{"year":"2023","acknowledged_ssus":[{"_id":"PreCl"},{"_id":"Bio"}],"intvolume":" 58","volume":58,"ddc":["570"],"project":[{"call_identifier":"H2020","grant_number":"742573","name":"Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation","_id":"260F1432-B435-11E9-9278-68D0E5697425"},{"_id":"26520D1E-B435-11E9-9278-68D0E5697425","name":"Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation","grant_number":"ALTF 850-2017"},{"grant_number":"LT000429","name":"Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation","_id":"266BC5CE-B435-11E9-9278-68D0E5697425"}],"isi":1,"file_date_updated":"2023-04-17T07:41:25Z","acknowledgement":"We thank Andrea Pauli (IMP) and Edouard Hannezo (ISTA) for fruitful discussions and support with the SPIM experiments; the Heisenberg group, and especially Feyza Nur Arslan and Alexandra Schauer, for discussions and feedback; Michaela Jović (ISTA) for help with the quantitative real-time PCR protocol; the bioimaging and zebrafish facilities of ISTA for continuous support; Stephan Preibisch (Janelia Research Campus) for support with the SPIM data analysis; and Nobuhiro Nakamura (Tokyo Institute of Technology) for sharing α1-Na+/K+-ATPase antibody. This work was supported by funding from the European Union (European Research Council Advanced grant 742573 to C.-P.H.), postdoctoral fellowships from EMBO (LTF-850-2017) and HFSP (LT000429/2018-L2) to D.P., and a PhD fellowship from the Studienstiftung des deutschen Volkes to F.P.","external_id":{"isi":["000982111800001"]},"publication_identifier":{"eissn":["1878-1551"],"issn":["1534-5807"]},"page":"582-596.e7","doi":"10.1016/j.devcel.2023.02.016","author":[{"full_name":"Huljev, Karla","id":"44C6F6A6-F248-11E8-B48F-1D18A9856A87","first_name":"Karla","last_name":"Huljev"},{"full_name":"Shamipour, Shayan","id":"40B34FE2-F248-11E8-B48F-1D18A9856A87","last_name":"Shamipour","first_name":"Shayan"},{"full_name":"Nunes Pinheiro, Diana C","id":"2E839F16-F248-11E8-B48F-1D18A9856A87","last_name":"Nunes Pinheiro","first_name":"Diana C","orcid":"0000-0003-4333-7503"},{"first_name":"Friedrich","last_name":"Preusser","full_name":"Preusser, Friedrich"},{"id":"2705C766-9FE2-11EA-B224-C6773DDC885E","full_name":"Steccari, Irene","last_name":"Steccari","first_name":"Irene"},{"orcid":"0000-0003-1216-9105","last_name":"Sommer","first_name":"Christoph M","full_name":"Sommer, Christoph M","id":"4DF26D8C-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0001-8421-5508","first_name":"Suyash","last_name":"Naik","id":"2C0B105C-F248-11E8-B48F-1D18A9856A87","full_name":"Naik, Suyash"},{"full_name":"Heisenberg, Carl-Philipp J","id":"39427864-F248-11E8-B48F-1D18A9856A87","last_name":"Heisenberg","first_name":"Carl-Philipp J","orcid":"0000-0002-0912-4566"}],"publication":"Developmental Cell","has_accepted_license":"1","language":[{"iso":"eng"}],"_id":"12830","ec_funded":1,"citation":{"mla":"Huljev, Karla, et al. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell, vol. 58, no. 7, Elsevier, 2023, p. 582–596.e7, doi:10.1016/j.devcel.2023.02.016.","ieee":"K. Huljev et al., “A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish,” Developmental Cell, vol. 58, no. 7. Elsevier, p. 582–596.e7, 2023.","chicago":"Huljev, Karla, Shayan Shamipour, Diana C Nunes Pinheiro, Friedrich Preusser, Irene Steccari, Christoph M Sommer, Suyash Naik, and Carl-Philipp J Heisenberg. “A Hydraulic Feedback Loop between Mesendoderm Cell Migration and Interstitial Fluid Relocalization Promotes Embryonic Axis Formation in Zebrafish.” Developmental Cell. Elsevier, 2023. https://doi.org/10.1016/j.devcel.2023.02.016.","ista":"Huljev K, Shamipour S, Nunes Pinheiro DC, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg C-PJ. 2023. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 58(7), 582–596.e7.","apa":"Huljev, K., Shamipour, S., Nunes Pinheiro, D. C., Preusser, F., Steccari, I., Sommer, C. M., … Heisenberg, C.-P. J. (2023). A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2023.02.016","ama":"Huljev K, Shamipour S, Nunes Pinheiro DC, et al. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Developmental Cell. 2023;58(7):582-596.e7. doi:10.1016/j.devcel.2023.02.016","short":"K. Huljev, S. Shamipour, D.C. Nunes Pinheiro, F. Preusser, I. Steccari, C.M. Sommer, S. Naik, C.-P.J. Heisenberg, Developmental Cell 58 (2023) 582–596.e7."},"article_type":"original","publisher":"Elsevier","scopus_import":"1","oa":1,"oa_version":"Published Version","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","date_created":"2023-04-16T22:01:07Z","quality_controlled":"1","title":"A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish","status":"public","article_processing_charge":"Yes (via OA deal)","month":"04","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2023-08-01T14:10:38Z","file":[{"content_type":"application/pdf","file_name":"2023_DevelopmentalCell_Huljev.pdf","creator":"dernst","access_level":"open_access","relation":"main_file","checksum":"c80ca2ebc241232aacdb5aa4b4c80957","file_id":"12842","success":1,"date_created":"2023-04-17T07:41:25Z","file_size":7925886,"date_updated":"2023-04-17T07:41:25Z"}],"type":"journal_article","license":"https://creativecommons.org/licenses/by/4.0/","day":"10","department":[{"_id":"CaHe"},{"_id":"Bio"}],"abstract":[{"lang":"eng","text":"Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization."}],"date_published":"2023-04-10T00:00:00Z","publication_status":"published","issue":"7"}