Nikola H Konstantinov
Graduate School
Lampert Group
9 Publications
2022 | Published | Journal Article | IST-REx-ID: 12495 |

Iofinova EB, Konstantinov NH, Lampert C. FLEA: Provably robust fair multisource learning from unreliable training data. Transactions on Machine Learning Research. 2022.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 13241 |

Konstantinov NH, Lampert C. On the impossibility of fairness-aware learning from corrupted data. In: Proceedings of Machine Learning Research. Vol 171. ML Research Press; 2022:59-83.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Thesis | IST-REx-ID: 10799 |

Konstantinov NH. Robustness and fairness in machine learning. 2022. doi:10.15479/at:ista:10799
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 10802 |

Konstantinov NH, Lampert C. Fairness-aware PAC learning from corrupted data. Journal of Machine Learning Research. 2022;23:1-60.
[Published Version]
View
| Files available
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 10803 |

Konstantinov NH, Lampert C. Fairness through regularization for learning to rank. arXiv. doi:10.48550/arXiv.2102.05996
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 8724 |

Konstantinov NH, Frantar E, Alistarh D-A, Lampert C. On the sample complexity of adversarial multi-source PAC learning. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:5416-5425.
[Published Version]
View
| Files available
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 6590 |

Konstantinov NH, Lampert C. Robust learning from untrusted sources. In: Proceedings of the 36th International Conference on Machine Learning. Vol 97. ML Research Press; 2019:3488-3498.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 5962 |

Alistarh D-A, De Sa C, Konstantinov NH. The convergence of stochastic gradient descent in asynchronous shared memory. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18. ACM Press; 2018:169-178. doi:10.1145/3212734.3212763
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 6589 |

Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. The convergence of sparsified gradient methods. In: Advances in Neural Information Processing Systems 31. Vol Volume 2018. Neural Information Processing Systems Foundation; 2018:5973-5983.
[Preprint]
View
| Download Preprint (ext.)
| WoS
| arXiv
Grants
9 Publications
2022 | Published | Journal Article | IST-REx-ID: 12495 |

Iofinova EB, Konstantinov NH, Lampert C. FLEA: Provably robust fair multisource learning from unreliable training data. Transactions on Machine Learning Research. 2022.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 13241 |

Konstantinov NH, Lampert C. On the impossibility of fairness-aware learning from corrupted data. In: Proceedings of Machine Learning Research. Vol 171. ML Research Press; 2022:59-83.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Thesis | IST-REx-ID: 10799 |

Konstantinov NH. Robustness and fairness in machine learning. 2022. doi:10.15479/at:ista:10799
[Published Version]
View
| Files available
| DOI
2022 | Published | Journal Article | IST-REx-ID: 10802 |

Konstantinov NH, Lampert C. Fairness-aware PAC learning from corrupted data. Journal of Machine Learning Research. 2022;23:1-60.
[Published Version]
View
| Files available
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 10803 |

Konstantinov NH, Lampert C. Fairness through regularization for learning to rank. arXiv. doi:10.48550/arXiv.2102.05996
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 8724 |

Konstantinov NH, Frantar E, Alistarh D-A, Lampert C. On the sample complexity of adversarial multi-source PAC learning. In: Proceedings of the 37th International Conference on Machine Learning. Vol 119. ML Research Press; 2020:5416-5425.
[Published Version]
View
| Files available
| arXiv
2019 | Published | Conference Paper | IST-REx-ID: 6590 |

Konstantinov NH, Lampert C. Robust learning from untrusted sources. In: Proceedings of the 36th International Conference on Machine Learning. Vol 97. ML Research Press; 2019:3488-3498.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 5962 |

Alistarh D-A, De Sa C, Konstantinov NH. The convergence of stochastic gradient descent in asynchronous shared memory. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing - PODC ’18. ACM Press; 2018:169-178. doi:10.1145/3212734.3212763
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2018 | Published | Conference Paper | IST-REx-ID: 6589 |

Alistarh D-A, Hoefler T, Johansson M, Konstantinov NH, Khirirat S, Renggli C. The convergence of sparsified gradient methods. In: Advances in Neural Information Processing Systems 31. Vol Volume 2018. Neural Information Processing Systems Foundation; 2018:5973-5983.
[Preprint]
View
| Download Preprint (ext.)
| WoS
| arXiv