Wojciech Rzadkowski
Graduate School
Lemeshko Group
6 Publications
2022 | Published | Journal Article | IST-REx-ID: 12150 |

Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Nonadditive Systems.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/physrevb.106.155127.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Thesis | IST-REx-ID: 10759 |

Rzadkowski, Wojciech. “Analytic and Machine Learning Approaches to Composite Quantum Impurities.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:10759.
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10762 |

Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Non-Additive Systems.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2105.15193.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7956 |

Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 8644 |

Rzadkowski, Wojciech, N Defenu, S Chiacchiera, A Trombettoni, and Giacomo Bighin. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/abae44.
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 415 |

Rzadkowski, Wojciech, and Mikhail Lemeshko. “Effect of a Magnetic Field on Molecule–Solvent Angular Momentum Transfer.” The Journal of Chemical Physics. AIP Publishing, 2018. https://doi.org/10.1063/1.5017591.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
Search
Filter Publications
Display / Sort
Export / Embed
Grants
6 Publications
2022 | Published | Journal Article | IST-REx-ID: 12150 |

Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Nonadditive Systems.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/physrevb.106.155127.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Thesis | IST-REx-ID: 10759 |

Rzadkowski, Wojciech. “Analytic and Machine Learning Approaches to Composite Quantum Impurities.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:10759.
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10762 |

Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Non-Additive Systems.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2105.15193.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7956 |

Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 8644 |

Rzadkowski, Wojciech, N Defenu, S Chiacchiera, A Trombettoni, and Giacomo Bighin. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/abae44.
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 415 |

Rzadkowski, Wojciech, and Mikhail Lemeshko. “Effect of a Magnetic Field on Molecule–Solvent Angular Momentum Transfer.” The Journal of Chemical Physics. AIP Publishing, 2018. https://doi.org/10.1063/1.5017591.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv