{"ec_funded":1,"article_type":"original","citation":{"ama":"Li M, Zhang Y, Zhang T, et al. Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. 2021;11(7). doi:10.3390/nano11071827","chicago":"Li, Mengyao, Yu Zhang, Ting Zhang, Yong Zuo, Ke Xiao, Jordi Arbiol, Jordi Llorca, Yu Liu, and Andreu Cabot. “Enhanced Thermoelectric Performance of N-Type Bi2Se3 Nanosheets through Sn Doping.” Nanomaterials. MDPI, 2021. https://doi.org/10.3390/nano11071827.","ista":"Li M, Zhang Y, Zhang T, Zuo Y, Xiao K, Arbiol J, Llorca J, Liu Y, Cabot A. 2021. Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. 11(7), 1827.","apa":"Li, M., Zhang, Y., Zhang, T., Zuo, Y., Xiao, K., Arbiol, J., … Cabot, A. (2021). Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. MDPI. https://doi.org/10.3390/nano11071827","short":"M. Li, Y. Zhang, T. Zhang, Y. Zuo, K. Xiao, J. Arbiol, J. Llorca, Y. Liu, A. Cabot, Nanomaterials 11 (2021).","mla":"Li, Mengyao, et al. “Enhanced Thermoelectric Performance of N-Type Bi2Se3 Nanosheets through Sn Doping.” Nanomaterials, vol. 11, no. 7, 1827, MDPI, 2021, doi:10.3390/nano11071827.","ieee":"M. Li et al., “Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping,” Nanomaterials, vol. 11, no. 7. MDPI, 2021."},"language":[{"iso":"eng"}],"article_number":"1827","_id":"10858","doi":"10.3390/nano11071827","author":[{"last_name":"Li","first_name":"Mengyao","full_name":"Li, Mengyao"},{"full_name":"Zhang, Yu","first_name":"Yu","last_name":"Zhang"},{"full_name":"Zhang, Ting","last_name":"Zhang","first_name":"Ting"},{"first_name":"Yong","last_name":"Zuo","full_name":"Zuo, Yong"},{"full_name":"Xiao, Ke","first_name":"Ke","last_name":"Xiao"},{"first_name":"Jordi","last_name":"Arbiol","full_name":"Arbiol, Jordi"},{"first_name":"Jordi","last_name":"Llorca","full_name":"Llorca, Jordi"},{"full_name":"Liu, Yu","id":"2A70014E-F248-11E8-B48F-1D18A9856A87","last_name":"Liu","first_name":"Yu","orcid":"0000-0001-7313-6740"},{"first_name":"Andreu","last_name":"Cabot","full_name":"Cabot, Andreu"}],"has_accepted_license":"1","publication":"Nanomaterials","publication_identifier":{"issn":["2079-4991"]},"external_id":{"isi":["000676570000001"]},"acknowledgement":"M.L., Y.Z., T.Z. and K.X. thank the China Scholarship Council for their scholarship\r\nsupport. Y.L. acknowledges funding from the European Union’s Horizon 2020 research and\r\ninnovation program under the Marie Sklodowska-Curie grant agreement No. 754411. J.L. thanks the ICREA Academia program and projects MICINN/FEDER RTI2018-093996-B-C31 and G.C. 2017 SGR 128. ICN2 acknowledges funding from the Generalitat de Catalunya 2017 SGR 327 and the Spanish MINECO ENE2017-85087-C3.","file_date_updated":"2022-03-18T09:53:15Z","isi":1,"keyword":["General Materials Science","General Chemical Engineering"],"ddc":["540"],"project":[{"call_identifier":"H2020","name":"ISTplus - Postdoctoral Fellowships","_id":"260C2330-B435-11E9-9278-68D0E5697425","grant_number":"754411"}],"volume":11,"intvolume":" 11","year":"2021","issue":"7","publication_status":"published","date_published":"2021-07-14T00:00:00Z","abstract":[{"lang":"eng","text":"The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3."}],"department":[{"_id":"MaIb"}],"day":"14","file":[{"checksum":"f28a8b5cf80f5605828359bb398463b0","relation":"main_file","access_level":"open_access","creator":"dernst","file_name":"2021_Nanomaterials_Li.pdf","content_type":"application/pdf","date_updated":"2022-03-18T09:53:15Z","date_created":"2022-03-18T09:53:15Z","file_size":4867547,"success":1,"file_id":"10859"}],"type":"journal_article","tmp":{"image":"/images/cc_by.png","name":"Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)","short":"CC BY (4.0)","legal_code_url":"https://creativecommons.org/licenses/by/4.0/legalcode"},"date_updated":"2023-08-17T07:08:30Z","article_processing_charge":"No","month":"07","status":"public","quality_controlled":"1","title":"Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping","date_created":"2022-03-18T09:45:02Z","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","oa":1,"oa_version":"Published Version","scopus_import":"1","publisher":"MDPI"}