Peter Súkeník
3 Publications
2023 |
In Press |
Conference Paper |
IST-REx-ID: 14921 |
Súkeník, P., Mondelli, M., & Lampert, C. (n.d.). Deep neural collapse is provably optimal for the deep unconstrained features model. In 37th Annual Conference on Neural Information Processing Systems. New Orleans, LA, United States.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2022 |
Submitted |
Preprint |
IST-REx-ID: 12662 |
Súkeník, P., & Lampert, C. (n.d.). Generalization in Multi-objective machine learning. arXiv. https://doi.org/10.48550/arXiv.2208.13499
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 |
Published |
Conference Paper |
IST-REx-ID: 12664 |
Súkeník, P., Kuvshinov, A., & Günnemann, S. (2022). Intriguing properties of input-dependent randomized smoothing. In Proceedings of the 39th International Conference on Machine Learning (Vol. 162, pp. 20697–20743). Baltimore, MD, United States: ML Research Press.
[Published Version]
View
| Files available
| arXiv
Grants
3 Publications
2023 |
In Press |
Conference Paper |
IST-REx-ID: 14921 |
Súkeník, P., Mondelli, M., & Lampert, C. (n.d.). Deep neural collapse is provably optimal for the deep unconstrained features model. In 37th Annual Conference on Neural Information Processing Systems. New Orleans, LA, United States.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2022 |
Submitted |
Preprint |
IST-REx-ID: 12662 |
Súkeník, P., & Lampert, C. (n.d.). Generalization in Multi-objective machine learning. arXiv. https://doi.org/10.48550/arXiv.2208.13499
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 |
Published |
Conference Paper |
IST-REx-ID: 12664 |
Súkeník, P., Kuvshinov, A., & Günnemann, S. (2022). Intriguing properties of input-dependent randomized smoothing. In Proceedings of the 39th International Conference on Machine Learning (Vol. 162, pp. 20697–20743). Baltimore, MD, United States: ML Research Press.
[Published Version]
View
| Files available
| arXiv