Maximilian Moser
Fischer Group
3 Publications
2023 | Published | Journal Article | IST-REx-ID: 14755 |

Moser M. Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. 2023;131(3-4):297-383. doi:10.3233/asy-221775
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12305 |

Abels H, Moser M. Convergence of the Allen--Cahn equation with a nonlinear Robin boundary condition to mean curvature flow with contact angle close to 90°. SIAM Journal on Mathematical Analysis. 2022;54(1):114-172. doi:10.1137/21m1424925
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel S, Moser M. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 2022;61(6). doi:10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS
Grants
3 Publications
2023 | Published | Journal Article | IST-REx-ID: 14755 |

Moser M. Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. 2023;131(3-4):297-383. doi:10.3233/asy-221775
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12305 |

Abels H, Moser M. Convergence of the Allen--Cahn equation with a nonlinear Robin boundary condition to mean curvature flow with contact angle close to 90°. SIAM Journal on Mathematical Analysis. 2022;54(1):114-172. doi:10.1137/21m1424925
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel S, Moser M. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 2022;61(6). doi:10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS