and the cooperative scientific research project of the “Chunhui Program” of the Ministry of Education (2018-7). This work was supported by the Natural Science Foundation of Sichuan province (NSFSC) and funded by the Science and Technology Department of Sichuan Province (2022NSFSC1229).","isi":1,"project":[{"name":"HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery","_id":"9B8F7476-BA93-11EA-9121-9846C619BF3A"}],"day":"01","type":"journal_article","date_updated":"2023-08-01T14:08:02Z","article_processing_charge":"No","month":"04","issue":"4","date_published":"2023-04-01T00:00:00Z","publication_status":"published","abstract":[{"lang":"eng","text":"The development of cost-effective, high-activity and stable bifunctional catalysts for the oxygen reduction and evolution reactions (ORR/OER) is essential for zinc–air batteries (ZABs) to reach the market. Such catalysts must contain multiple adsorption/reaction sites to cope with the high demands of reversible oxygen electrodes. Herein, we propose a high entropy alloy (HEA) based on relatively abundant elements as a bifunctional ORR/OER catalyst. More specifically, we detail the synthesis of a CrMnFeCoNi HEA through a low-temperature solution-based approach. Such HEA displays superior OER performance with an overpotential of 265 mV at a current density of 10 mA/cm2, and a 37.9 mV/dec Tafel slope, well above the properties of a standard commercial catalyst based on RuO2. This high performance is partially explained by the presence of twinned defects, the incidence of large lattice distortions, and the electronic synergy between the different components, being Cr key to decreasing the energy barrier of the OER rate-determining step. CrMnFeCoNi also displays superior ORR performance with a half-potential of 0.78 V and an onset potential of 0.88 V, comparable with commercial Pt/C. The potential gap (Egap) between the OER overpotential and the ORR half-potential of CrMnFeCoNi is just 0.734 V. Taking advantage of these outstanding properties, ZABs are assembled using the CrMnFeCoNi HEA as air cathode and a zinc foil as the anode. The assembled cells provide an open-circuit voltage of 1.489 V, i.e. 90% of its theoretical limit (1.66 V), a peak power density of 116.5 mW/cm2, and a specific capacity of 836 mAh/g that stays stable for more than 10 days of continuous cycling, i.e. 720 cycles @ 8 mA/cm2 and 16.6 days of continuous cycling, i.e. 1200 cycles @ 5 mA/cm2."}],"department":[{"_id":"MaIb"}],"date_created":"2023-04-16T22:01:07Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa_version":"None","scopus_import":"1","publisher":"Elsevier","status":"public","quality_controlled":"1","title":"A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance"}