5 Publications

Mark all

[5]
2023 | Published | Conference Paper | IST-REx-ID: 14460 | OA
M. Nikdan, T. Pegolotti, E. B. Iofinova, E. Kurtic, and D.-A. Alistarh, “SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 26215–26227.
[Preprint] View | Download Preprint (ext.) | arXiv
 
[4]
2023 | Published | Conference Paper | IST-REx-ID: 14771 | OA
E. B. Iofinova, E.-A. Peste, and D.-A. Alistarh, “Bias in pruned vision models: In-depth analysis and countermeasures,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 2023, pp. 24364–24373.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
[3]
2022 | Published | Conference Paper | IST-REx-ID: 12299 | OA
E. B. Iofinova, E.-A. Peste, M. Kurtz, and D.-A. Alistarh, “How well do sparse ImageNet models transfer?,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, United States, 2022, pp. 12256–12266.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 12495 | OA
E. B. Iofinova, N. H. Konstantinov, and C. Lampert, “FLEA: Provably robust fair multisource learning from unreliable training data,” Transactions on Machine Learning Research. ML Research Press, 2022.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[1]
2021 | Published | Conference Paper | IST-REx-ID: 11458 | OA
E.-A. Peste, E. B. Iofinova, A. Vladu, and D.-A. Alistarh, “AC/DC: Alternating Compressed/DeCompressed training of deep neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, Online, 2021, vol. 34, pp. 8557–8570.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed

Grants


5 Publications

Mark all

[5]
2023 | Published | Conference Paper | IST-REx-ID: 14460 | OA
M. Nikdan, T. Pegolotti, E. B. Iofinova, E. Kurtic, and D.-A. Alistarh, “SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge,” in Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, HI, United States, 2023, vol. 202, pp. 26215–26227.
[Preprint] View | Download Preprint (ext.) | arXiv
 
[4]
2023 | Published | Conference Paper | IST-REx-ID: 14771 | OA
E. B. Iofinova, E.-A. Peste, and D.-A. Alistarh, “Bias in pruned vision models: In-depth analysis and countermeasures,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 2023, pp. 24364–24373.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
[3]
2022 | Published | Conference Paper | IST-REx-ID: 12299 | OA
E. B. Iofinova, E.-A. Peste, M. Kurtz, and D.-A. Alistarh, “How well do sparse ImageNet models transfer?,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, United States, 2022, pp. 12256–12266.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 12495 | OA
E. B. Iofinova, N. H. Konstantinov, and C. Lampert, “FLEA: Provably robust fair multisource learning from unreliable training data,” Transactions on Machine Learning Research. ML Research Press, 2022.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[1]
2021 | Published | Conference Paper | IST-REx-ID: 11458 | OA
E.-A. Peste, E. B. Iofinova, A. Vladu, and D.-A. Alistarh, “AC/DC: Alternating Compressed/DeCompressed training of deep neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, Online, 2021, vol. 34, pp. 8557–8570.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed