{"user_id":"8b945eb4-e2f2-11eb-945a-df72226e66a9","date_created":"2021-12-09T09:21:35Z","oa_version":"Published Version","oa":1,"status":"public","related_material":{"record":[{"id":"10429","relation":"dissertation_contains","status":"public"}]},"quality_controlled":"1","title":"Elastic consistency: A practical consistency model for distributed stochastic gradient descent","day":"18","type":"conference","date_updated":"2023-09-07T13:31:39Z","article_processing_charge":"No","month":"05","issue":"10","date_published":"2021-05-18T00:00:00Z","publication_status":"published","main_file_link":[{"url":"https://ojs.aaai.org/index.php/AAAI/article/view/17092","open_access":"1"}],"abstract":[{"lang":"eng","text":"One key element behind the recent progress of machine learning has been the ability to train machine learning models in large-scale distributed shared-memory and message-passing environments. Most of these models are trained employing variants of stochastic gradient descent (SGD) based optimization, but most methods involve some type of consistency relaxation relative to sequential SGD, to mitigate its large communication or synchronization costs at scale. In this paper, we introduce a general consistency condition covering communication-reduced and asynchronous distributed SGD implementations. Our framework, called elastic consistency, decouples the system-specific aspects of the implementation from the SGD convergence requirements, giving a general way to obtain convergence bounds for a wide variety of distributed SGD methods used in practice. Elastic consistency can be used to re-derive or improve several previous convergence bounds in message-passing and shared-memory settings, but also to analyze new models and distribution schemes. As a direct application, we propose and analyze a new synchronization-avoiding scheduling scheme for distributed SGD, and show that it can be used to efficiently train deep convolutional models for image classification."}],"department":[{"_id":"DaAl"}],"volume":35,"intvolume":" 35","year":"2021","acknowledgement":"We would like to thank Christopher De Sa for his feedback on an earlier draft of this paper, as well as the anonymous AAAI reviewers for their useful comments. This project has received\r\nfunding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). Bapi\r\nChatterjee was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754411 (ISTPlus).","project":[{"grant_number":"754411","name":"ISTplus - Postdoctoral Fellowships","_id":"260C2330-B435-11E9-9278-68D0E5697425","call_identifier":"H2020"},{"call_identifier":"H2020","grant_number":"805223","name":"Elastic Coordination for Scalable Machine Learning","_id":"268A44D6-B435-11E9-9278-68D0E5697425"}],"author":[{"id":"3279A00C-F248-11E8-B48F-1D18A9856A87","full_name":"Nadiradze, Giorgi","last_name":"Nadiradze","first_name":"Giorgi","orcid":"0000-0001-5634-0731"},{"last_name":"Markov","first_name":"Ilia","id":"D0CF4148-C985-11E9-8066-0BDEE5697425","full_name":"Markov, Ilia"},{"first_name":"Bapi","last_name":"Chatterjee","full_name":"Chatterjee, Bapi","id":"3C41A08A-F248-11E8-B48F-1D18A9856A87","orcid":"0000-0002-2742-4028"},{"last_name":"Kungurtsev","first_name":"Vyacheslav ","full_name":"Kungurtsev, Vyacheslav "},{"first_name":"Dan-Adrian","last_name":"Alistarh","id":"4A899BFC-F248-11E8-B48F-1D18A9856A87","full_name":"Alistarh, Dan-Adrian","orcid":"0000-0003-3650-940X"}],"publication":"Proceedings of the AAAI Conference on Artificial Intelligence","page":"9037-9045","external_id":{"arxiv":["2001.05918"]},"conference":{"name":"AAAI: Association for the Advancement of Artificial Intelligence","start_date":"2021-02-02","end_date":"2021-02-09","location":"Virtual"},"citation":{"ama":"Nadiradze G, Markov I, Chatterjee B, Kungurtsev V, Alistarh D-A. Elastic consistency: A practical consistency model for distributed stochastic gradient descent. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 35. ; 2021:9037-9045.","ista":"Nadiradze G, Markov I, Chatterjee B, Kungurtsev V, Alistarh D-A. 2021. Elastic consistency: A practical consistency model for distributed stochastic gradient descent. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI: Association for the Advancement of Artificial Intelligence vol. 35, 9037–9045.","chicago":"Nadiradze, Giorgi, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan-Adrian Alistarh. “Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent.” In Proceedings of the AAAI Conference on Artificial Intelligence, 35:9037–45, 2021.","apa":"Nadiradze, G., Markov, I., Chatterjee, B., Kungurtsev, V., & Alistarh, D.-A. (2021). Elastic consistency: A practical consistency model for distributed stochastic gradient descent. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 9037–9045). Virtual.","short":"G. Nadiradze, I. Markov, B. Chatterjee, V. Kungurtsev, D.-A. Alistarh, in:, Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 9037–9045.","mla":"Nadiradze, Giorgi, et al. “Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 9037–45.","ieee":"G. Nadiradze, I. Markov, B. Chatterjee, V. Kungurtsev, and D.-A. Alistarh, “Elastic consistency: A practical consistency model for distributed stochastic gradient descent,” in Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2021, vol. 35, no. 10, pp. 9037–9045."},"ec_funded":1,"_id":"10432","language":[{"iso":"eng"}]}