Sebastian Hensel
Graduate School
Fischer Group
10 Publications
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries. EMS Press, 2023. https://doi.org/10.4171/IFB/484.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, Sebastian, and Alice Marveggio. “Weak-Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Ninety Degree Contact Angle and Same Viscosities.” Journal of Mathematical Fluid Mechanics. Springer Nature, 2022. https://doi.org/10.1007/s00021-022-00722-2.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, Sebastian, and Maximilian Moser. “Convergence Rates for the Allen–Cahn Equation with Boundary Contact Energy: The Non-Perturbative Regime.” Calculus of Variations and Partial Differential Equations. Springer Nature, 2022. https://doi.org/10.1007/s00526-022-02307-3.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, Sebastian. “Finite Time Extinction for the 1D Stochastic Porous Medium Equation with Transport Noise.” Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature, 2021. https://doi.org/10.1007/s40072-021-00188-9.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, Sebastian. “Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10007.
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, Sebastian, and Tim Laux. “A New Varifold Solution Concept for Mean Curvature Flow: Convergence of the Allen-Cahn Equation and Weak-Strong Uniqueness.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2109.04233.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 10013 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, Julian L, and Sebastian Hensel. “Weak–Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Surface Tension.” Archive for Rational Mechanics and Analysis. Springer Nature, 2020. https://doi.org/10.1007/s00205-019-01486-2.
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica. Instytut Matematyczny, 2020. https://doi.org/10.4064/sm180411-11-2.
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Submitted | Preprint | IST-REx-ID: 10012 |

Fischer, Julian L, Sebastian Hensel, Tim Laux, and Thilo Simon. “The Local Structure of the Energy Landscape in Multiphase Mean Curvature Flow: Weak-Strong Uniqueness and Stability of Evolutions.” ArXiv, n.d.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
Search
Filter Publications
Display / Sort
Export / Embed
Grants
10 Publications
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries. EMS Press, 2023. https://doi.org/10.4171/IFB/484.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, Sebastian, and Alice Marveggio. “Weak-Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Ninety Degree Contact Angle and Same Viscosities.” Journal of Mathematical Fluid Mechanics. Springer Nature, 2022. https://doi.org/10.1007/s00021-022-00722-2.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, Sebastian, and Maximilian Moser. “Convergence Rates for the Allen–Cahn Equation with Boundary Contact Energy: The Non-Perturbative Regime.” Calculus of Variations and Partial Differential Equations. Springer Nature, 2022. https://doi.org/10.1007/s00526-022-02307-3.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, Sebastian. “Finite Time Extinction for the 1D Stochastic Porous Medium Equation with Transport Noise.” Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature, 2021. https://doi.org/10.1007/s40072-021-00188-9.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, Sebastian. “Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10007.
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, Sebastian, and Tim Laux. “A New Varifold Solution Concept for Mean Curvature Flow: Convergence of the Allen-Cahn Equation and Weak-Strong Uniqueness.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2109.04233.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 10013 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, Julian L, and Sebastian Hensel. “Weak–Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Surface Tension.” Archive for Rational Mechanics and Analysis. Springer Nature, 2020. https://doi.org/10.1007/s00205-019-01486-2.
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica. Instytut Matematyczny, 2020. https://doi.org/10.4064/sm180411-11-2.
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Submitted | Preprint | IST-REx-ID: 10012 |

Fischer, Julian L, Sebastian Hensel, Tim Laux, and Thilo Simon. “The Local Structure of the Energy Landscape in Multiphase Mean Curvature Flow: Weak-Strong Uniqueness and Stability of Evolutions.” ArXiv, n.d.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv