{"year":"2022","file_date_updated":"2022-07-27T09:25:53Z","acknowledgement":"This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant no. 788183, from the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31, and from the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35.","ddc":["510"],"project":[{"call_identifier":"H2020","grant_number":"788183","name":"Alpha Shape Theory Extended","_id":"266A2E9E-B435-11E9-9278-68D0E5697425"},{"call_identifier":"FWF","name":"The Wittgenstein Prize","_id":"268116B8-B435-11E9-9278-68D0E5697425","grant_number":"Z00342"},{"grant_number":"I02979-N35","_id":"2561EBF4-B435-11E9-9278-68D0E5697425","name":"Persistence and stability of geometric complexes","call_identifier":"FWF"}],"publication":"Leibniz International Proceedings on Mathematics","author":[{"last_name":"Biswas","first_name":"Ranita","id":"3C2B033E-F248-11E8-B48F-1D18A9856A87","full_name":"Biswas, Ranita","orcid":"0000-0002-5372-7890"},{"orcid":"0000-0001-6249-0832","full_name":"Cultrera di Montesano, Sebastiano","id":"34D2A09C-F248-11E8-B48F-1D18A9856A87","first_name":"Sebastiano","last_name":"Cultrera di Montesano"},{"id":"3FB178DA-F248-11E8-B48F-1D18A9856A87","full_name":"Edelsbrunner, Herbert","last_name":"Edelsbrunner","first_name":"Herbert","orcid":"0000-0002-9823-6833"},{"last_name":"Saghafian","first_name":"Morteza","full_name":"Saghafian, Morteza","id":"f86f7148-b140-11ec-9577-95435b8df824"}],"has_accepted_license":"1","ec_funded":1,"citation":{"ista":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics.","apa":"Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik.","chicago":"Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “Depth in Arrangements: Dehn–Sommerville–Euler Relations with Applications.” Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik, n.d.","ama":"Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics.","short":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, M. Saghafian, Leibniz International Proceedings on Mathematics (n.d.).","mla":"Biswas, Ranita, et al. “Depth in Arrangements: Dehn–Sommerville–Euler Relations with Applications.” Leibniz International Proceedings on Mathematics, Schloss Dagstuhl - Leibniz Zentrum für Informatik.","ieee":"R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “Depth in arrangements: Dehn–Sommerville–Euler relations with applications,” Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik."},"language":[{"iso":"eng"}],"_id":"11658","date_created":"2022-07-27T09:27:34Z","user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"oa_version":"Submitted Version","publisher":"Schloss Dagstuhl - Leibniz Zentrum für Informatik","status":"public","title":"Depth in arrangements: Dehn–Sommerville–Euler relations with applications","quality_controlled":"1","day":"27","file":[{"file_id":"11659","file_size":639266,"date_created":"2022-07-27T09:25:53Z","date_updated":"2022-07-27T09:25:53Z","content_type":"application/pdf","access_level":"open_access","creator":"scultrer","file_name":"D-S-E.pdf","checksum":"b2f511e8b1cae5f1892b0cdec341acac","relation":"main_file"}],"type":"journal_article","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2022-07-28T07:57:48Z","article_processing_charge":"No","month":"07","publication_status":"submitted","date_published":"2022-07-27T00:00:00Z","abstract":[{"lang":"eng","text":"The depth of a cell in an arrangement of n (non-vertical) great-spheres in Sd is the number of great-spheres that pass above the cell. We prove Euler-type relations, which imply extensions of the classic Dehn–Sommerville relations for convex polytopes to sublevel sets of the depth function, and we use the relations to extend the expressions for the number of faces of neighborly polytopes to the number of cells of levels in neighborly arrangements."}],"department":[{"_id":"GradSch"},{"_id":"HeEd"}]}