{"article_processing_charge":"No","day":"01","isi":1,"date_created":"2022-03-04T04:33:49Z","pmid":1,"language":[{"iso":"eng"}],"abstract":[{"lang":"eng","text":"Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy."}],"acknowledgement":"The authors thank B. Kavčič and H. Schulenburg for constructive feedback on the manuscript.","doi":"10.1038/s41579-022-00700-5","publisher":"Springer Nature","type":"journal_article","keyword":["General Immunology and Microbiology","Microbiology","Infectious Diseases"],"author":[{"orcid":"0000-0001-9480-5261","full_name":"Römhild, Roderich","id":"68E56E44-62B0-11EA-B963-444F3DDC885E","last_name":"Römhild","first_name":"Roderich"},{"id":"3E6DB97A-F248-11E8-B48F-1D18A9856A87","last_name":"Bollenbach","first_name":"Mark Tobias","orcid":"0000-0003-4398-476X","full_name":"Bollenbach, Mark Tobias"},{"last_name":"Andersson","first_name":"Dan I.","full_name":"Andersson, Dan I."}],"intvolume":" 20","publication_identifier":{"issn":["1740-1526"],"eissn":["1740-1534"]},"date_published":"2022-08-01T00:00:00Z","date_updated":"2023-08-02T14:41:44Z","quality_controlled":"1","publication_status":"published","scopus_import":"1","year":"2022","article_type":"review","volume":20,"publication":"Nature Reviews Microbiology","status":"public","oa_version":"None","user_id":"4359f0d1-fa6c-11eb-b949-802e58b17ae8","title":"The physiology and genetics of bacterial responses to antibiotic combinations","external_id":{"pmid":["35241807"],"isi":["000763891900001"]},"department":[{"_id":"CaGu"}],"page":"478-490","month":"08","citation":{"apa":"Römhild, R., Bollenbach, M. T., & Andersson, D. I. (2022). The physiology and genetics of bacterial responses to antibiotic combinations. Nature Reviews Microbiology. Springer Nature. https://doi.org/10.1038/s41579-022-00700-5","mla":"Römhild, Roderich, et al. “The Physiology and Genetics of Bacterial Responses to Antibiotic Combinations.” Nature Reviews Microbiology, vol. 20, Springer Nature, 2022, pp. 478–90, doi:10.1038/s41579-022-00700-5.","ista":"Römhild R, Bollenbach MT, Andersson DI. 2022. The physiology and genetics of bacterial responses to antibiotic combinations. Nature Reviews Microbiology. 20, 478–490.","ama":"Römhild R, Bollenbach MT, Andersson DI. The physiology and genetics of bacterial responses to antibiotic combinations. Nature Reviews Microbiology. 2022;20:478-490. doi:10.1038/s41579-022-00700-5","ieee":"R. Römhild, M. T. Bollenbach, and D. I. Andersson, “The physiology and genetics of bacterial responses to antibiotic combinations,” Nature Reviews Microbiology, vol. 20. Springer Nature, pp. 478–490, 2022.","chicago":"Römhild, Roderich, Mark Tobias Bollenbach, and Dan I. Andersson. “The Physiology and Genetics of Bacterial Responses to Antibiotic Combinations.” Nature Reviews Microbiology. Springer Nature, 2022. https://doi.org/10.1038/s41579-022-00700-5.","short":"R. Römhild, M.T. Bollenbach, D.I. Andersson, Nature Reviews Microbiology 20 (2022) 478–490."},"_id":"10812"}