{"day":"01","type":"journal_article","file":[{"file_size":483481,"date_created":"2022-08-18T08:09:00Z","file_id":"11922","success":1,"date_updated":"2022-08-18T08:09:00Z","file_name":"2022_JournalStatisticalPhysics_Rademacher.pdf","access_level":"open_access","creator":"dernst","content_type":"application/pdf","relation":"main_file","checksum":"44418cb44f07fa21ed3907f85abf7f39"}],"date_updated":"2023-08-03T12:55:58Z","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"month":"07","article_processing_charge":"Yes (via OA deal)","publication_status":"published","date_published":"2022-07-01T00:00:00Z","abstract":[{"lang":"eng","text":"We study the many-body dynamics of an initially factorized bosonic wave function in the mean-field regime. We prove large deviation estimates for the fluctuations around the condensate. We derive an upper bound extending a recent result to more general interactions. Furthermore, we derive a new lower bound which agrees with the upper bound in leading order."}],"department":[{"_id":"RoSe"}],"date_created":"2022-08-18T07:23:26Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa_version":"Published Version","oa":1,"scopus_import":"1","publisher":"Springer Nature","status":"public","quality_controlled":"1","title":"Large deviation estimates for weakly interacting bosons","has_accepted_license":"1","author":[{"orcid":"0000-0001-5059-4466","id":"856966FE-A408-11E9-977E-802DE6697425","full_name":"Rademacher, Simone Anna Elvira","first_name":"Simone Anna Elvira","last_name":"Rademacher"},{"first_name":"Robert","last_name":"Seiringer","full_name":"Seiringer, Robert","id":"4AFD0470-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-6781-0521"}],"publication":"Journal of Statistical Physics","doi":"10.1007/s10955-022-02940-4","publication_identifier":{"eissn":["1572-9613"],"issn":["0022-4715"]},"external_id":{"isi":["000805175000001"]},"article_type":"original","citation":{"ama":"Rademacher SAE, Seiringer R. Large deviation estimates for weakly interacting bosons. Journal of Statistical Physics. 2022;188. doi:10.1007/s10955-022-02940-4","apa":"Rademacher, S. A. E., & Seiringer, R. (2022). Large deviation estimates for weakly interacting bosons. Journal of Statistical Physics. Springer Nature. https://doi.org/10.1007/s10955-022-02940-4","chicago":"Rademacher, Simone Anna Elvira, and Robert Seiringer. “Large Deviation Estimates for Weakly Interacting Bosons.” Journal of Statistical Physics. Springer Nature, 2022. https://doi.org/10.1007/s10955-022-02940-4.","ista":"Rademacher SAE, Seiringer R. 2022. Large deviation estimates for weakly interacting bosons. Journal of Statistical Physics. 188, 9.","short":"S.A.E. Rademacher, R. Seiringer, Journal of Statistical Physics 188 (2022).","mla":"Rademacher, Simone Anna Elvira, and Robert Seiringer. “Large Deviation Estimates for Weakly Interacting Bosons.” Journal of Statistical Physics, vol. 188, 9, Springer Nature, 2022, doi:10.1007/s10955-022-02940-4.","ieee":"S. A. E. Rademacher and R. Seiringer, “Large deviation estimates for weakly interacting bosons,” Journal of Statistical Physics, vol. 188. Springer Nature, 2022."},"ec_funded":1,"article_number":"9","_id":"11917","language":[{"iso":"eng"}],"volume":188,"intvolume":" 188","year":"2022","acknowledgement":"The authors thank Gérard Ben Arous for pointing out the question of a lower bound. Funding from the European Union’s Horizon 2020 research and innovation programme under the ERC Grant Agreement No. 694227 (R.S.) and under the Marie Skłodowska-Curie Grant Agreement No. 754411 (S.R.) is gratefully acknowledged.\r\nOpen access funding provided by IST Austria.","file_date_updated":"2022-08-18T08:09:00Z","keyword":["Mathematical Physics","Statistical and Nonlinear Physics"],"isi":1,"project":[{"call_identifier":"H2020","name":"Analysis of quantum many-body systems","_id":"25C6DC12-B435-11E9-9278-68D0E5697425","grant_number":"694227"},{"name":"ISTplus - Postdoctoral Fellowships","_id":"260C2330-B435-11E9-9278-68D0E5697425","grant_number":"754411","call_identifier":"H2020"}],"ddc":["510"]}