{"date_published":"2020-03-04T00:00:00Z","year":"2020","publisher":"Schloss Dagstuhl - Leibniz-Zentrum für Informatik","day":"04","oa_version":"Published Version","main_file_link":[{"open_access":"1","url":"https://doi.org/10.4230/LIPIcs.STACS.2020.53"}],"scopus_import":"1","quality_controlled":"1","title":"Constant-time dynamic (Δ+1)-coloring","intvolume":" 154","language":[{"iso":"eng"}],"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"status":"public","external_id":{"arxiv":["1907.04745"]},"citation":{"apa":"Henzinger, M. H., & Peng, P. (2020). Constant-time dynamic (Δ+1)-coloring. In 37th International Symposium on Theoretical Aspects of Computer Science (Vol. 154). Montpellier, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2020.53","ista":"Henzinger MH, Peng P. 2020. Constant-time dynamic (Δ+1)-coloring. 37th International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 154, 53.","chicago":"Henzinger, Monika H, and Pan Peng. “Constant-Time Dynamic (Δ+1)-Coloring.” In 37th International Symposium on Theoretical Aspects of Computer Science, Vol. 154. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.STACS.2020.53.","ieee":"M. H. Henzinger and P. Peng, “Constant-time dynamic (Δ+1)-coloring,” in 37th International Symposium on Theoretical Aspects of Computer Science, Montpellier, France, 2020, vol. 154.","ama":"Henzinger MH, Peng P. Constant-time dynamic (Δ+1)-coloring. In: 37th International Symposium on Theoretical Aspects of Computer Science. Vol 154. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.STACS.2020.53","mla":"Henzinger, Monika H., and Pan Peng. “Constant-Time Dynamic (Δ+1)-Coloring.” 37th International Symposium on Theoretical Aspects of Computer Science, vol. 154, 53, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.STACS.2020.53.","short":"M.H. Henzinger, P. Peng, in:, 37th International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020."},"month":"03","date_created":"2022-08-12T07:53:05Z","article_processing_charge":"No","publication_status":"published","publication":"37th International Symposium on Theoretical Aspects of Computer Science","article_number":"53","abstract":[{"lang":"eng","text":"We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per update that maintains a proper (Δ+1)-vertex coloring of a graph with maximum degree at most Δ. This improves upon the previous O(log Δ)-time algorithm by Bhattacharya et al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to vertices and does not need to maintain a hierarchical graph decomposition. We show that our result does not only have optimal running time, but is also optimal in the sense that already deciding whether a Δ-coloring exists in a dynamically changing graph with maximum degree at most Δ takes Ω(log n) time per operation."}],"_id":"11825","doi":"10.4230/LIPIcs.STACS.2020.53","conference":{"end_date":"2020-03-13","start_date":"2020-03-10","location":"Montpellier, France","name":"STACS: Symposium on Theoretical Aspects of Computer Science"},"author":[{"first_name":"Monika H","full_name":"Henzinger, Monika H","orcid":"0000-0002-5008-6530","last_name":"Henzinger","id":"540c9bbd-f2de-11ec-812d-d04a5be85630"},{"full_name":"Peng, Pan","first_name":"Pan","last_name":"Peng"}],"alternative_title":["LIPIcs"],"publication_identifier":{"issn":["1868-8969"],"isbn":["9783959771405"]},"date_updated":"2023-02-14T10:03:43Z","volume":154,"extern":"1","type":"conference"}