Daniele De Martino
Tkacik Group
13 Publications
2023 | Published | Journal Article | IST-REx-ID: 12762 |

Lombardi F, Pepic S, Shriki O, Tkačik G, De Martino D. 2023. Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain. Nature Computational Science. 3, 254–263.
[Published Version]
View
| Files available
| DOI
| arXiv
2019 | Published | Journal Article | IST-REx-ID: 6049 |

De Martino D. 2019. Feedback-induced self-oscillations in large interacting systems subjected to phase transitions. Journal of Physics A: Mathematical and Theoretical. 52(4), 045002.
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 306 |

De Martino A, De Martino D. 2018. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon. 4(4), e00596.
[Published Version]
View
| Files available
| DOI
2018 | Research Data | IST-REx-ID: 5587 |

De Martino D, Tkačik G. 2018. Supporting materials ‘STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:62.
[Published Version]
View
| Files available
| DOI
2018 | Published | Journal Article | IST-REx-ID: 161 |

De Martino D, Mc AA, Bergmiller T, Guet CC, Tkačik G. 2018. Statistical mechanics for metabolic networks during steady state growth. Nature Communications. 9(1), 2988.
[Published Version]
View
| Files available
| DOI
| WoS
2017 | Published | Journal Article | IST-REx-ID: 548 |

De Martino D. 2017. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Physical Review E. 96(6), 060401.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 | Published | Journal Article | IST-REx-ID: 823 |

Colabrese S, De Martino D, Leuzzi L, Marinari E. 2017. Phase transitions in integer linear problems. Journal of Statistical Mechanics: Theory and Experiment. 2017(9), 093404.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 947 |

De Martino D, Capuani F, De Martino A. 2017. Quantifying the entropic cost of cellular growth control. Physical Review E Statistical Nonlinear and Soft Matter Physics . 96(1), 010401.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 959 |

De Martino D. 2017. Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics. Physical Review E Statistical Nonlinear and Soft Matter Physics . 95(6), 062419.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2016 | Published | Journal Article | IST-REx-ID: 1260 |

De Martino D. 2016. The dual of the space of interactions in neural network models. International Journal of Modern Physics C. 27(6), 1650067.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2016 | Published | Journal Article | IST-REx-ID: 1394 |

De Martino D, Capuani F, De Martino A. 2016. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli. Physical Biology. 13(3), 036005.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2016 | Published | Journal Article | IST-REx-ID: 1188 |

De Martino D, Masoero D. 2016. Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth. Journal of Statistical Mechanics: Theory and Experiment. 2016(12), 123502.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2016 | Published | Journal Article | IST-REx-ID: 1485 |

De Martino D. 2016. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis. Physical Biology. 13(1), 016003.
[Preprint]
View
| DOI
| Download Preprint (ext.)
Search
Filter Publications
Display / Sort
Export / Embed
Grants
13 Publications
2023 | Published | Journal Article | IST-REx-ID: 12762 |

Lombardi F, Pepic S, Shriki O, Tkačik G, De Martino D. 2023. Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain. Nature Computational Science. 3, 254–263.
[Published Version]
View
| Files available
| DOI
| arXiv
2019 | Published | Journal Article | IST-REx-ID: 6049 |

De Martino D. 2019. Feedback-induced self-oscillations in large interacting systems subjected to phase transitions. Journal of Physics A: Mathematical and Theoretical. 52(4), 045002.
[Published Version]
View
| Files available
| DOI
| WoS
2018 | Published | Journal Article | IST-REx-ID: 306 |

De Martino A, De Martino D. 2018. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon. 4(4), e00596.
[Published Version]
View
| Files available
| DOI
2018 | Research Data | IST-REx-ID: 5587 |

De Martino D, Tkačik G. 2018. Supporting materials ‘STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:62.
[Published Version]
View
| Files available
| DOI
2018 | Published | Journal Article | IST-REx-ID: 161 |

De Martino D, Mc AA, Bergmiller T, Guet CC, Tkačik G. 2018. Statistical mechanics for metabolic networks during steady state growth. Nature Communications. 9(1), 2988.
[Published Version]
View
| Files available
| DOI
| WoS
2017 | Published | Journal Article | IST-REx-ID: 548 |

De Martino D. 2017. Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes. Physical Review E. 96(6), 060401.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
2017 | Published | Journal Article | IST-REx-ID: 823 |

Colabrese S, De Martino D, Leuzzi L, Marinari E. 2017. Phase transitions in integer linear problems. Journal of Statistical Mechanics: Theory and Experiment. 2017(9), 093404.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 947 |

De Martino D, Capuani F, De Martino A. 2017. Quantifying the entropic cost of cellular growth control. Physical Review E Statistical Nonlinear and Soft Matter Physics . 96(1), 010401.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2017 | Published | Journal Article | IST-REx-ID: 959 |

De Martino D. 2017. Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics. Physical Review E Statistical Nonlinear and Soft Matter Physics . 95(6), 062419.
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| WoS
2016 | Published | Journal Article | IST-REx-ID: 1260 |

De Martino D. 2016. The dual of the space of interactions in neural network models. International Journal of Modern Physics C. 27(6), 1650067.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2016 | Published | Journal Article | IST-REx-ID: 1394 |

De Martino D, Capuani F, De Martino A. 2016. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli. Physical Biology. 13(3), 036005.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2016 | Published | Journal Article | IST-REx-ID: 1188 |

De Martino D, Masoero D. 2016. Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth. Journal of Statistical Mechanics: Theory and Experiment. 2016(12), 123502.
[Preprint]
View
| DOI
| Download Preprint (ext.)
2016 | Published | Journal Article | IST-REx-ID: 1485 |

De Martino D. 2016. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis. Physical Biology. 13(1), 016003.
[Preprint]
View
| DOI
| Download Preprint (ext.)