Michael Kerber
Edelsbrunner Group
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12709 |

Corbet, R., Kerber, M., Lesnick, M., & Osang, G. F. (2023). Computing the multicover bifiltration. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00476-8
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2013 | Published | Conference Paper | IST-REx-ID: 2906 |

Kerber, M., & Edelsbrunner, H. (2013). 3D kinetic alpha complexes and their implementation. In 2013 Proceedings of the 15th Workshop on Algorithm Engineering and Experiments (pp. 70–77). New Orleans, LA, United States: Society of Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611972931.6
[Submitted Version]
View
| Files available
| DOI
2013 | Published | Journal Article | IST-REx-ID: 2939
Chen, C., & Kerber, M. (2013). An output sensitive algorithm for persistent homology. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2012.02.010
View
| Files available
| DOI
2012 | Published | Journal Article | IST-REx-ID: 3115 |

Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2012). Deconstructing approximate offsets. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-012-9441-5
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2012 | Published | Journal Article | IST-REx-ID: 3120 |

Brown, G., Kerber, M., & Reid, M. (2012). Fano 3 folds in codimension 4 Tom and Jerry Part I. Compositio Mathematica. Cambridge University Press. https://doi.org/10.1112/S0010437X11007226
[Preprint]
View
| DOI
| Download Preprint (ext.)
2012 | Published | Conference Paper | IST-REx-ID: 3133 |

Edelsbrunner, H., & Kerber, M. (2012). Alexander duality for functions: The persistent behavior of land and water and shore. In Proceedings of the twenty-eighth annual symposium on Computational geometry (pp. 249–258). Chapel Hill, NC, USA: ACM. https://doi.org/10.1145/2261250.2261287
[Preprint]
View
| DOI
| Download Preprint (ext.)
2012 | Published | Journal Article | IST-REx-ID: 3256 |

Edelsbrunner, H., & Kerber, M. (2012). Dual complexes of cubical subdivisions of ℝn. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-011-9382-4
[Submitted Version]
View
| Files available
| DOI
2012 | Published | Journal Article | IST-REx-ID: 3331 |

Kerber, M., & Sagraloff, M. (2012). A worst case bound for topology computation of algebraic curves. Journal of Symbolic Computation. Elsevier. https://doi.org/10.1016/j.jsc.2011.11.001
[Preprint]
View
| DOI
| Download Preprint (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3270
Chen, C., & Kerber, M. (2011). Persistent homology computation with a twist (pp. 197–200). Presented at the EuroCG: European Workshop on Computational Geometry, Morschach, Switzerland: TU Dortmund.
View
2011 | Published | Conference Paper | IST-REx-ID: 3328 |

Berberich, E., Hemmer, M., & Kerber, M. (2011). A generic algebraic kernel for non linear geometric applications (pp. 179–186). Presented at the SCG: Symposium on Computational Geometry, Paris, France: ACM. https://doi.org/10.1145/1998196.1998224
[Published Version]
View
| DOI
| Download Published Version (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3329 |

Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2011). Deconstructing approximate offsets. In Proceedings of the twenty-seventh annual symposium on Computational geometry (pp. 187–196). Paris, France: ACM. https://doi.org/10.1145/1998196.1998225
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3330 |

Kerber, M., & Sagraloff, M. (2011). Root refinement for real polynomials (pp. 209–216). Presented at the ISSAC: International Symposium on Symbolic and Algebraic Computation, California, USA: Springer. https://doi.org/10.1145/1993886.1993920
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2011 | Published | Journal Article | IST-REx-ID: 3332 |

Kerber, M., & Sagraloff, M. (2011). A note on the complexity of real algebraic hypersurfaces. Graphs and Combinatorics. Springer. https://doi.org/10.1007/s00373-011-1020-7
[Submitted Version]
View
| Files available
| DOI
2011 | Published | Conference Paper | IST-REx-ID: 3367
Chen, C., & Kerber, M. (2011). An output sensitive algorithm for persistent homology (pp. 207–216). Presented at the SoCG: Symposium on Computational Geometry, Paris, France: ACM. https://doi.org/10.1145/1998196.1998228
View
| Files available
| DOI
2011 | Published | Book Chapter | IST-REx-ID: 3796 |

Edelsbrunner, H., & Kerber, M. (2011). Covering and packing with spheres by diagonal distortion in R^n. In C. Calude, G. Rozenberg, & A. Salomaa (Eds.), Rainbow of Computer Science (Vol. 6570, pp. 20–35). Springer. https://doi.org/10.1007/978-3-642-19391-0_2
[Submitted Version]
View
| Files available
| DOI
2010 | Published | Conference Paper | IST-REx-ID: 3849 |

Bendich, P., Edelsbrunner, H., Kerber, M., & Patel, A. (2010). Persistent homology under non-uniform error (Vol. 6281, pp. 12–23). Presented at the MFCS: Mathematical Foundations of Computer Science, Brno, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-15155-2_2
[Submitted Version]
View
| Files available
| DOI
2010 | Published | Conference Paper | IST-REx-ID: 3850
Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2010). Polygonal reconstruction from approximate offsets (pp. 12–23). Presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany: TU Dortmund.
View
2010 | Published | Journal Article | IST-REx-ID: 3901 |

Bendich, P., Edelsbrunner, H., & Kerber, M. (2010). Computing robustness and persistence for images. IEEE Transactions of Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2010.139
[Submitted Version]
View
| Files available
| DOI
Grants
18 Publications
2023 | Published | Journal Article | IST-REx-ID: 12709 |

Corbet, R., Kerber, M., Lesnick, M., & Osang, G. F. (2023). Computing the multicover bifiltration. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00476-8
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2013 | Published | Conference Paper | IST-REx-ID: 2906 |

Kerber, M., & Edelsbrunner, H. (2013). 3D kinetic alpha complexes and their implementation. In 2013 Proceedings of the 15th Workshop on Algorithm Engineering and Experiments (pp. 70–77). New Orleans, LA, United States: Society of Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611972931.6
[Submitted Version]
View
| Files available
| DOI
2013 | Published | Journal Article | IST-REx-ID: 2939
Chen, C., & Kerber, M. (2013). An output sensitive algorithm for persistent homology. Computational Geometry: Theory and Applications. Elsevier. https://doi.org/10.1016/j.comgeo.2012.02.010
View
| Files available
| DOI
2012 | Published | Journal Article | IST-REx-ID: 3115 |

Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2012). Deconstructing approximate offsets. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-012-9441-5
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2012 | Published | Journal Article | IST-REx-ID: 3120 |

Brown, G., Kerber, M., & Reid, M. (2012). Fano 3 folds in codimension 4 Tom and Jerry Part I. Compositio Mathematica. Cambridge University Press. https://doi.org/10.1112/S0010437X11007226
[Preprint]
View
| DOI
| Download Preprint (ext.)
2012 | Published | Conference Paper | IST-REx-ID: 3133 |

Edelsbrunner, H., & Kerber, M. (2012). Alexander duality for functions: The persistent behavior of land and water and shore. In Proceedings of the twenty-eighth annual symposium on Computational geometry (pp. 249–258). Chapel Hill, NC, USA: ACM. https://doi.org/10.1145/2261250.2261287
[Preprint]
View
| DOI
| Download Preprint (ext.)
2012 | Published | Journal Article | IST-REx-ID: 3256 |

Edelsbrunner, H., & Kerber, M. (2012). Dual complexes of cubical subdivisions of ℝn. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-011-9382-4
[Submitted Version]
View
| Files available
| DOI
2012 | Published | Journal Article | IST-REx-ID: 3331 |

Kerber, M., & Sagraloff, M. (2012). A worst case bound for topology computation of algebraic curves. Journal of Symbolic Computation. Elsevier. https://doi.org/10.1016/j.jsc.2011.11.001
[Preprint]
View
| DOI
| Download Preprint (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3270
Chen, C., & Kerber, M. (2011). Persistent homology computation with a twist (pp. 197–200). Presented at the EuroCG: European Workshop on Computational Geometry, Morschach, Switzerland: TU Dortmund.
View
2011 | Published | Conference Paper | IST-REx-ID: 3328 |

Berberich, E., Hemmer, M., & Kerber, M. (2011). A generic algebraic kernel for non linear geometric applications (pp. 179–186). Presented at the SCG: Symposium on Computational Geometry, Paris, France: ACM. https://doi.org/10.1145/1998196.1998224
[Published Version]
View
| DOI
| Download Published Version (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3329 |

Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2011). Deconstructing approximate offsets. In Proceedings of the twenty-seventh annual symposium on Computational geometry (pp. 187–196). Paris, France: ACM. https://doi.org/10.1145/1998196.1998225
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
2011 | Published | Conference Paper | IST-REx-ID: 3330 |

Kerber, M., & Sagraloff, M. (2011). Root refinement for real polynomials (pp. 209–216). Presented at the ISSAC: International Symposium on Symbolic and Algebraic Computation, California, USA: Springer. https://doi.org/10.1145/1993886.1993920
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2011 | Published | Journal Article | IST-REx-ID: 3332 |

Kerber, M., & Sagraloff, M. (2011). A note on the complexity of real algebraic hypersurfaces. Graphs and Combinatorics. Springer. https://doi.org/10.1007/s00373-011-1020-7
[Submitted Version]
View
| Files available
| DOI
2011 | Published | Conference Paper | IST-REx-ID: 3367
Chen, C., & Kerber, M. (2011). An output sensitive algorithm for persistent homology (pp. 207–216). Presented at the SoCG: Symposium on Computational Geometry, Paris, France: ACM. https://doi.org/10.1145/1998196.1998228
View
| Files available
| DOI
2011 | Published | Book Chapter | IST-REx-ID: 3796 |

Edelsbrunner, H., & Kerber, M. (2011). Covering and packing with spheres by diagonal distortion in R^n. In C. Calude, G. Rozenberg, & A. Salomaa (Eds.), Rainbow of Computer Science (Vol. 6570, pp. 20–35). Springer. https://doi.org/10.1007/978-3-642-19391-0_2
[Submitted Version]
View
| Files available
| DOI
2010 | Published | Conference Paper | IST-REx-ID: 3849 |

Bendich, P., Edelsbrunner, H., Kerber, M., & Patel, A. (2010). Persistent homology under non-uniform error (Vol. 6281, pp. 12–23). Presented at the MFCS: Mathematical Foundations of Computer Science, Brno, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-15155-2_2
[Submitted Version]
View
| Files available
| DOI
2010 | Published | Conference Paper | IST-REx-ID: 3850
Berberich, E., Halperin, D., Kerber, M., & Pogalnikova, R. (2010). Polygonal reconstruction from approximate offsets (pp. 12–23). Presented at the EuroCG: European Workshop on Computational Geometry, Dortmund, Germany: TU Dortmund.
View
2010 | Published | Journal Article | IST-REx-ID: 3901 |

Bendich, P., Edelsbrunner, H., & Kerber, M. (2010). Computing robustness and persistence for images. IEEE Transactions of Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2010.139
[Submitted Version]
View
| Files available
| DOI