{"year":"2023","intvolume":" 130","volume":130,"isi":1,"keyword":["General Physics and Astronomy"],"external_id":{"isi":["000982435900002"],"arxiv":["2203.09443"]},"publication_identifier":{"eissn":["1079-7114"],"issn":["0031-9007"]},"doi":"10.1103/physrevlett.130.106901","author":[{"orcid":"0000-0003-0393-5525","full_name":"Volosniev, Artem","id":"37D278BC-F248-11E8-B48F-1D18A9856A87","first_name":"Artem","last_name":"Volosniev"},{"last_name":"Shiva Kumar","first_name":"Abhishek","id":"5e9a6931-eb97-11eb-a6c2-e96f7058d77a","full_name":"Shiva Kumar, Abhishek"},{"last_name":"Lorenc","first_name":"Dusan","full_name":"Lorenc, Dusan","id":"40D8A3E6-F248-11E8-B48F-1D18A9856A87"},{"full_name":"Ashourishokri, Younes","id":"e32c111f-f6e0-11ea-865d-eb955baea334","last_name":"Ashourishokri","first_name":"Younes"},{"first_name":"Ayan A.","last_name":"Zhumekenov","full_name":"Zhumekenov, Ayan A."},{"last_name":"Bakr","first_name":"Osman M.","full_name":"Bakr, Osman M."},{"orcid":"0000-0002-6990-7802","last_name":"Lemeshko","first_name":"Mikhail","full_name":"Lemeshko, Mikhail","id":"37CB05FA-F248-11E8-B48F-1D18A9856A87"},{"orcid":"0000-0002-7183-5203","id":"45E67A2A-F248-11E8-B48F-1D18A9856A87","full_name":"Alpichshev, Zhanybek","first_name":"Zhanybek","last_name":"Alpichshev"}],"publication":"Physical Review Letters","language":[{"iso":"eng"}],"_id":"12723","article_number":"106901","article_type":"original","citation":{"ama":"Volosniev A, Shiva Kumar A, Lorenc D, et al. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 2023;130(10). doi:10.1103/physrevlett.130.106901","chicago":"Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/physrevlett.130.106901.","ista":"Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 130(10), 106901.","apa":"Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A. A., Bakr, O. M., … Alpichshev, Z. (2023). Spin-electric coupling in lead halide perovskites. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.130.106901","short":"A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review Letters 130 (2023).","mla":"Volosniev, Artem, et al. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters, vol. 130, no. 10, 106901, American Physical Society, 2023, doi:10.1103/physrevlett.130.106901.","ieee":"A. Volosniev et al., “Spin-electric coupling in lead halide perovskites,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023."},"publisher":"American Physical Society","scopus_import":"1","oa":1,"oa_version":"Preprint","date_created":"2023-03-14T13:11:59Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","quality_controlled":"1","title":"Spin-electric coupling in lead halide perovskites","status":"public","article_processing_charge":"No","month":"03","date_updated":"2023-08-01T13:39:04Z","type":"journal_article","day":"10","department":[{"_id":"GradSch"},{"_id":"ZhAl"},{"_id":"MiLe"}],"main_file_link":[{"url":"https://doi.org/10.48550/arXiv.2203.09443","open_access":"1"}],"abstract":[{"lang":"eng","text":"Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order."}],"publication_status":"published","date_published":"2023-03-10T00:00:00Z","issue":"10"}