{"project":[{"grant_number":"259668","call_identifier":"FP7","name":"Provable Security for Physical Cryptography","_id":"258C570E-B435-11E9-9278-68D0E5697425"},{"_id":"258AA5B2-B435-11E9-9278-68D0E5697425","name":"Teaching Old Crypto New Tricks","call_identifier":"H2020","grant_number":"682815"}],"title":"Practical round-optimal blind signatures in the standard model from weaker assumptions","date_published":"2016-08-11T00:00:00Z","date_created":"2018-12-11T11:50:49Z","scopus_import":1,"related_material":{"record":[{"relation":"earlier_version","status":"public","id":"1647"}]},"author":[{"full_name":"Fuchsbauer, Georg","last_name":"Fuchsbauer","first_name":"Georg","id":"46B4C3EE-F248-11E8-B48F-1D18A9856A87"},{"first_name":"Christian","last_name":"Hanser","full_name":"Hanser, Christian"},{"full_name":"Kamath Hosdurg, Chethan","first_name":"Chethan","last_name":"Kamath Hosdurg","id":"4BD3F30E-F248-11E8-B48F-1D18A9856A87"},{"last_name":"Slamanig","first_name":"Daniel","full_name":"Slamanig, Daniel"}],"month":"08","citation":{"ama":"Fuchsbauer G, Hanser C, Kamath Hosdurg C, Slamanig D. Practical round-optimal blind signatures in the standard model from weaker assumptions. In: Vol 9841. Springer; 2016:391-408. doi:10.1007/978-3-319-44618-9_21","chicago":"Fuchsbauer, Georg, Christian Hanser, Chethan Kamath Hosdurg, and Daniel Slamanig. “Practical Round-Optimal Blind Signatures in the Standard Model from Weaker Assumptions,” 9841:391–408. Springer, 2016. https://doi.org/10.1007/978-3-319-44618-9_21.","apa":"Fuchsbauer, G., Hanser, C., Kamath Hosdurg, C., & Slamanig, D. (2016). Practical round-optimal blind signatures in the standard model from weaker assumptions (Vol. 9841, pp. 391–408). Presented at the SCN: Security and Cryptography for Networks, Amalfi, Italy: Springer. https://doi.org/10.1007/978-3-319-44618-9_21","mla":"Fuchsbauer, Georg, et al. Practical Round-Optimal Blind Signatures in the Standard Model from Weaker Assumptions. Vol. 9841, Springer, 2016, pp. 391–408, doi:10.1007/978-3-319-44618-9_21.","ista":"Fuchsbauer G, Hanser C, Kamath Hosdurg C, Slamanig D. 2016. Practical round-optimal blind signatures in the standard model from weaker assumptions. SCN: Security and Cryptography for Networks, LNCS, vol. 9841, 391–408.","ieee":"G. Fuchsbauer, C. Hanser, C. Kamath Hosdurg, and D. Slamanig, “Practical round-optimal blind signatures in the standard model from weaker assumptions,” presented at the SCN: Security and Cryptography for Networks, Amalfi, Italy, 2016, vol. 9841, pp. 391–408.","short":"G. Fuchsbauer, C. Hanser, C. Kamath Hosdurg, D. Slamanig, in:, Springer, 2016, pp. 391–408."},"status":"public","_id":"1225","volume":9841,"quality_controlled":"1","publication_status":"published","department":[{"_id":"KrPi"}],"alternative_title":["LNCS"],"type":"conference","oa_version":"Submitted Version","page":"391 - 408","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","publisher":"Springer","abstract":[{"text":"At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-model construction of efficient roundoptimal blind signatures that does not require complexity leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness under adversarially chosen keys is proven under an interactive variant of the DDH assumption. We propose a variant of their scheme whose blindness can be proven under a non-interactive assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed for the FHS scheme.","lang":"eng"}],"oa":1,"day":"11","date_updated":"2023-02-23T10:08:16Z","language":[{"iso":"eng"}],"year":"2016","main_file_link":[{"url":"https://eprint.iacr.org/2016/662","open_access":"1"}],"intvolume":" 9841","publist_id":"6109","conference":{"end_date":"2016-09-02","start_date":"2016-08-31","location":"Amalfi, Italy","name":"SCN: Security and Cryptography for Networks"},"doi":"10.1007/978-3-319-44618-9_21","ec_funded":1}