{"article_processing_charge":"No","acknowledgement":"We thank the anonymous referee for their constructive comments that helped us improve the manuscript. DS acknowledges the hospitality of the IAC and a Severo Ochoa visiting grant. SS and JC acknowledge studentships from the Lancaster University. JM acknowledges a Huygens PhD fellowship from Leiden University. APA acknowledges financial support from the Science and Technology Foundation (FCT, Portugal) through research grants UID/FIS/04434/2013 and fellowship PD/BD/52706/2014. The authors thank Alyssa Drake, Kimihiko Nakajima, Yuichi Harikane, Max Gronke, Irene Shivaei, Helmut Dannerbauer, Huub Rottgering, ¨ Marius Eide, and Masami Ouchi for many engaging and stimulating discussions. We also thank Sara Perez, Alex Bennett, and Tom Rose for their involvement in the early stages of this project. Based on data products from observations made with European Southern Observatory (ESO) Telescopes at the La Silla Paranal Observatory under ESO programme IDs 294.A-5018, 097.A 0943,\r\n098.A-0819, 099.A-0254, and 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. Based on observations using the WFC on the 2.5 m INT, as part of programmes 2013AN002, 2013BN008, 2014AC88, 2014AN002, 2014BN006, 2014BC118, and 2016AN001. The INT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work is based in part on data products produced at TERAPIX available at the Canadian Astronomy Data Centre as part of the Canada–France– Hawaii Telescope Legacy Survey (CFHTLS), a collaborative project of NRC and CNRS.\r\nWe are grateful to the CFHTLS, COSMOS-UltraVISTA, and COSMOS survey teams. We are also unmeasurably thankful to the pioneering and continuous work from previous Ly α surveys’ teams. Without these previous Ly α and the wider reach legacy surveys, this research would have been impossible. We also thank the VUDS team for making available spectroscopic redshifts from data obtained with VIMOS at the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791. Finally, the authors acknowledge the unique value of the publicly available programming language PYTHON, including the NUMPY and SCIPY (Van Der Walt, Colbert & Varoquaux 2011; Jones et al. 2001), MATPLOTLIB (Hunter 2007), ASTROPY (Astropy Collaboration et al. 2013), and the TOPCAT analysis program (Taylor 2005). We publicly release a catalogue with all LAEs used in this paper (SC4K), so it can be freely explored by the community (see five example entries in Table A1).","citation":{"chicago":"Sobral, David, Sérgio Santos, Jorryt J Matthee, Ana Paulino-Afonso, Bruno Ribeiro, João Calhau, and Ali A Khostovan. “Slicing COSMOS with SC4K: The Evolution of Typical Ly α Emitters and the Ly α Escape Fraction from z ∼ 2 to 6.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2018. https://doi.org/10.1093/mnras/sty378.","ista":"Sobral D, Santos S, Matthee JJ, Paulino-Afonso A, Ribeiro B, Calhau J, Khostovan AA. 2018. Slicing COSMOS with SC4K: The evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6. Monthly Notices of the Royal Astronomical Society. 476(4), 4725–4752.","apa":"Sobral, D., Santos, S., Matthee, J. J., Paulino-Afonso, A., Ribeiro, B., Calhau, J., & Khostovan, A. A. (2018). Slicing COSMOS with SC4K: The evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/sty378","ama":"Sobral D, Santos S, Matthee JJ, et al. Slicing COSMOS with SC4K: The evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6. Monthly Notices of the Royal Astronomical Society. 2018;476(4):4725-4752. doi:10.1093/mnras/sty378","mla":"Sobral, David, et al. “Slicing COSMOS with SC4K: The Evolution of Typical Ly α Emitters and the Ly α Escape Fraction from z ∼ 2 to 6.” Monthly Notices of the Royal Astronomical Society, vol. 476, no. 4, Oxford University Press, 2018, pp. 4725–52, doi:10.1093/mnras/sty378.","short":"D. Sobral, S. Santos, J.J. Matthee, A. Paulino-Afonso, B. Ribeiro, J. Calhau, A.A. Khostovan, Monthly Notices of the Royal Astronomical Society 476 (2018) 4725–4752.","ieee":"D. Sobral et al., “Slicing COSMOS with SC4K: The evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6,” Monthly Notices of the Royal Astronomical Society, vol. 476, no. 4. Oxford University Press, pp. 4725–4752, 2018."},"date_created":"2022-07-12T10:41:08Z","month":"06","page":"4725-4752","status":"public","external_id":{"arxiv":["1712.04451"]},"user_id":"2DF688A6-F248-11E8-B48F-1D18A9856A87","oa":1,"volume":476,"date_updated":"2022-08-19T07:04:45Z","type":"journal_article","extern":"1","publication_identifier":{"eissn":["1365-2966"],"issn":["0035-8711"]},"doi":"10.1093/mnras/sty378","author":[{"full_name":"Sobral, David","first_name":"David","last_name":"Sobral"},{"full_name":"Santos, Sérgio","first_name":"Sérgio","last_name":"Santos"},{"id":"7439a258-f3c0-11ec-9501-9df22fe06720","last_name":"Matthee","orcid":"0000-0003-2871-127X","full_name":"Matthee, Jorryt J","first_name":"Jorryt J"},{"last_name":"Paulino-Afonso","full_name":"Paulino-Afonso, Ana","first_name":"Ana"},{"first_name":"Bruno","full_name":"Ribeiro, Bruno","last_name":"Ribeiro"},{"full_name":"Calhau, João","first_name":"João","last_name":"Calhau"},{"last_name":"Khostovan","first_name":"Ali A","full_name":"Khostovan, Ali A"}],"_id":"11558","publication":"Monthly Notices of the Royal Astronomical Society","publication_status":"published","abstract":[{"text":"We present and explore deep narrow- and medium-band data obtained with the Subaru and the Isaac Newton Telescopes in the ∼2 deg2 COSMOS field. We use these data as an extremely wide, low-resolution (R ∼ 20–80) Integral Field Unit survey to slice through the COSMOS field and obtain a large sample of ∼4000 Ly α emitters (LAEs) from z ∼ 2 to 6 in 16 redshift slices (SC4K). We present new Ly α luminosity functions (LFs) covering a comoving volume of ∼108 Mpc3. SC4K extensively complements ultradeep surveys, jointly covering over 4 dex in Ly α luminosity and revealing a global (2.5 < z < 6) synergy LF with α=−1.93+0.12−0.12, log10Φ∗Lyα=−3.45+0.22−0.29 Mpc−3, and log10L∗Lyα=42.93+0.15−0.11 erg s−1. The Schechter component of the Ly α LF reveals a factor ∼5 rise in L∗Lyα and a ∼7 × decline in Φ∗Lyα from z ∼ 2 to 6. The data reveal an extra power-law (or Schechter) component above LLy α ≈ 1043.3 erg s−1 at z ∼ 2.2–3.5 and we show that it is partially driven by X-ray and radio active galactic nucleus (AGN), as their Ly α LF resembles the excess. The power-law component vanishes and/or is below our detection limits above z > 3.5, likely linked with the evolution of the AGN population. The Ly α luminosity density rises by a factor ∼2 from z ∼ 2 to 3 but is then found to be roughly constant (1.1+0.2−0.2×1040 erg s−1 Mpc−3) to z ∼ 6, despite the ∼0.7 dex drop in ultraviolet (UV) luminosity density. The Ly α/UV luminosity density ratio rises from 4 ± 1 per cent to 30 ± 6 per cent from z ∼ 2.2 to 6. Our results imply a rise of a factor of ≈2 in the global ionization efficiency (ξion) and a factor ≈4 ± 1 in the Ly α escape fraction from z ∼ 2 to 6, hinting for evolution in both the typical burstiness/stellar populations and even more so in the typical interstellar medium conditions allowing Ly α photons to escape.","lang":"eng"}],"keyword":["Space and Planetary Science","Astronomy and Astrophysics","galaxies: evolution","galaxies: formation","galaxies: high-redshift","galaxies: luminosity function","mass function","galaxies: statistics"],"article_type":"original","publisher":"Oxford University Press","year":"2018","day":"01","date_published":"2018-06-01T00:00:00Z","intvolume":" 476","language":[{"iso":"eng"}],"main_file_link":[{"url":"https://arxiv.org/abs/1712.04451","open_access":"1"}],"title":"Slicing COSMOS with SC4K: The evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6","scopus_import":"1","quality_controlled":"1","issue":"4","oa_version":"Preprint"}