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Abstract

Blood — this is what animals use to heal wounds fast and efficient. Plants do not have blood
circulation and their cells cannot move. However, plants have evolved remarkable capacities
to regenerate tissues and organs preventing further damage. In my PhD research, I studied the
wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip
and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a
division plane switch and subsequently adopted the cell type of the killed cell to replace it. We
termed this form of wound healing “restorative divisions”. This initial observation triggered
the questions of my PhD studies: How and why do cells orient their division planes, how do

they feel the wound and why does this happen only in inner adjacent cells.

For answering these questions, [ used a quite simple experimental setup: 5 day - old seedlings
were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried
out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical
microscope system made it possible to observe wounds in real time. This revealed that
restorative divisions occur at increased frequency compared to normal divisions. Additionally,
the major plant hormone auxin accumulates in wound adjacent cells and drives the expression
of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for
wound responses, we found that an important part of wound signalling is the sensing of the
collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong
tissue deformations. These deformations manifest in an invasion of the now free spot
specifically by the inner adjacent cells within seconds, probably because of higher pressure of
the inner tissues. Long-term imaging revealed that those deformed cells continuously expand

towards the wound hole and that this is crucial for the restorative division.

These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays
before the division. Experiments inhibiting cell expansion suggest that it is the biphasic
stretching that induces those MT arrays. Adapting the micromanipulator aspiration system
from animal scientists at our institute confirmed the hypothesis that stretching influences
microtubule stability. In conclusion, this shows that microtubules react to tissue deformation
and this facilitates the observed division plane switch. This puts mechanical cues and tensions
at the most prominent position for explaining the growth and wound healing properties of
plants. Hence, it shines light onto the importance of understanding mechanical signal

transduction.
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Summary:

Plants as sessile organisms are constantly under attack by herbivores, rough environmental
situations, or mechanical pressure. These challenges often lead to the induction of wounds or
destruction of already specified and developed tissues. Additionally, wounding makes plants
vulnerable to invasion by pathogens, which is why wound signalling often triggers specific
defence responses. To stay competitive or, eventually, survive under these circumstances the
plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues
requires post-embryonic patterning and organogenesis. Now, several studies used laser-
assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we
discuss their findings and put them into context of a broader spectrum of wound signalling,

pathogen responses and tissue as well as organ regeneration.
Introduction

Well-studied mechanisms of wound healing in animals rely strongly on targeted migration of
cells to the wound area. In plant tissues, this is not possible, since plant cells are encapsulated
by their rigid cell walls. Thus, regeneration in plants has to rely on oriented cell divisions,
acquisition of new cell fates and on directional cell elongation. Early wounding studies in the
19" and beginning of 20" century provided initial phenomenology of regeneration (1, 2, 3)
but only in the last decade approaches mainly involving the surgical removal of the root tip
provided much insight into the mechanism of regeneration and accompanied transcriptional
reprograming (4, 5). However, the cellular processes and, in particular, molecular
mechanisms underlying this regeneration response remain poorly characterized. Recent
studies employing local, targeted cell elimination in the roots of the model plant Arabidopsis
thaliana promise to provide fresh insights into the still mysterious mechanism of wound

healing in plants.

Non-targeted wounding studies

Most of the earlier wounding experiments involved surgically induced, rather large-scale
injuries in different tissues of various plant models. Originally, these studies involved simple
observation of processes following the wounding and, later, mainly with the use of
Arabidopsis root, they employed global transcriptome analysis and more sophisticated use of

molecular markers and other genetic tools.



Cellular responses during regeneration

The most obvious response of surrounding cells to wounding is (re)entry into mitosis, also in
differentiated cells that have left the cell cycle. These cells dedifferentiate, divide and form
the new cell walls parallel to the wound site ultimately filling the wound with new cells (2, 6,
3). In the root meristem, where cells are constantly in the cell cycle, wounding enhances cell
divisions in cells close to the wound site; these wound-activated root cells subsequently lose
their identity and adopt embryonic/stem cell-like identity (Fig. 1A) (5, 7). Although these
processes have been well described, neither the signal that activates the neighbouring cells

nor the mechanism coordinating which cells are responsive, have been identified.

Notably, even when the whole stem cell niche of the root is removed, the root
meristem pattern is re-established de novo with correct arrangement of the lost cell types
(Fig. 1A) (4). Single cell sequencing revealed that the newly generated cells quickly adopt the
required new cell types, and this is partly dependent on the spatially separated maxima of two
major phytohormones, auxin and cytokinin (Fig. 1A). However, this de novo cell fate
acquisition occurred (albeit with less efficiency) also when these maxima were disrupted,
which suggests so far unknown intercellular positional signalling that coordinates the re-
patterning of the root tip (5). This highlights the superior ability of plant organs to fully

regenerate and restore correct tissue patterns.
Primary wound signalling

For the efficient initiation of defence responses and regeneration, plants need to quickly
recognize the invaders or the induced destruction and signal to the immediate surroundings
and the rest of the plant (8, 9, 10). The first known downstream signalling events that occur
after herbivore attack or wounding are Ca>" wave initiation (11, 12) and an accumulation of
reactive oxygen species (ROS) (Fig. 1B) (13, 14, 15). Wounding and pathogen associated
elicitors also induce the production of small peptides that act as defence activators (16), e.g.
Pepl and Pep2, which activate downstream immune responses against root pathogens (17,

18, 19).

Although these processes are well established to occur after the wounding/herbivore
attack and mediate immune responses in plants (for a detailed review see: 20), they are
triggered by an initial wound signal that is still unknown. Cell wall integrity sensing by
constant measurement of the wall composition (20, 21) is thought to be a crucial element of

wound detection. However, no direct, mechanistic connection between the known



components of the cell wall integrity sensing and the wound/herbivore responses has been

established.
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Figure 1: Wounding triggers primary wounding signals, phytohormone signalling and complex
regeneration responses

(A) Cutting off the root tip including the stem cell niche leads to a complete rebuilding of the missing
structures by the following processes: (i) Dedifferentiation in cells close to the wound and adoption of
embryonic/stem cell programs (5,7); (ii) Increase in division rates in cells close to the wound and
switch in division planes (7); (iii) Establishment of new accumulation zones for the phytohormones
cytokinin (purple) and auxin (yellow) to define the new stem cell niche (5); (iv) Finally, de novo
establishment of correct cell types in newly generated cells to restore the original tissue pattern (4,5) .
(B) Wounding on a cellular level means the disruption of the cellular envelope - cell wall (black) and
plasma membrane (blue). Cell wall integrity sensing is presumably involved in wound signalling (20,
21). Wound signalling quickly manifests as a Ca?* wave which spreads through neighbouring tissues
(11, 12). The Ca®" wave relates to the production of ROS in the apoplast and causes itself an oxidative
burst inside and outside the cells (13, 14, 15). Together, Ca®" and ROS trigger multiple downstream

signalling events at the wound site and in distal organs to induce immune responses (12, 14, 20).



(C) Wounding induces production of various phytohormones with different dynamics. Jasmonate
accumulation starts seconds after the wounding (50) and is perceived by CORONATINE
INSENSITIVEL1 (COI1) (51). This leads to the activation of MY C2/3/4 transcription factors
regulating downstream genes (52). Ethylene accumulates 30min after wounding by an increased
activity of its biosynthesis genes (24) and acts through ETHYLENE-INSENSITIVE PROTEIN 2/3
(EIN2/3) transcription factors (53, 20). ABA accumulation after wounding occurs after several hours
in desiccated tissues and presumably functions in maintaining healthy plant physiology rather than
immune responses (26). Wounding induces changes in auxin accumulation and signalling after
removal of the whole root tip; this involves induction of YUCCA biosynthetic components that play

an important role in rebuilding destroyed structures (25, 46).

Unsurprisingly, phytohormones, as universal endogenous signals, are induced with
different dynamics after attack to contribute to the balance of growth and immunity/defence
(22). Historically, by extracting organic compounds from wound sites, the signalling
compound traumatin was isolated which accelerates the wound healing when exogenously
applied (3). Similarly, wounding induces jasmonic acid (JA) (23), ethylene (Et) (24) and less
directly, auxin (25) and abscisic acid (ABA) (Fig. 1C) (26, 27). While the biosynthetic
pathways for most of these phytohormones are known, the exact production sites and the

signalling mechanism underlying their activation, have not been investigated.

Wounding by targeted cell elimination

Recent reports have made use of targeted elimination of a single cell or small group of cells
coupled with state-of-the-art live imaging allowing for more precise characterization of the

wound responses and regeneration processes.
Laser ablation technique

In the 90s, the UV laser ablation technique was introduced allowing for elimination of single
cells. Originally, this was used to study cell-to-cell signalling and patterning mechanisms
rather than as a tool to induce wounding and study regeneration. This technique has the
advantage of removing a cell with spatial and temporal preciseness (28, 29), in contrast to
genetic (30) or chemical ablations (31, 32). Different types of lasers on different imaging
setups (28, 29, 31, 33, 34) have been used with propidium iodide staining which stains cell



walls, allow identification of dead cells and also pre-sensitises cells for ablation (35). This

allowed the first live observation of wound healing responses in real time and in situ (32).
Cellular responses during regeneration

The root meristem is a tissue where cells are constantly in the cell cycle to proliferate for a
sustained growth. Cell elimination dramatically accelerates division rates of adjacent cells
predominately at its inner adjacent side, as the time required for one division is reduced from
18 to 5-12 hours (depending on the cell type) (Fig. 2C). These “restorative divisions” involve
a change in division planes from anticlinal (perpendicular to the growth axis) to periclinal
(parallel to the growth axis) allowing for efficient replacement of the dead cells in the wound
from the inside. Earlier studies showed that also in the stem cell niche, ablated cells are
replaced by irregular divisions of adjacent cells (28). Outside of the stem cell niche, in
differentiating cells, stem cell programs aid the regeneration process as seen by the re-
activation of the endodermis/cortex (SHR/SCR and CYCD6;1) or the lateral root
cap/epidermis (FEZ and SMB) stem cell regulators (Fig. 2C) (32). Additionally, PLETHORA
transcription regulators expressed in a decreasing gradient from the stem cell niche and
associated with root stem cell activity (36) appear to endow cells with the competence to

induce restorative divisions outside of the stem cell niche (32).

Already the earlier ablation experiments suggested that cells in the root adopt their
fate depending on the tissue context (28, 29). This is manifested dramatically during
restorative divisions of any cell type. After the division plane switch, the inner daughter cell,
which stays in the cell file it originated from, retains its identity. Remarkably, the outer
daughter cell rapidly adopts the cell identity of the eliminated cell, which it replaces (Fig. 2C)
(32).

The restorative divisions, which require accelerated cell cycle progression, division
plane switch and finally cell fate change of the daughter cells, appear to be very robust and
likely dependent on multiple redundant stem cell program-dependent and —independent
mechanisms. However, what signal triggers these divisions and what mechanism restricts

them to cells only directly adjacent to the wound, remains elusive.
Primary wound signalling

Similar to herbivore attacks, wounding of single cells in the root meristem induces Ca**

waves in the surrounding tissue. However, harmed cells exhibit a greater Ca*" influx with an



increased duration which is translated by a novel Ca®"-responsive protease, metacaspase
MC4, into the rapid processing and release of Pepl peptide. Eventually, the secreted Pepl
reaches the surface of neighbouring cells and starts signalling through PEPR1/2 receptors to
activate defence-related genes (Fig. 2B) (34).

Ablation of cells outside the root meristem (in the elongation zone) also triggers a
Ca”" wave and an increase in ROS accumulation in cells close to the wound site. Similar to
previous studies (13), this Ca** wave and its propagation partly depend on enzymatic ROS
production in the apoplast (37). These phenomena also coincide with a membrane
depolarization close to the ablation site which probably comes from changed ion fluxes, like

Ca?"and other available ions (Fig. 2A) (37).

Ablation experiments in the shoot apical meristem induce similar Ca*" waves, which
are required for the repolarisation of the auxin efflux transporter PIN1 away from the
wounded tissues (38), consistent with previously established importance of Ca?" signalling
for PIN polarity in roots (39). Additionally, microtubules rearrange in the same cells after
ablation as a consequence of a changed mechanical stresses, but this seems to be independent
of the Ca*" waves, indicating more complex and yet unknown mechanosensitive signalling

mechanisms responsive to wounding (38).
Involvement of phytohormones

As expected, multiple phytohormones are involved in coordinating regenerative processes
following wounding but their exact role and interactions are far from clarified. Cell ablation
or infection with root-invading nematodes, which can lead to the specific removal of single
cells in the root, leads to the increase of the transcriptional ethylene response marker ACS6 as
early as 3 hours after ablation. Defence against these invaders depends on ethylene signalling
through EIN2 (37, 40) and this triggering of the ethylene signalling partly depends on the
Ca*" wave and ROS production by apoplast-localised oxidases. Overall, these observations

reveal an important role of ethylene in the root immune and wound response (Fig. 2A) (37).

Jasmonates (JA), phytohormones typically associated with plant immunity, are
induced around wounds specifically in the central root meristem as early as 30s after the
ablation (Fig. 2D). Similarly, nematode infestation or root growing through rough soil inducs
JA (41). Pending evidence to the contrary, it seems JA response is not induced in root tissues

other than the root meristem (37).
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Figure 2. Single cell ablation in the Arabidopsis root meristem triggers multiple local and

regional wounding responses.

(A) Ablation of cortex cells in the elongation zone triggers the induction of Ca**, ROS, ethylene and
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membrane depolarisation. The increase in Ca?’ influx after ablation is dependent on ROS production
in the apoplast by RBOH enzymes and allows the fast change in membrane polarisation (1.5s after
ablation). Additionally, it induces an accumulation of ROS around the wound that occurs ~6min after
the ablation. Both, Ca?* influx and ROS production contribute to the ethylene signalling induction by
an increased ACC SYNTHASE 6 (ACS6) expression starting 3 hours after ablation. Eventually,

ethylene signalling via EIN2 increases the resistance against nematode infection (37)

(B) Laser ablation of epidermis cells in the transition zone triggers a Ca®" influx that spreads
throughout the adjacent tissue but results in different amplitudes depending on the distance from the
harmed cell. Harmed cells (grey) exhibit a stronger Ca*" influx than those directly adjacent to the
eliminated cells (orange) and cells further away (white). Strong influx and complete destruction of
membrane integrity activates METACASPASE4 (MC4) from inactive zZMC4, which cleaves the
PRECURSOR OF PEP1 (PROPEP1) into Pepl. By this, it becomes translocated from the vacuolar
membrane to the cytosol to be perceived by the PEPR1 and PEPR2 receptors at the cell surface of
neighbouring (orange) cells (34).

(C) Ablation in the root meristem triggers restorative divisions to replace the eliminated cells. These
divisions happen predominately in the inner adjacent cells. They are induced by the activation of stem
cell programs (orange nuclei; here: SHR — CYCD6;1) and an accelerated progression through the cell
cycle. They include the switch of the division plane from anticlinal to periclinal, and the newly
generated outer daughter cells adopt the cell fate of the eliminated cells to eventually regenerate the
disrupted tissue pattern (32).

(D) Ablations in the stem cell niche trigger a jasmonate induction within 30s which is perceived by
COI1 to activate MYC2, a JA-dependent transcription factor. MY C2 binds to the promoter of
ERF115 to enhance its expression around the wound site (41). ERF115 is also activated by its

JA/MY C2-dependent homologue ERF109 (41) and by downstream signalling of auxin (41), ROS (49)
and brassinosteroids (BL) (47, 48). In ablations outside the stem cell niche, ERF115 expression is
confined to cells directly adjacent to the killed cell (31, 32). ERF115 can bind to
RETINOBLASTOMA-RELATEDI1 (RBR1) and inhibit its activity to regulate the division rate in the
quiescent centre and the stem cell niche (41). Few downstream targets of ERF115 have been
identified. One of them, PSKS5, might be involved in the acceleration of the cell cycle progression
(47). Eventually, ERF115 transcription factor activity contributes greatly to tissue regeneration after
single cell ablation as well as whole root tip removal (31, 32, 41).

Yellow thunderbolts indicate UV laser ablation.

Auxin has been implicated among many other processes, also in regulation of division

plane orientation, cell fate (re)specification (42) and for the maintenance of the stem cell



niche in the root meristem centre (43). Removal of the root tip triggers a strong auxin
accumulation above the ablated cells, presumably due to a disruption of the intercellular
auxin flow, to induce replacement of the meristem centre (44). Chilling stress induces natural
death in root tip cells, which thereby block auxin transport anatomically. The resulting auxin
accumulation helps maintaining the meristem centre during the stress (45). Increased auxin
biosynthesis, on the other hand, occurs in wounded leaves (25) and root stumps after
meristem removal (46) and is crucial for the efficient tissue re-establishment. However, it
remains unknown how wound-responsive auxin transport, biosynthesis or signalling play a

role in local regenerative processes.
Downstream transcriptional regulations

Besides the above mentioned glimpses into wound-triggered signalling processes, little is
known about the downstream mechanisms leading to regeneration. One of the few identified
components is the ETHYLENE RESPONSE FACTOR 115 (ERF115), a transcription factor
required for the efficient initiation of restorative divisions (31, 32), and its close homologue
and upstream regulator ERF109 (41). Without wounding, the ERF115 expression domain is
usually restricted to the rarely occurring cell divisions in the quiescent centre, where it is
controlled by brassinosteroids (47, 48), but it can be slightly increased by exogenous
application of ROS, auxin and JA (41, 49). In some cell types after wounding, ERF115
becomes upregulated in a JA-dependent manner during restorative divisions in cells directly
adjacent to the wound (Fig. 2D) (41, 31). It remains a mystery how such spatially restricted
ERF115 induction is achieved by rather broadly spreading signals, exactly which factors are
involved in cell types where ERF115 is not induced and which downstream targets of

ERF115 mediate the regeneration.
Conclusions

Several recent studies using the single cell ablation allowed identifying wound response
processes at different levels: 1.) local - cells directly adjacent to the wounds, ii.) regional - cell
groups in close proximity, or 1ii.) systemic - the whole tissue in the same organ or in
completely different parts of the plants. Comparable responses after cell ablation, nematode
infestation or naturally occurring wounding suggest that laser-assisted cell elimination can be

used to study mechanism of wound healing.

Multiple signals have been identified to be involved in the response to wounding, but

the nature of the primary wound signal which activates the adjacent cells remains completely

10



elusive, along with most of the downstream regeneration mechanisms. Further studies,
building up on these initial findings and combining laser-assisted cell elimination with live
imaging, forward genetic screens and single cell transcriptomics will allow us to get detailed
molecular insights of what is happening at the local, regional and systemic levels and how
different signalling mechanisms cooperatively contribute towards wound healing. These
studies will reveal not only mechanism of tissue regeneration but also help us to understand

the general mechanisms of positional information-based tissue patterning.
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Summary

Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities.
Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have
developed extraordinary abilities to restore their tissues after injuries. Here we provide insight
into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted
elimination of different cells in Arabidopsis root combined with live imaging tracking during
vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells
adjacent to the inner side of the injury re-activated their stem cell transcriptional programs.
They accelerated their progression through cell cycle, coordinately changed the cell division
orientation, and ultimately acquired de novo the correct cell fates to replace missing cells.
These observations highlight existence of unknown intercellular positional signaling and
demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part

of the plant-specific mechanism of wound healing.
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Introduction

Multicellular animals and plants emerged well after the split of these two lineages during
evolution and thus these major eukaryotic groups utilize largely independent mechanisms to
deal with challenges of multicellularity such as cell-to-cell communication, development
coordination and tissue patterning. Unlike in animals, plant cells are encapsulated within rigid
cell walls and thus cannot use cell migration during tissue patterning or wound healing.
Therefore, plants rely mainly on strictly controlled orientation of cell divisions followed by the
acquisition of specific cell fates (Rasmussen and Bellinger, 2018). Despite the core cell cycle
machinery is conserved between animals and plants (Harashima et al., 2013), signals and
mechanisms regulating the transition of cell cycle stages and control of the cell division plane
during patterning are presumably plant-specific. Multiple molecular components and
mechanisms of cell fate specification have been elucidated in plants (Benfey et al., 1993; De
Rybel et al., 2013) but little is known about how these individual mechanisms are activated and
integrated during the concerted tissue patterning processes.

Plants as sessile organisms have to regularly endure wounds caused by abiotic or biotic
environmental factors; therefore, they evolved a remarkable ability to regenerate wounded
tissues e.g. reconnecting interrupted vascular strands (Mazur et al., 2016) or regenerating whole
complex structures such as the root apical meristem (Efroni et al., 2016; Sena et al., 2009). It
has been known for almost a century that harmed plant tissues activate cell division in adjacent
cells and switch division planes to fill the wound with new daughter cells (Hartsema, 1926;
Hush et al., 1990; Sinnott and Bloch, 1941). Later, when Arabidopsis root has been established
as essential model for elucidation of patterning mechanisms in plants (Benfey et al., 1993;
Dolan et al., 1993), more specific, microsurgical, laser-assisted cell eliminations allowed the
observation of cell re-specification to regenerate lost cells, in particular in the area of the root
stem cell niche (Van den Berg et al.,, 1995; Xu et al., 2006). Similar approaches also
demonstrated that constant positional signaling is essential for maintaining the root meristem
pattern during continuous development (Berger et al., 1998; Kidner et al., 2000). However, the
phenomenon of wound healing and restoration of correct tissue pattern after injury has not been
addressed specifically in Arabidopsis roots. In particular, how the tissue re-acquires a correct
pattern of cell types and what positional signaling mechanisms contribute to this, remain
unknown.

Here, we established a method of well-defined wounding by targeted cell elimination

of individual cells or cell groups in Arabidopsis root meristem and combined this with extended
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live imaging at the vertical stage microscope. This allowed analysis of the phenomenon of
restorative patterning during wound healing. Restorative patterning involves activation of
respective stem cell pathways and manifests in an immediate induction of cell division,
controlled reorientation of division planes and acquisition of specific, correct cell fates. These
observations provide insights into plant-specific wound healing and reveal previously
unappreciated aspects of mechanisms underlying cell division orientation, cell fate acquisition

and positional signaling as well as coordination of these processes during tissue patterning.

Results

Restorative cell divisions induced by local wounding

The root apex of Arabidopsis thaliana proved to be a great model for studying tissue patterning
in plants. A small group of cells with stem cell-like properties surrounds the so-called quiescent
center (QC) and generates all different cell types that form the root (Berger et al., 1998; De
Rybel et al., 2016; Kidner et al., 2000; Kumpf and Nowack, 2015; Scheres et al., 2002). Once
the different cell types are established by the stereotypic, asymmetric cell divisions, the
daughter cells undergo only proliferative, anticlinal (perpendicular to the root axis) divisions
that propagate the cell files on their way out of the meristem (Figures 1A and 1C).

We adapted the targeted UV-laser ablation technique (Marhavy et al., 2016; Xu et al.,
2006) to eliminate specifically individual cells or cell groups in different cell layers of the root
tip. 3D reconstruction of the area around the ablated cell confirmed an ablation of single cells
with intact surrounding tissues (Figure 1B; Movie S1).

The cell ablation led invariantly to a switch from anticlinal to periclinal (parallel to the
root axis) division typically of the inner (very rarely also outer) adjacent cell leading to eventual
replacement of the eliminated cell (Figures 1D-1G, Table S1 and Movie S2). This capacity to
initiate cell division was observed in all major cell types of the root meristem, no matter in
which layer the ablation was performed: Ablation of a young lateral root cap (LRC) cell
induced periclinal divisions in adjacent epidermis cells (Figure 1D); ablation of epidermis
induced division of adjacent cortex (Figure 1E); ablation of a cortex cell led to the endodermis
division (Figures 1F, S1A, S1B and Movie S2) and ablation of endodermis induced pericycle
division (Figure 1G). Periclinal cell divisions also occurred when larger injuries of two or three
neighboring cells of different cell layers were ablated, always leading to the periclinal division

of the first intact cell at the inner side of the eliminated cells (Figures S1C-S1F). In this case,
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the inner adjacent cells continued to divide periclinally until all dead cells were replaced
(Figure S1G). To eliminate cells by a different method, we used treatment with hydroxyurea
(HU), an inhibitor of ribonucleotide reductase, which inhibits DNA replication and induces
cell death (Cools et al., 2011). We observed random cell deaths in cortex and endodermis and
all these events led to the periclinal divisions of the inner adjacent cells (Figures S1K-S1M),
as seen in the case of laser-assisted cell elimination. Naturally occurring wounds occasionally
observed even in laboratory growth conditions induced similar periclinal divisions in inner

adjacent cells (Figure SIN).
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Figure 1. Ablation triggers restorative cell divisions in inner adjacent cells.

(A) Cell types in the Arabidopsis root meristem. Inset shows magnification of stem cell niche.

(B) 3D reconstruction of a single ablated endodermal cell in SCR::SCR-YFP root just after ablation.
Propidium iodide (PI) stains cell walls and is not permeant to living cells, therefore was used to identify
the ablated cell and intact neighboring cells. Shortly after ablation, PI becomes over-saturated and thus
can partly overlap also with neighboring non-ablated cells. Later, PI staining is more restricted to the
collapsed eliminated cell (see Figure S1C-S1D).

(C) Anticlinal division of cells in root meristem (grey arrow).
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(D-G) Periclinal divisions of the inner adjacent cells (green arrows) after ablation. Ablation in lateral
root cap (D), epidermis (E), cortex (F) and endodermis (G). Total number of ablations; n = 30-60 per
cell type.
LRC: lateral root cap, Ep: epidermis, Co: cortex, En: endodermis, P: pericycle. Red asterisks: sites of
ablation.

See also Figure S1

Moreover, when we ablated cells in the roots of dicots Capsella rubella, Nicotiana
benthamiana and the monocot Oryza sativa, we observed the same phenomenon of wound-
induced activation of periclinal cell division (Figures SIH-S1J). Genetics and marker lines
analysis (Figure S7A-G) revealed that the injury-induced division do not require known
regulators of periclinal cell division (LHW, TMOS5, LOG4, TCS), mechanosensing (feronia,
theseus, mcal and mca2, msiA5), or formation of the preprophase band (trm6,7,8) suggesting
existence of unknown signaling mechanism conserved across higher plants.

These observations show that controlled, localized injuries in the root meristem of
various species invariantly induce periclinal cell divisions in the inner adjacent cells. Notably,
in the undisturbed situation, cells in these root regions undergo only anticlinal divisions, but
the wound does not, typically, heal by this type of simple proliferation of the injured cell file
but requires signaling to the different cell files adjacent to the inner side of the wound, possible
activation of their division and the re-orientation of the division plane. As these processes
ultimately lead to the regeneration of the wounded tissue, we termed this previously

unappreciated phenomenon - the restorative cell division.

Competence to initiate restorative cell divisions

Our observations suggested that various root cell types have a capacity to initiate periclinal cell
divisions in response to wounding also well outside of the stem cell niche, to where this type
of divisions is normally confined. Thus, we tested systematically the competence of different
cell types depending on their distance from the stem cell niche. We eliminated cells at different
positions in the root apex (Figure 2A) and measured their position within the root apex by
different means at 1 hour (h) after cell ablation along with the ability of inducing restorative
cell divisions after 16 h (Figures 2B and S2A). We found that the capacity of cells to induce
restorative divisions gradually decreases at different rates in various cell types, with the
distance from the QC (Figure 2B). It appears that epidermis loses the responsiveness to cell

ablation first (around 150 pm), followed by cortex (190 um) and endodermis (220 um), while
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pericycle maintains its competence to initiate restorative divisions - consistent with its behavior
as a “dormant meristem” throughout the whole root development (Marhavy et al., 2016).

This demonstrates that epidermis, cortex, endodermis and pericycle cells, all are
competent to initiate restorative cell divisions well outside of the stem cell niche with their

competence decreasing at different rates with the distance from it.

PLETHORA regulators mediate competence for restorative cell divisions
To get further insight into the mechanism underlying decreasing competence to initiate
restorative cell divisions in more differentiated parts of the root meristem, we analyzed roots
with shortened meristems. First, we analyzed crel ahk2 ahk3 triple mutant of the cytokinin
receptor genes and plants treated with cytokinin and brassinolide which all displayed reduced
meristematic activity (Higuchi et al., 2004; Marhavy et al., 2011; Zhu et al., 2013). While the
ability to induce restorative cell division in epidermis and cortex was significantly reduced,
division rate in endodermis was only slightly decreased (Figures S2B- S2D). Thus, as expected,
the regenerative competence in some cell types depends highly on meristematic activity.

Next, we analyzed the potential involvement of members of the PLETHORA (PLT)
regulators of stem cell activities, which form an expression gradient decreasing with distance
from the QC (Galinha et al., 2007, Figures S2F and S2G) thus correlating with the decrease of
regenerative competence. Moreover, ectopic expression of PLT1 and PLT?2 initiates a variety
of phenotypes including increased meristem size and ectopic root formation throughout the
plant (Aida et al., 2004; Galinha et al., 2007). Thus, we analyzed regeneration competence 12
h after ablation in the transition and elongation zones of the 355::PLT2-GR line. Ectopic PLT2
expression strongly rescued the capacity of cortex cells to induce restorative divisions after
epidermis ablation even when they already left the division zone of the root tip (Figure 2C);
also, in some cases, ablation of LRC cells at the end of the division zone induced periclinal or
oblique divisions in epidermis (Figure S2E). Similarly, the cells of endodermis slightly
regained the competence to divide periclinally following cortex ablations even outside of the
division zone (Figure 2C). Notably, induction of PLT2 expression as short as 1 h prior ablation
was sufficient to increase the rate of restorative divisions within (150-200 um) and at the end
of the division zone (200-230 um) and even allowed cells that already left the division zone to
induce restorative divisions (at 275-400 pm from 0% in WT to ~70% in 35S.:PLT-GR, Figure
2D).

In a reciprocal experiment, we analyzed p/t/ and plt2 mutants and found that single

mutants showed no reduction in periclinal division rates in epidermis but possessed increased
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number of periclinal divisions in cortex (plt/) and endodermis (p/¢2). Notably, pltiplt2 double
mutant is strongly defective in restorative divisions in epidermis (Figure 2E and 2F).

Our results identified PLT transcription factors as being necessary and sufficient
components of the root cell competence to initiate restorative division. Moreover, the
regenerative competence depends on PLT expression levels and correlates with the PLT

expression gradient in the root.
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Figure 2. Decreasing competence of restorative divisions correlates with PLT activity

(A) Tile scan of a root 24 h after ablation of cortex and epidermis. While ablation of cortex cells (red
asterisk) induced periclinal cell divisions in endodermis (red arrows), ablation of epidermis (green
asterisk) did not induce periclinal division in cortex, which lost the competence to divide. In contrast,
ablation of epidermis closer to the quiescent center induced the periclinal cortex cell divisions.
Marked ablated cells moved from meristem into elongation zone during growth.

(B) Number of periclinal divisions decreases with distance from QC; as measured in various cell types
after 16 h depending on distance from the QC at the time of ablation (um). Total number of ablations;
n = 15-50 for every 10 um (70-250 um).
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(C) Number of periclinal divisions in cortex and endodermis cells depending on the distance from the
QC at the time of ablation is increased after PLT2 induction; as measured in WT and 35S::PLT2-GR
(treated with 5 uM DEX 1 h prior ablation) 12 h after ablation. Roots with ectopic oblique divisions
were excluded from the quantifications. Number of ablations per data point; n = 3-26

(D) Overexpression of PLT2 starting 1 h before ablation triggered periclinal and oblique divisions in
inner adjacent cells. Cortex cells are already partly elongated. Ablation was performed at 282 pum
distance from the QC.

(E) Number of periclinal divisions after ablation in plti, plt2 single and pltiplt2 double mutants in
different cell layers at random distance from the QC after 12 h. Data are represented as weighted mean
(bar) and individual experiments (dots, area indicates sample size). Asterisks correspond to p-values
from conditional logistic regression (CLR); plt1 (cortex): 0.000538, p/t2 (endodermis): 0.0231, pltiplt2
(epidermis): 9.99E-07.

(F) Periclinal division was not induced in epidermis in the pl/tipl/t2 double mutant 12 h after ablation.
Red asterisks: sites of ablation. Roots were stained with propidium iodide.

See also Figure S2

Accelerated progression through cell cycle during restorative division

To analyze whether the wounding only changes the plane of cell division from anticlinal to
periclinal or, in addition, also accelerates the entry into and/or progression of the cell cycle, we
performed a time series counting the divisions associated with the ablation events using the
vertical stage microscope with automatic tracking (Von Wangenheim et al., 2017). Roots
without ablations underwent anticlinal divisions in a spatially and temporarily regular manner,
which can be observed as a nearly linear increase of cumulative divisions over time. Fitted
sigmoidal curves showed nearly flat derivatives showing that there is equal probability of cell
divisions during the observed time frame in all cell types (Figure 3A). In contrast, wounding-
induced periclinal divisions showed different but very uniform characteristics within different
roots. After a lag-time of approx. 5-7 h, the cumulative periclinal division events from ~40
ablation sites increased rapidly and reached a maximum within 10 additional hours. The
derivatives of the fitted sigmoidal curves showed that ablation highly increased the probability
of divisions (Figure 3B). Additionally, the speed of induction of restorative cell divisions varied
markedly between cell types. Whereas epidermis cells induced divisions almost uniformly,
endodermis division events spread over a slightly broader time scale. The ability to specifically
induce divisions in cortex cells varied from a rate comparable to endodermis (Figure S3A) to
situations without wounding (Figure S3B) but mostly was somewhere between these two

extrema (Figure 3B). In most cases for cortex (60%) and epidermis (70%), exponential curves
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showed a better fit, while endodermis curves in majority (70%) fitted better to a sigmoidal
behavior. Pericycle cells are not efficiently trackable for prolonged periods, but endpoint
measurements (e.g. 12 h) after ablation revealed induction times similar to the endodermis
(Figure S3C). Despite these differences, the minimal observed induction time of ~5 h is

consistent within all cell types.
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Figure 3. Accelerated activation of cell cycle progression

(A and B) Cumulative divisions in roots monitored by vertical stage microscopy (observed roots; n =
10 for each experiment). Without ablations all cell types divided slowly at the same rate, as seen in the
quantification of anticlinal divisions in roots with virtual ablations (n =4 per root) (A), whereas division
rates were much faster and differed markedly between cell types after wounding, as seen in

quantifications of periclinal divisions in roots with laser ablations ( n = 3 per root) (B). Thin lines show
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raw data and thick lines show fitted curves calculated by least square estimates (sigmoidal curves:
y=a*e”(-b*e”(-c*x))). Insets show derivatives of fitted curves.

(C-F) Expression pattern of cell cycle regulators during restorative divisions. Inner adjacent cells of
ablated cells were already in S-phase during ablation as indicated by strong HTR2.::CDTIla-GFP signal
(left) but still performed periclinal cell division (right) (C). Mean CDT/a-GFP fluorescence intensity
at 0 h after ablation relative to the first time point after ablation: 9.3 + 1.6 (n = 8 cells). G2/M transition
marker, pCYCBI;1::GFP is specifically upregulated before restorative divisions (D), while
CYCD2;1::CYCD2;1-GFP leaves the nucleus shortly before division (E) and cytokinesis marker,
KN::GFP-KN is upregulated at the newly formed cell plate (F). Progression of cell cycle phases are
shown in blue arrow with green stripes indicating expression patterns as observed or previously reported
(for CDT1a-GFP: Yin et al., 2014).

(G-D) Quantification of fluorescent signals of marker gene expressions of pCYCBI;1::GFP (G),
CYCD2;1::CYCD2;1-GFP (H) and KN::GFP-KN (I) during restorative divisions after ablation. Data
for pCYCBI;1::GFP and CYCD2;1::CYCD2;1-GFP was collected by long-term vertical stage imaging
over 24 h and are presented as mean fluorescence intensity relative to time point of finished division of
subsequently followed cells (n = 16 and n = 10, respectively) = SEM and is supported by three
qualitative experiments. KN::GFP-KN is represented as mean (bar) and individual experiments (dots,
area indicates sample size) of qualitative analysis of GFP signals.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.

See also Figure S3

Next, we observed progression of the cell cycle after ablation and analyzed, which
transition steps are required for the initiation of restorative cell divisions. We tested the
expression of S, G2/M and cytokinesis-specific markers which also showed dynamic changes
in proliferative cell divisions occurring in a seemingly random diverse spatial and temporal
distribution within the root meristem (Dewitte and Murray, 2003). The evolutionary conserved
inhibitor of the G1 to S-phase transition RETINOBLASTOMA-RELATEDI1 (RBR1) (Ebel et
al., 2004) in the RBR1::RBRI-GFP marker line showed occasionally specific downregulation
in the inner neighbor cells to the wound before restorative divisions were induced (Figure S3J).
However, in long-term imaging experiments, we could not observe any specific expression
changes in most cells that perform restorative divisions. So we investigated a synthetic S-phase
marker, HTR2::CDTla-GFP, which gets promptly activated when a cell enters the S-phase
and gets slowly degraded until the cytokinesis (Yin et al., 2014). Most cells in the root meristem
showed strong expression in this marker, meaning they were currently in S-phase. When we

ablated cells adjacent to such cells, we observed that S-phase cells were able to trigger
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restorative divisions including the switch to periclinal orientation (Figure 3C) suggesting that
a G1 to S-phase transition (e.g. by downregulation of RBR1) is not crucial for restorative
divisions.

A transcriptional activator of G1/S phase transition genes, ETHYLEN RESPONSE
FACTOR 115 (in the ERF115::GFP-NLS line) was upregulated around 4-5 h after ablation,
prior to restorative cell divisions as described previously (Heyman et al., 2016; Heyman et al.,
2013). Nonetheless, the ERF115 upregulation is specific to endodermal and stele cells next to
wound and was not observed in epidermis and cortex cells (Figures S3D-S3G). Accordingly,
the ERF'115-SRDX dominant negative line showed significantly reduced number of restorative
cell divisions in endodermis and lower number of divisions in pericycle (Figure S3H). This
suggests that, although not required, the transition from G1 to S phase is part of the restorative
division initiation and increases the amount of restorative cell divisions that occur within 12 h.
The binding partner of ERF115, PHYTOCHROME A SIGNAL TRANSDUCTIONI (PATI,
Heyman et al., 2016) and one of the downstream targets WOUND INDUCED
DEDIFFERENTIATION 1 (WINDI, Iwase et al., 2011) did not show any specific expression
changes during restorative divisions (Figure S3K and S3L). Additionally, wind! mutant and
overexpression lines did not show any defects in periclinal division after ablation (Figure S31).

Next, we observed the progression through the G2 phase and its importance for
restorative divisions. Using long-term imaging during restorative divisions, we observed
upregulation of the G2/M marker pCYCBI;1::GFP (Ubeda-Tomas et al., 2009) and
downregulation of CYCD2;1::CYCD2;1-GFP (Sanz et al., 2011) as it normally occurs during
progression through G2 phase (Figure 3D-E and 3G-H). Additionally, we observed the
cytokinesis onset and progression as marked by the cytokinesis-specific protein KNOLLE in
KN::GFP-KN (Reichardt et al., 2007) at the newly formed cell plate during restorative
divisions (Figures 3F and 31I). This demonstrates, that enhanced progression through the cell
cycle requires the differential expression of canonical G2 and M phase genes.

Thus, the quantifications of cumulative cell divisions revealed that wounding-induced
restorative divisions occur significantly faster than regular proliferative divisions. Notably,
whereas for the normal, proliferative cell division rates, there are no visible differences between
the cell types, the restorative cell divisions show strongly divergent rates of divisions in
different cell types. Whereas these quantifications cannot discriminate between accelerated
entry and accelerated progression of the cell cycle, the molecular markers further confirmed

the accelerated cell cycle progression. Additionally, it showed that coordinated G1/S phase
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transition is not required for restorative cell division, while G2/M phase transitions are tightly

controlled after wounding.

Restorative cell divisions generate daughter cells with distinct, correct fates

Next, we addressed the cell fate of the daughter cells generated by restorative cell divisions. In
the root, the stereotypic divisions of the stem cells generate all cell types, which, subsequently
after leaving the stem cell niche, have their fixed identities propagated by the proliferative
anticlinal cell divisions (Van den Berg et al., 1995; Berger et al., 1998; Dolan et al., 1993;
Kidner et al., 2000).

To assess possible cell fate changes, we used specific marker lines for different cell
types (Figure 4A) and followed their expression during and after restorative cell divisions.
After ablation of LRC cells in the LRC-specific marker line SMB::SMB-GFP (Willemsen et
al., 2008), we measured GFP fluorescence in both daughter cells generated by a restorative
division of the epidermis. The SMB-GFP expression in outer daughter cells, facing the ablation
site, as compared to the inner cell, became significantly higher 4 h after division (Figures 4B
and 4G). This indicates that the outer epidermis daughter cell generated by the restorative
division acquired rapidly the LRC fate replacing the eliminated cell.

Next, we observed dividing cortex cells after ablation of epidermal cells in the roots of
the cortex and endodermis-specific marker line J0571 (Haseloff, 1999; Mylona et al., 2002).
The difference between inner and outer daughter cells appeared about 24 h after ablation and
the GFP signal almost disappeared from the outer cells after 32 h, indicating that these cells
were losing cortex cell fate and acquired their new fate (Figures 4C and 4H). Additionally, at
about 24 h after epidermis ablation, outer cells of periclinally divided cortex cells started to
express the epidermal marker WER::GFP (Lee and Schiefelbein, 1999) confirming that these
cells were in process of acquiring the cell fate of the eliminated epidermal cell (Figures 4D and
4H).

After ablation of cortex cells, we monitored the endodermis-specific marker SCR::SCR-
YFP and the cortex-specific marker Co2::HYFP (Heidstra et al., 2004) to analyze the cell fate
changes after restorative divisions. Also in this case, the outer daughter cell gradually lost its
endodermal fate, as evidenced by decreasing SCR-YFP expression (Figures 41 and S4A), and
acquired the cortex fate (increasing Co2::HYFP expression) at about 16 h - 24 h after ablation
(Figures 4E and 41).
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Figure 4. Restorative cell divisions generate daughter cells with distinct cell fates

(A) Expression domains of marker lines in Arabidopsis root meristem.

(B) Ablation of LRC cells. Expression of LRC marker, SMB::SMB-GFP is restored in newly formed
LRC cells. Total number of ablations; n = 5 for all time points.

(C and D) Ablation of epidermal cells. Expression of cortex and endodermis marker J0571 is
downregulated in the outer daughter cells of periclinally divided cortex cells (C), while epidermis
marker WER::GFP is upregulated (D). Numbers of ablations per time point; n = 19-77 (J0571), n = 16-
66 (WER::GFP).
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(E) Ablation of cortex. Expression of cortex marker Co2::HYFP is upregulated in outer daughter cells
of periclinally divided endodermis cells, while endodermis marker SCR::SCR-YFP is downregulated
(see Figure S4A). Co2::HYFP; n = 43-79 ablations per time point.

(F) Ablation of endodermis. Expression of SCR::SCR-YFP is upregulated in outer cells of periclinally
divided pericycle cells. n = 13-23 ablations per time point.

(G-J) Quantification of fluorescent signals of marker gene expressions in periclinally divided cells after
ablation. Relative signal intensity between outer/inner daughter cells in periclinally divided epidermis
(G) and average fluorescent signal in cortex (H), endodermis (I) and pericycle (J) at different time
points. Outer daughters were measured if the inner adjacent cells divided multiple times (as seen in D).
Data are represented as mean + SEM.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.

See also Figure S4

We also followed cell fate changes after elimination of an endodermal cell, which is
replaced by the restorative division of the adjacent pericycle cell using endodermal SCR::SCR-
YFP and SHR::SHR-GFP that is more uniformly distributed in stele including pericycle cells
but is restricted to the nucleus specifically in endodermis (Nakajima et al., 2001). Analogically
to other cell types, we observed that the newly formed outer daughter cell gradually changed
its fate to become endodermis as manifested by the activation of SCR-YFP expression (Figures
4F, 4] and S4B) and nuclear appearance of SHR-GFP (Figure S4C).

In rare cases (well below 10% of events) also cells at the outer side of the wound would
divide periclinally, in addition to cells at the inner side. Notably, in such cases we did not detect
any changes in cell fate of the daughter cells using SCR::SCR-YFP, WER::GFP and E4722
marker lines (Fig. S4D-S41) contrasting with consistent cell fate re-specifications at the inner
wound side. This suggests that an inside-to-outside intercellular signaling is required for correct
re-specification during wound regeneration.

Taken together, restorative periclinal divisions induced by wounding generate daughter
cells that replace dead or damaged cells by acquiring a new, “correct” cell fate. Thus,
restorative cell division represents a special case of formative division. This necessitates the
existence of multiple intercellular signaling mechanisms constantly providing positional

information to the cells, which acts also outside the stem cell niche.

Re-activation of SHR/SCR-CYCD6 stem cell program replaces eliminated cortex
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How do the cells adjacent to the wound get activated and can generate cells with new, correct
identities during wound healing? The asymmetric cell division generating different cell types
occurs typically only in the stem cell niche. For example, cortex and endodermis cell files
originate from the same stem cell, the cortex-endodermis initial (CEI). The CEI continuously
divides anticlinally to renew itself and produce a daughter cell, which further divides
periclinally to generate cortex and endodermis (De Rybel et al., 2016; Helariutta et al., 2000;
Kumpf and Nowack, 2015; Scheres et al., 2002). This process is governed by the transcription
factors SHORTROOT (SHR) and SCARECROW (SCR), which activate the expression of
CYCD6;1 and thus initiate a switch in division plane orientation (Heidstra et al., 2004; Sozzani
et al., 2010; Figure 5A). Hence, scr and shr mutants lacking the initial formative division
contain only a single layer of ground tissue, while overexpression of SHR or CYCD6;1 leads
to the formation of additional ground tissue cell layers (Benfey et al., 1993; Sevilem et al.,
2015). Despite SHR and SCR being expressed throughout the whole root meristem, activation
of CYCD6;1 and formative cell division within young seedlings occurs only in the stem cell
niche (Cruz-Ramirez et al., 2012; Heidstra et al., 2004; Sozzani et al., 2010; Yu et al., 2017).
We have examined involvement of the SHR/SCR-CYCD6;1 module in the restorative
division. In the shr and scr mutants, the restorative cell divisions specifically in the single
ground tissue layer were significantly defective, whereas the division of other cell types
occurred normally (Figures 5B and 5C). Notably, CYCD6,1::GFP and CYCD6,1::CYCD6, -
GFP expression, typically detectable only in the stem cells, was upregulated specifically in
endodermal cells next to eliminated cortex cells and started between 3 and 7 h after wounding
well before the onset of the restorative division (Figures 5D, S5A and Movie S4). On the other
hand, SHR-GFP and SCR-YFP signal intensity decreased before and during mitosis (Figures
SE, S5B and S5C). A similar downregulation of SCR/SHR and activation of CYCD®6;1
expression can be observed outside of the stem cell niche during initiation of an additional
cortex layer, so called middle cortex (Benfey et al., 1993; Paquette and Benfey, 2005). Middle
cortex formation shares some similarities with restorative divisions of endodermis such as
switch of cell division plane to periclinal. However, it occurs only in older roots and is under
a strong control of the phytohormone gibberellic acid (GA) (Cui and Benfey, 2009; Gong et
al., 2016; Paquette and Benfey, 2005). Notably, neither application of GA nor GA biosynthesis
inhibitor paclobutrazol (PAC) had an influence on the competence of endodermis cells to
undergo restorative divisions (Figures SSD-S5G) implying that restorative division and middle
cortex formation while both depending on SHR/SCR—-CYCD6;1 signaling, use at least partly

divergent mechanisms.
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Our observations show that cortex elimination by wounding activates the
endodermis/cortex SHR/SCR-CYCD6;1 stem cell program in the underlying endodermis cell
enabling its restorative division and ultimately healing the wound by generating daughter cells

with the correct fate.
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Figure 5. Re-activation of SHR/SCR-CYCD6;1 module during restoration of cortex.

(A) SHR/SCR-CYCD6;1 module in ground tissue development (Fisher and Sozzani, 2016; Sozzani et
al., 2010).

(B and C) Ablation of epidermal cells (B - left) and ground tissue (B - right) in shr-/ mutant.
Quantification of periclinal divisions in scr-3 and shr-1 (C). Data are represented as weighted mean
(bar) and individual experiments (dots, area indicates sample size); p-values from CLR for scr-3:
0.00234; shr-1: 8.61E-9.

M: ground tissue layer formed in sAr mutants.

(D and E) Expression of CYCD6; 1::GFP is upregulated in periclinally divided endodermis cell after
ablation of cortex (For the translational fusion see Figure S5A) (D), while SHR::SHR-GFP is
downregulated before periclinal division (see also Figure S5B) (E). Total number of ablations; n = 109
(CYCD6;1),n =101 (SHR).

Red asterisks: sites of ablation. Roots were stained with propidium iodide.

See also Figure S5
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Re-activation of FEZ/SMB stem cell program replaces eliminated epidermis

Besides cortex/endodermis initials, the stem cell niche consists of other initials that divide
asymmetrically to form distinct cell types, such as the LRC/epidermis initials (LEI).

Their correct division pattern is regulated by two transcription factors, FEZ and SOMBRERO
(SMB) (Fisher and Sozzani, 2016; Willemsen et al., 2008). FEZ induces the asymmetric
division of the initial, while SMB inhibits further divisions of already specified LRC cells. fez
mutants lack additional stem cell divisions and show decreased number of LRC layers, while
stem cells in smb undergo more periclinal divisions and generate additional LRC layers (Fisher
and Sozzani, 2016; Willemsen et al., 2008). The concomitant expression of both proteins is
specific to LRC/epidermis initials in the stem cell niche and very young LRC cells, where they
interact with each other in a negative feedback loop, and their expression is never observed in
already specified epidermis cells (Figure 6A).

We observed a specific upregulation of both FEZ::FEZ-GFP and SMB::SMB-GFP in
epidermis cells adjacent to wounded LRC cells (Figures 6B, 6C, S6A and S6B). The
upregulation started 4-6 h after LRC elimination and was always followed by a periclinal
division. While the FEZ expression dropped shortly after division, SMB was asymmetrically
upregulated in the newly forming LRC cells, and it vanished in the remaining epidermis cells
(see Figure 4B). In the fez mutant we observed a reduction in epidermis division rate and an
increase in the rates of cortex and endodermis (Figures 6D and 6E). In the smb mutant, the rate
of epidermis division following LRC elimination dropped significantly, whereas other cell
types showed normal rate of restorative divisions (Figures 6D and 6F).

These observations revealed a specific upregulation and functional requirement of both
these stem cell regulators for the restorative cell division of epidermis leading to the
replacement of the eliminated LRC by daughter cells with a correct cell fate. Thus, as in case
of cortex replacement, the re-activation of the specific stem cell program mediates also the

replacement of LRC during wound healing.

34



Figure 6.

O

SMB::SMB-GFP

m
-

o

BWT Ofez Bsmb fez - Epidermis smb - Epidermis

b
=
(=]

il

@
=
]

sooms 2

=T
fez

&

R
ol

/=W
f = smb

3

% of cumulative PD events
b=

% of cumulative PD events
4

L L LERY
3 E

» .= f

(=]

>

% of penclinal divisions
a e (=1
D (== o =
[ ced o
-
T . D
& &
B

16 ] 15

& 10
Ttm " i
Figure 6. Reactivation of FEZ/SMB module during restoration of LRC.

(A) FEZ/SMB module in LRC development (Fisher and Sozzani, 2016; Willemsen et al., 2008). Grey

Epidermis Cortex Endodermis

font shows reduced expression.

(B and C) Expression of FEZ::FEZ-GFP (B) and SMB::SMB-GFP (C) is upregulated in epidermal
cells after ablation of LRC (see also Figure S6A & S6B).

(D) Quantification of periclinal divisions after ablation in fez and smb mutants in different layers show
reduced numbers in mutant epidermis cells. Data are represented as weighted mean (bar) and individual
experiments (dots, area indicates sample size); p-values from CLR: fez: 0.075 (epidermis), 0.50 (cortex),
0.077 (endodermis); smb: 0.013 (epidermis), 0.79 (cortex), 0.73 (endodermis)

(E and F) Cumulative divisions over time in fez (E) and smb (F) monitored by vertical stage
microscopy. Observed ablations; n = 20 per genotype. Thin lines show raw data and thick lines show
fitted curves calculated by least square estimates (y=a-b*e”(c*x)). See also Figure S6C.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.

See also Figure S6.

Discussion

Plants evolved distinct mechanisms of patterning as compared to animals due to the constraints
of immobile cells encapsulated within cell walls. Owing to their sessile life style, they also

frequently must endure injuries, but little is known how the tissue is restored after wounding.
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In this work, we address the mechanisms underlying wound healing and pattern
restoration using targeted laser elimination of different cell types coupled to prolonged live cell
imaging. This approach allowed us to identify in multiple plant species the process of
restorative patterning, which encompasses restorative cell divisions initiated after injury,
subsequent de novo specification of the correct cell fates and ultimately leads to replacement

of the eliminated cells and correct regeneration of the injured tissues.

Restorative cell divisions specifically and correctly replace eliminated cells

We have shown here that root cells disrupted by injury are not simply replaced by a
proliferation of healthy cells from the same cell file adjacent above and below to the wound.
Instead, inner adjacent cells become activated to replace the dead neighbor by a process we
call restorative patterning. This special type of formative cell division involves several
coordinated processes: (i) recognition of the disrupted tissue by inner adjacent cells; (i)
accelerated entry into and progress through the cell cycle; (iii1) reorientation of the cell division
plane; and (iv) “correct” cell fate re-specification of the generated daughter cell, which fills the
wound. Furthermore, restorative divisions in inner adjacent cells were observed independently
of the nature of tissue disruption: ablation of single or multiple cell layers, drug-induced cell
death and natural collapse of multiple cells.

The underlying signaling cascades for restorative patterning remain largely elusive
however, we provide some initial insights. The known components of mechanosensing,
periclinal cell divisions and preprophase band formations do not seem to be involved (Figure
S7). On the other hand, the graded expression of PLT transcription regulators seems to provide
some cell types of the root with their regenerative competence.

Our observations also show that the main fraction of dividing cells finish mitosis
between 5 and 8 h, the minimum time frame required for cell divisions in plants and other
eukaryotes (Mickelson-Young et al., 2016). Therefore, signaling from the wound to initiate
cell cycle transitions in inner adjacent cells must happen very rapidly after tissue disruption
and likely relies on non-genomic factors, such as mechanical properties and local geometry of
disrupted tissues.

The switch in the division plane is a crucial part of the restorative patterning. Notably,
it has been shown that mechanical perturbations, including cell ablation, in the shoot apical
meristem can trigger division plane reorientation of surrounding cells (Louveaux et al., 2016)
indicating that the process of restorative patterning and the coordinated cell division plane

switching, here characterized in the root, may operate more globally throughout the plant.
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Reactivation of stem cell mechanisms mediates restorative patterning

A remarkable feature of restorative patterning is that cells undergoing proliferative divisions
with already clearly specified fates start to perform formative divisions and undergo cell fate
re-specification. This allows the generation of daughter cells with correct cell fates to
regenerate the disrupted tissue.

In the cell type lineages, which share common ancestors in the stem cell niche, such as
Lateral Root Cap/Epidermis initials and Cortex/Endodermis initials, we observed an activation
of regulators usually specific only to the respective stem cells. The upstream activators of these
stem cell pathways await identification, but the genetic analysis revealed that restorative
patterning is much less efficient albeit not completely prevented in mutants defective in those
stem cell regulators. Nonetheless, restorative divisions where the ablated and the activated cell
do not have a common ancestor (especially cortex division after epidermis ablation) still occur
but with reduced efficiency in division plane switching and wound healing. This implies some
redundancy in mechanisms for restorative patterning and indicates the existence of a slower
mechanism, which potentially operates in all cell types regardless of their stem cell ancestry.
Hence, the additional activation of the stem cell regulators, which were shown to ectopically
induce periclinal divisions by overexpression (Sozzani et al., 2010; Willemsen et al., 2008; Yu
et al., 2017), provides increased efficiency and robustness to this so far unidentified, “default”,
cell type-independent restorative mechanism.

For the part of restorative patterning mechanism that involves stem cell pathway
activation, one can envision that even already specified cells preserve a “memory” of their stem
cell ancestry and upon receiving a wound signal reactivate the stem cell pathway. However,
the basal, default restorative patterning implies the existence of global positional signaling
mechanism(s) that determine which cell fate the daughter cells should adopt following
restorative division. While the cell fates of inner, wound-adjacent cells of ablation is re-
specified, the cell fate of occasionally dividing outer adjacent cells is not affected, suggesting
that the positional signaling mediating the coordinated cell fate changes occurs in a radial
direction from inside to outside. Thus, the mechanism of wound healing by restorative divisions

starts always from the inner tissues regardless of the wounding process.

As suggested previously (Van den Berg et al., 1995; Berger et al., 1998; Kidner et al., 2000),
such positional signaling would operate outside the stem cell niche, hence constantly allow

already specified cells to adapt their cell fate according to their position within the tissue
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architecture. In case of endodermis specification, this is likely the well-known SHR/SCR radial
signaling module that is expressed and operates throughout the whole root meristematic zone

(Heidstra et al., 2004) but for other cell types; any notion of this signaling remains elusive.

Conclusion

In summary, this work provides insights into the plant-specific mechanism underlying wound
healing. Focusing on the coordinated response of already specified root cells to the local injury
we uncovered a process of restorative patterning, which correctly replaces eliminated cells and
allows plant tissues to heal despite the absence of cell migration, which is the basis of wound
healing in animals. The nature of the wound signal remains enigmatic, but the downstream
restorative patterning involves re-activation of stem cell-specific signaling pathways inducing
asymmetric, formative divisions and cell fate re-specifications ultimately closing and healing
the wound. In addition to the regenerative competence requiring and correlating with the
gradually decreasing expression of PLT transcription factors, our result also suggested the
existence of undiscovered signaling mechanisms constantly conveying positional information
throughout all tissues of the root meristem.

Besides these insights into the mechanism of wound healing, our method of laser-
assisted local tissue perturbation coupled with long-term, high-resolution imaging during
vertical growth opens new possibilities to address the mechanism of intercellular signaling and
patterning in plant tissues. Thus, further studies into restorative patterning using molecular
genetics, single cell transcriptomics and mechanical modeling among other approaches will
reveal not only a broader understanding of the mechanism of wound healing but also how plants

establish and maintain their body patterns.
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Supplemental Information

Capselia rubella Micotiana benthamiana

% of roots showed % of roots showed i 1
cell death periclinal division ) SHR-SHE-GEP

Figure S1. Effects of non-targeted cell eliminations and single/multiple ablations in Arabidopsis

and other plant species, Related to Figure 1.
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(A and B) 3D reconstruction front view (A) and top view (B) of a single ablated cortex cell followed
by periclinal division of endodermal cells after 16 h.

(C and D) Multiple ablations of epidermis and cortex after 1 h (C) and 16 h (D) of ablation. Total
number of ablations; n = 10-20 per cell type.

(E and F) Multiple ablations of epidermis, cortex and endodermis 1 h (E) and 20 h (F) after ablation.
Total number of ablations; n = 10-20 per cell type.

(G) Multiple ablations of epidermis and cortex lead to repeated divisions of endodermis cells to replace
eliminated cells.

(H-J) Single and multiple cell ablations of various cell types trigger periclinal cell divisions in inner
adjacent cells in dicots Capsella rubella (H) Nicotiana benthamiana (1), and monocot Oryza sativa (J).
(K and L) Restorative divisions in endodermis (K) and pericycle (L) after induction of non-targeted
cell death by hydroxyurea.

(M) Quantification of dead cells by hydroxyurea accompanied with periclinal divisions of neighboring
cells. Data are represented as mean from four experiments = SD (observed roots; n =26, 15, 21, 41).
(N) Restorative divisions in endodermis after natural death of cortex cells monitored in the SHR::SHR-
GFP marker line.

Ep: epidermis, Co: cortex, En: endodermis, P: pericycle.

Red asterisks: ablated cells, red arrows: periclinal divisions. Roots were stained with propidium iodide.
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Figure S2. Role of meristem activity and PLT expression gradient in regenerative competence,
Related to Figure 2.

(A) Rate of periclinal divisions depends on the distance from the meristem end to ablated meristematic
cell (total number of ablations is indicated in chart).

(B-D) Rate of periclinal divisions 12 h after ablation in crel ahk2 ahk3 triple mutants (B), in seedlings
treated with 50 nM cytokinin (benzyl amino purine, BAP) (C) and with 1 pM 24-epibrassinolide (EBL)
(D). Data are represented as weighted mean (bar) and individual experiments (dots, area indicates

sample size); asterisks indicate p-values from CLR.
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(E) Regeneration of epidermis competence can be greatly increased by overexpression of PLT2 as LRC
ablated at 212 pm distance from the QC was able to trigger periclinal cell division in epidermis 12 h
after ablation.

(F-G) Expression patterns of PLT1::eCFP (F) and PLT2::YFP (G) were not affected by ablation of
different cell types in cells undergoing restorative divisions. Red asterisks: sites of ablation, red arrows:

periclinal divisions. Roots were stained with propidium iodide.
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Figure S3. Activation of cell cycle machinery triggered by ablation, Related to Figure 3.

(A and B) Restorative division rate in cortex cells varies highly between different experiments: compare
red line in (A), (B) and Figure 3B. Cumulative periclinal division events in 10 roots with 1 ablation site
per cell type each were monitored by vertical stage microscopy. Thin lines show raw data and thick

lines show fitted curves calculated by least square estimates (sigmoidal curves: y=a*e"(-b*e"(-c*x))).
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(C) Restorative division rates differ highly between cell types 12 h after ablation. Data are represented
as weighted mean (bar) and individual experiments (dots, area indicates sample size)

(D-G) ERF115.:GFP expression after ablation of LRC (D), epidermis (E), cortex (F) and cortex and
endodermis (G). Upregulation is specific to restorative divisions in endodermis and pericycle.

(H) Rate of periclinal divisions after ablation in ERF'115-SRDX line. Data are represented as weighted
mean (bar) and individual experiments (dots, area indicates sample size); p-values from CLR:
epidermis: 0.178, cortex: 0.134, endodermis: 0.00232, pericycle: 0.129.

(I) Rate of periclinal divisions induced by ablation in wind quadruple mutants, WIND1-SRDX line and
35S8::WINDI line in various cells. Data are represented as weighted mean (bar) and individual
experiments (dots, area indicates sample size).

(J) Specific downregulation of the G1/S phase transition inhibitor RBRI::RBRI-GFP was only
observed in rare cases in inner adjacent cells prior to restorative divisions.

(K) Expression of pWINDI::GFP was not detected in roots after 12 h of ablation, during restorative
division initiation.

(L) Expression of pPATI::GFP was not upregulated after 12 h of ablation, during restorative divisions.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.
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Figure S4. Cell fates of inner and outer adjacent cells of ablation, Related to Figure 4.
(A) Ablation of a cortex cell results in decreased expression of endodermis marker SCR::SCR-YFP.
Total number of ablations; n =42 (8 h), n=47 (12 h),n=95 (16 h), n =63 (24 h), n=47 (32 h) - see

increased cortex marker Co2::HYFP expression in Figure 4E.
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(B and C) Ablation of endodermal cell results in upregulation of SCR::SCR-YFP in pericycle (B).
Ablation of cortex and endodermis results in nuclear localization of SHR.::SHR-GFP (C) in outer
daughter cells of periclinally divided pericycle cells. Total number of ablations; n =71 (16 h), n =55
(24 h),n =22 (32 h),n =22 (38 h).

(D-I) Rarely induced restorative divisions in outer adjacent cells did not trigger cell fate change in any
of the daughter cells. After 16 h and 38 h of cortex ablation, expression pattern of WER::GFP in outer
adjacent periclinally divided daughter cells did not change (D and E). Expression patterns of LRC
marker £4722 (F, 16 h; n = 52/52, 38 h; n = 43/45), SCR::SCR-YFP (G, 16 h; n = 24/24, 38 h; n =
37/37), and WER::GFP (H and 1) after 16 h and 38 h of ablation did not change in the presence of 1
puM NAA, which increased occurrence of restorative divisions at the outer adjacent side. Relative
fluorescence signal was calculated as follows; WER::GFP signals in the periclinally divided cells were
divided by non-periclinally divided epidermal cells. Sample numbers are as follows; in D and E (16 h;
n=14,38h;n=9),in Hand I (16 h; n =10, 38h; n = 7). The error bars show SD.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.
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Figure S5. Periclinal divisions in endodermis are independent of GA inducible activation of
middle cortex formation, Related to Figure 5.

(A) Ablation of cortex is followed by upregulation of CYCD6;, I translational fusion before induction
of periclinal division in the inner adjacent endodermis cells.

(B and C) After cortex ablation, downregulation of SHR::SHR-GFP is followed by induction of
periclinal division in endodermis cells outside of the stem cell niche (B), which is similar to
downregulation of SCR::SCR-YFP in endodermal cells undergoing periclinal divisions (C).

(D) Treatment of 10 uM GA resulted in ectopic inductions of periclinal divisions which are independent
from cortex ablations as seen in root meristem 1 h after ablation. Note that the periclinal division is not
adjacent to ablations (red arrows).

(E-G) Effect of GA or PAC on the rate of periclinal divisions in endodermis. For the short-term
observation, 10 uM GA and PAC (E), for the long-term observation, 2 uM PAC (F) and 10 uM GA
(G) were used. There is no influence of the treatments on the division rates in endodermis cells. Total
number of ablations; n = 30-40 per treatment.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.
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Figure S6. Periclinal divisions in epidermis require functional FEZ/SMB module, Related to
Figure 6.
(A and B) Additional time points for the ablations shown in Figure 5B and 5C. While expression of
FEZ::FEZ-GFP (A) and SMB::SMB-GFP (B) is absent from epidermis cells outside of the stem cell
niche, they are upregulated in the adjacent epidermis cells after ablation of LRC cells, which gradually
triggers periclinal divisions.

(C) Rate of periclinal division in cortex cells remains unchanged in mutants, while rates of periclinal
divisions in epidermis decreased as can be seen in cumulative division events over time. Observed roots;
n = 10 with 2 ablation sites per genotype; exponential curves: y=a-b*e”(c*x). Thin lines show raw data
and thick lines show fitted curves calculated by least square estimates.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.
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Figure S7. Role of known components for mechanosensing, induction of periclinal division, and

preprophase band during restorative divisions, Related to Figure 1.
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(A-E) Known mechanosensors FERONIA (FER), MECHANOSENSITIVE SMALL
CONDUCTANCE-LIKE channels (MSLs), MID1-COMPLEMENTING ACTIVITY channels
(MCAs) and THESEUSI1 (THE1) are not involved in restorative cell divisions. (A) Quantification of
periclinal divisions in fer-4 mutants 12 h after ablation. Data are represented as weighted mean (bar)
and individual experiments (dots, area indicates sample size). (B) Expression pattern of FER::FER-
GFP during restorative division is unchanged. Autofluorescence from PI staining marks dead cells in
the GFP channel. (C) Quantification of periclinal divisions 12 h after ablation in msi45 quintuple
mutants. Data are represented as weighted mean (bar) and individual experiments (dots, area indicates
sample size). (D) Expression of MSL9::MSL9-GFP (left) and MSL10::MSL10-GFP (right) in the msiA5
background did not change during restorative divisions. (E) Quantification of periclinal divisions 12 h
after ablation in mcal, mca2, mcalmca?2, thel-3 mutants. Data are represented as weighted mean (bar)
and individual experiments (dots, area indicates sample size).

(F) PPB does not define the cortical division site (CDS) in restorative divisions. trm6trm7trm8 triple
mutant, which lacks the PPB, does not display defects in deposition of periclinal cell walls in long term
imaging (24 h) during vertical stage experiments.

(G) Positive regulators of periclinal cell division LONESOME HIGHWAY (LHW), TARGET OF
MONOPTEROSS (TMOS), their downstream targets LONELY GUY4 (LOG4) and cytokinin-
responsive TCS are not involved in restorative divisions in multiple cell types as can be seen in:
pLHW::n3GFP, pTMOS5::n3GFP, pLOG4::n3GFP and pTCSn::GFP (from left to right) at indicated
time points.

Red asterisks: sites of ablation. Roots were stained with propidium iodide.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead contact Jifi Friml (jiri.friml@ist.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material

Arabidopsis thaliana (L.) Heynh (accession Columbia-0), Nicotiana benthamiana, Capsella
rubella and Oryza sativa were used in this work. The transgenic Arabidopsis thaliana lines and
mutant lines were described previously: crel-12 ahk2-2 ahk3-3 (Higuchi et al., 2004), p/t1-4
and plt2-2 (Aida et al., 2004), pltiplt2 (Blilou et al., 2005), 35S::PLT2-GR, PLTI::ECFP,
PLT2::YFP (Galinha et al., 2007), HTR2::CDTla-GFP (Yin et al., 2014), pCYCBI;1::GFP
line (Ubeda-Toméas et al., 2009), KN::GFP-KN (Reichardt et al., 2007), SCR::SCR-YFP and
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Co2::HYFP (Heidstra et al., 2004), SHR::SHR-GFP (Nakajima et al., 2001), J0571 (Haseloff,
1999), WER::GFP (Lee and Schiefelbein, 1999), shrl (Benfey et al., 1993b), scr-3 (Fukaki et
al., 1996), RBRI1::RBRI-GFP and E2FA::E2FA-GFP (Magyar et al., 2012), ERF115::GFP-
NLS, PATI::GFP-NLS (Heyman et al., 2016), ERFI115-SRDX (Heyman et al., 2013),
CYCD2;1::CYCD2;1:GFP (Sanz et al., 2011), WINDI::GFP, windlwind2wind3wind4,
358::WINDI1-SRDX, 35S::WINDI (Iwase et al., 2011) SMB::SMB-GFP, FEZ::FEZ-GFP, fez-
1 and smb-1 (Willemsen et al., 2008), CYCDG6,;1::GFP (Sozzani et al., 2010), E4722
(http://enhancertraps.bio.upenn.edu; Gifford et al., 2008), fer-4 (Duan et al., 2010),
msldmsiSmslomsi9msl10  (msld5), MSL9::GFP-GUS/msIA5, MSLI0::GFP-GUS/mslAS
(Haswell et al., 2008), mcal, mca2, mcalmca? (Yamanaka et al., 2010), thel-3 (Hématy et al.,
2007), FER::FER-GFP (Lietal., 2015), trm6trm7trm8 (Schaefer et al., 2017), TMO5::n3GFP,
LHW::n3GFP (De Rybel et al., 2013), LOG4::n3GFP (De Rybel et al., 2014) TCSn::GFP
(Ziircher et al., 2013).

Growth conditions

Seeds of A. thaliana were sown on Murashige and Skoog (1/2MS) medium (Duchefa) with 1%
sucrose and 0.8% - 1% agar, stratified for 2 d and grown for 4-7 d at 21°C in a 16 h light/8 h
dark cycle.

METHOD DETAILS

Pharmacological treatments
Seedlings were transferred on solid MS medium with the indicated chemicals: propidium

iodide (PL, 10 uM, Sigma-Aldrich or Thermofisher), hydroxyurea (HU, final concentration 5
mM, Sigma-Aldrich) for 24 hours, gibberellic acid (GA, final concentration 10 uM, Sigma-
Aldrich) for 1 hour before ablation, paclobutrazol (PAC, final concentration 2 or 10 uM as
indicated, Sigma-Aldrich) for 1 hour before ablation, epibrassinolide (EBL, Sigma Aldrich,
final concentration 1 uM) for 1 hour before ablation, dexamethasone (DEX, Sigma Aldrich,
final concentration 5 uM) for 1 hour before ablation, 1-Naphthylacetic acid f (NAA, Sigma
Aldrich, final concentration 1 uM) or 1 hour before ablation, 6-Benzylaminopurine (BAP,

Sigma Aldrich, final concentration 50 nM) for 1 hour before ablation.

Sample preparation
Seedlings were placed on chambered cover glass (VWR, Kammerdeckgldser, Lab-Tek™,

Nunc™ - eine kammer, catalog number: 734-2056) as described (Marhavy and Benkova,
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2015). Using the chamber, we cut out the block of solid MS media, added propidium iodide on

it, let it soak, transferred 10-15 seedlings on it and put them together to a chamber.

Confocal imaging and image processing

Confocal imaging was performed with Zeiss LSM700/800 inverted microscopes or Leica SP5
upright microscope. Pictures were taken by 20x or 40x objectives. Fluorescence signals for
GFP (excitation 488 nm, emission 507 nm), YFP (excitation 514 nm, emission 527 nm) and PI
(excitation 536 nm, emission 617 nm) were detected. Samples were observed after 16 hours of
ablation or at indicated time points. Images were analyzed using the Image] (NIH;

http://rsb.info.nih.gov/ij) and Zeiss Zen 2011 software. Where necessary, images were

processed using the ‘sharpen’ tool to produce clearer images of cellular organization.

Vertical stage microscopy and root tracking

Vertical stage microscopy for long-term tracking (usually 24 hours) of root meristems was
performed as described (von Wangenheim et al., 2017). Roots were imaged with a vertically
positioned LSM700 inverted confocal microscope and Zeiss Zen 2011 software with 20x
objective and detection of PI, GFP (see above) and transmitted light. For observation of the
whole root meristem, z-stacks of 42 pm were set accordingly. For the root-tracking, the
TipTracker MATLAB script was used with default settings except for interval duration 720
seconds (12 minutes) and number of time points 120. The resulting images were concatenated

and analysed using Image].

UV laser ablation setup
The UV laser ablation setup is based on the layout published in ref. (Colombelli et al., 2004)

and also described in ref. (Marhavy et al., 2016) that uses a passively Q-switched solid-state
355-nm UV-A laser (Powerchip, Teem Photonics) with a pulse energy of 15 pJ at a repetition
rate of 1 kHZ. With a pulse length of <350 psec, a peak power of 40 kW was obtained, of which
typically <5% was used to cut tissue. The power was modulated with an acousto-optic
modulator (AOM; Pegasus Optik, AA.MQI 10-43-UV). The laser beam diameter matched the
size of the back aperture of the objectives by means of a variable zoom beam expander (Sill
Optics), enabling diffraction-limited focusing while maintaining high transmission for
objectives with magnifications in the 20x to 100x range. Point scanning was realized with a
pair of high-speed galvanometric mirrors (Cambridge Technology, Lightning DS). To this end,

the scanning mirrors were imaged into the image plane of the rear port of a conventional
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inverted microscope (Zeiss, Axio Observer Z1) with a telecentric f-0 objective (Jenoptik). To
facilitate adjusting parfocality between the cutter and the spinning disk and compensate for the
offset between the positions of the back planes of different objectives, the scan mirrors and the
scan optics were mounted on a common translation stage. In the microscope reflector cube, a
dichroic mirror reflected the UV light onto the sample but transmitted the fluorescence
excitation and emission light. A UV-blocking filter in the emission path protected the camera
and enabled simultaneous imaging and ablation. The AOM, the galvanometric mirrors, and a
motorized stage (ASI, MS 2000) with a piezo-electric actuator on which the sample was
mounted were computer controlled by custom-made software (Labview, National
Instruments), enabling three-dimensional cuttings. The maximum field size for diffraction-
limited cutting with little geometric distortion, high homogeneity of the intensity, and good
field flatness was 300 x 300 m? for a 40% objective. The maximum depth was limited by the

free-working distance of the objective used and the travel of the piezo-actuator (100 pm).

QUANTIFICATION AND STATISTICAL SIGNIFICANCE

For counting the PD events, at each ablation site, the occurrence of a periclinal division
(marked by a division plane parallel or oblique to the growth axis) in any of the adjacent inner
cells was recorded as 1/1 or 0/1 in case of only anticlinal divisions occurring.

The binary outcome “Periclinal division happened yes/no” of the ablations experiments was by
definition distributed in a binomial manner, hence statistical tests for binary values are required.
Based on the observation that periclinal division rates varied highly between different
experiments but trends of lower division rates between mutants/treatments and controls were
always visible within single experiments, we decided to opt for a statistical test that accounts
for paired data sets (paired within individual experiments). Hence, the statistical significance
was evaluated with conditional logistic regression (CLR) after ref. (Kleinbaum, D. G., & Klein,
M., 2010). and ref. (Campbell, M. J., 2006). “Periclinal division happened” was used as binary
input for each observed ablation site in the clogit function from the R package “survival”. Data
was paired with experiment number as stratum. We assume that external factors such as
daytime, growth medium batch and propidium iodide batch are major causes for variations
between experiments.

In the case of vertical stage microscopy with root tracking, division events were counted by
marking the time point at which a new cell wall (stained by propidium iodide) appeared in the

first, inner adjacent cell of the ablation site. For ablations, only periclinal divisions (vertical
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cell walls) were counted whereas for the virtual ablations both anticlinal and periclinal

divisions were quantified. The virtual ablation sites were arbitrarily chosen similar as in the

laser ablation experiments and the division events were counted on videos after registration

(correct 3D drift tool in ImagelJ). The percentage of cumulative division events over time was

plotted using the R studio. Non-linear regression curves for each experiment were calculated

using the nlsLM function of the R package “minipack.lm” assuming an asymmetric sigmoidal

(y=a *e”(-b*e"(-c*x))) or exponential (y=a-b*e”(c*x)) behavior with arbitrarily chosen

starting parameters. The calculated final parameters with lowest residual sum-of-squares were

chosen to determine the first derivation of the fitted curves to estimate the probability of

division events over time.

Asterisks illustrate the p-value: p <0.001 is *** p <0.01 is ** and p <0.05 is *

Number of repetitions and replicates are mentioned for each experiment in the legends.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins

Propidium iodide Sigma-Aldrich Cat#P4864
Propidium iodide Thermo Scientific Cat#P3566
Hydroxyurea Sigma-Aldrich Cat#H8627
Gibberellic acid Sigma-Aldrich Cat#G7645
Paclobutrazol Sigma-Aldrich Cat#46046
Epibrassinolide Sigma-Aldrich Cat#E1641
Dexamethasone Sigma-Aldrich Cat#D1756
1-Naphthylacetic acid Sigma-Aldrich Cat#N0640
6-Benzylaminopurine Sigma-Aldrich Cat#B3408

Experimental Models: Organisms/Strains

Arabidopsis: WT Col-0

https://www.ncbi.nlm.nih.g
ov/Taxonomy/Browser/ww
wtax.cgi

INCBI:txid3702

Capsella rubella

https://www.ncbi.nlm.nih.g
ov/Taxonomy/Browser/ww
wtax.cgi

NCBI:txid81985

\Wicotiana benthamiana

https://www.ncbi.nlm.nih.g
ov/Taxonomy/Browser/ww
wtax.cgi

INCBI:txid4100

Oryza sativa

https://www.ncbi.nlm.nih.g
ov/Taxonomy/Browser/ww
wtax.cgi?mode=Info&id=4
530&l1vl=3&lin=f&keep=1

&srchmode=1&unlock

INCBI:txid4530

Arabidopsis: crel-12 ahk2-2 ahk3-3

Higuchi et al., 2004

Cross between crel-12
(SALK 048970), ahk2-2
and ahk3-3
(SALK 069269)

Arabidopsis: plti-4, plt2-2

)Aida et al., 2004

IN/A
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Arabidopsis: pltilplt2

Blilou et al., 2005

Cross between plt/-4 and
[t2-2

Arabidopsis: windIwind2wind3wind4 Iwase et al., 2011 Cross between windl
(SALK 027272), wind2
(SALK 139727), wind3
(SALK 091212)
and wind4
(SALK 099481)
Arabidopsis: shrl Benfey et al., 1993 INASC ID: N3997
Arabidopsis: scr-3 Fukaki et al., 1996 INASC ID: N3997
Arabidopsis: fez-1, smb-1 Willemsen et al., 2008 IN/A
Arabidopsis: fer-4 Duan et al., 2010 GK-106A06
Arabidopsis: msldmsiSmslomsi9msl10 (msiA5) Haswell et al., 2008 Cross Dbetween msi4-1
(SALK 142497),
msl5-2 (SALK 127784),
msls6-1 (SALK _06711),
msl9-1 (SALK 114626),
msl10-1 (SALK 076254)
Arabidopsis: mcal, mca?2 'Yamanaka et al., 2010 mcal (N/A)
mca2 (SALK 129208)
Arabidopsis: mcalmca?2 'Yamanaka et al., 2010 Cross between mcal and
mca?2
Arabidopsis: thel-3 Hématy et al., 2007 FLAG 201 _CO06
Arabidopsis: trm6trm7trm8 Schaefer et al., 2017 Cross between
trm6-1 (GK_048G03),
trm7-1 (SALK 074058),
trm8-1 (SALK 150274)
Arabidopsis: 35S::PLT2-GR, PLT1::ECFP, PLT2::YFP Galinha et al., 2007 Transgenic Col-0
Arabidopsis: HTR2::CDT1-GFP Yin et al., 2014 Transgenic Col-0
Arabidopsis: CycBI;1::GFP Ubeda-Tomas et al., 2009 [Transgenic Col-0
Arabidopsis: KN::GFP-KN Reichardt et al., 2007 Transgenic Ler/Nd
Arabidopsis: SCR::SCR-YFP, Co2::HYFP Heidstra et al., 2004 Transgenic N/A
Arabidopsis: SHR::SHR-GFP Nakajima et al., 2001 Transgenic Col-0
Arabidopsis: J0571 Haseloff, 1999 INASC ID: N9094
Arabidopsis: WER::GFP Lee and Schiefelbein, 1999 NASC ID: N66493
Arabidopsis: RBRI::RBRI1-GFP Magyar et al., 2012 Transgenic Col-0
Arabidopsis: ERF115::GFP-NLS, PATI::GFP-NLS Heyman et al., 2016 Transgenic Col-0
Arabidopsis: ERF115-SRDX Heyman et al., 2013 Transgenic Col-0
Arabidopsis: CYCD2;1::CYCD2;1:GFP Sanz et al., 2011 Transgenic Col-0
Arabidopsis: WINDI::GFP, 35S::WINDI-SRDX, 35S::WIND1 |Iwase et al., 2011 Transgenic Col-0
Arabidopsis: SMB::SMB-GFP, FEZ::FEZ-GFP Willemsen et al., 2008 Transgenic Col-0
Arabidopsis: CYCDG6; 1::GFP Sozzani et al., 2010 Transgenic Col-0
Arabidopsis: E4722 Gifford et al., 2008 INASC ID: N70265

Arabidopsis: MSL9::GFP-GUS/msiAS5,
GUS/mslAS

MSLI0::GFP-

Haswell et al., 2008

Transgenic Col-0

Arabidopsis: FER::FER-GFP/fer-4

Lietal., 2015

Transgenic Col-0

Arabidopsis: TMOS5::n3GFP, LHW::n3GFP

De Rybel et al., 2013

Transgenic Col-0

Arabidopsis: LOG4::n3GFP

De Rybel et al., 2014

Transgenic Col-0

Arabidopsis: TCSn::GFP

Zurcher et al., 2013

INASC ID: N69180

Software and Algorithms

imagel https://imagej.net/ RRID:SCR_003070
Veiss Zen 2011 IWWW.zeiss.com /A
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R project

http://www.r-project.org/

RRID:SCR_001905

project.org/web/packages/s
urvival/survival.pdf

R-studio http://www.rstudio.com/  [RRID:SCR_000432
ggplot2 http://ggplot2.org/ RRID:SCR_014601
survival https://cran.r- N/A

minipack.lm

https://www.rdocumentatio
n.org/packages/minpack.lm
versions/1.2-
1/topics/nlsLM

N/A

TipTracker

€.26792.022

https://doi.org/10.7554/eLif[N/A
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Abstract

Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a
considerable challenge and occurs through largely unknown mechanisms distinctive from
animals. Owing to their migration inability, plant cells rely on targeted cell division and
expansion to regenerate wounds. Strict coordination of these wound-induced responses is
essential to ensure efficient, spatially restricted wound healing. Single cell tracking by live
imaging allowed us to gain mechanistic insights into the wound perception and coordination
of wound-responses after laser-based wounding in Arabidopsis root. We revealed a crucial
contribution of the collapse of damaged cells in wound perception and detected an auxin
increase specific to cells immediately adjacent to the wound. This localized auxin increase
balances wound-induced cell expansion and restorative division rates in a dose-dependent
manner, leading to tumorous overproliferation when the canonical TIR1 auxin signalling is
disrupted. Auxin and wound-induced turgor pressure changes together also spatially define
the activation of key components of regeneration, as the transcription regulator ERF115. Our
observations, hence suggest that the wound signalling involves the sensing of collapse of
damaged cells and a local auxin signalling activation to coordinate the downstream

transcriptional responses in the immediate wound vicinity.

Significance Statement

Plants are sessile organisms that cannot evade wounding or pathogen attack and their cells are
encapsulated within cell walls making it impossible to use cell migration for wound healing
like animals. Hence, regeneration in plants largely relies on the coordination of targeted cell
expansion and oriented cell division. Here we show in the root that the major growth
hormone auxin is specifically activated in wound-adjacent cells, regulating cell expansion,
cell division rates and the regeneration-involved transcription factor ERF115. These wound
responses depend on cell collapse of the eliminated cells presumably perceived by the cell
damage-induced changes in cellular pressure. This largely broadens our understanding how
wound responses are coordinated on a cellular level to mediate wound healing and prevent

overproliferation.
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Introduction

Plant cells are encapsulated by their rigid cell walls; hence, tissue regeneration in plants relies
mainly on oriented cell divisions, directional cell elongation and acquisition of new cell fates
(1-4). Recently, we have shown that ablation of small groups of cells in the root meristem
can be used to study wounding responses and regeneration in vivo and on a single cell level
(5). These studies revealed that wounding triggers restorative cell divisions predominately in
cells at the inner adjacent side of the eliminated cells. The accelerated divisions deposit new
cell walls parallel to the wound area (usually in a periclinal orientation) and the newly
generated daughter cells subsequently acquire the cell fate of the removed cells as they fill
the wound. This process depends on the re-activation of stem cell components and division
plane switch in these cells. Other recent studies utilizing the single cell ablation method
investigated early wound responses in the root implicating calcium signalling, immune
peptide activation, jasmonate and ethylene signalling (6-8).

A key component of the wound response is the transcription factor ETHYLEN-
RESPONSIVE 115 (ERF115), which is usually not expressed in the root meristem but its
expression is activated after wounding in close vicinity to the damaged tissue. ERF115
heterodimeric binding to different transcription factors induces downstream transcriptional
reprograming leading to dedifferentiation and proliferation (9, 10). Activation of ERF115
expression has been linked in different contexts to multiple signals including
brassinosteroids, jasmonic acid, auxin and reactive oxygen species (6, 9, 11, 12). Although
many of these upstream regulations have been implied, what defines the strict ERF115 spatial
and temporal expression pattern remain elusive.

Auxin, a classical phytohormone, besides its key role in many aspects of plant growth
and development has been also proposed to be important in tissue and organ restoration
during regeneration as it accumulates after amputation of the root tip above the wound and
crucially contributes to the regeneration processes (13, 14). Also during undisturbed
development, auxin is involved in orienting cell division planes, in cell fate (re)specification
and the maintenance of the root stem cell niche (15—-17); all processes essential for tissue
regeneration. Despite these indications, a specific role for auxin in wound healing and local
tissue restoration has not been shown.

Here we show a local increase of auxin signalling specifically in wound-adjacent cells
later undergoing restorative divisions. We have identified a dual mode of action for auxin in

wound-responsive cell division and expansion rates. Auxin, via its canonical, nuclear
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signalling, regulates cell division and ERF115 expression, both promoting and inhibiting the
wound-responses in a dose-dependent manner. Finally, we show that ERF115 expression and
wound-responsive cell division are linked spatially and temporary through the perception of
damaged cell collapse, indicating to a crucial role of turgor pressure and cell wall integrity

perception in wound signalling.

Results:

Local auxin accumulation in cells undergoing restorative division

To observe potential changes in auxin signalling after single cell ablation, we used an auxin
signalling marker, R2D2, which consists of an auxin-degradable RPS5::DII-Venus
component and the stable RPS5::mDII-Tdtomato, allowing detection of increased auxin
signalling (18). We used vertical growth confocal imaging coupled with live tracking (19, 20)
to follow cells during regeneration over prolonged time (16 — 32 hours). We observed a
downregulation of DII-Venus indicative of auxin signalling increase in wound-adjacent cells
approx. 3 hours before the first division (Fig. 1; SI Appendix, Movie S1). These changes in
DII were absent from neighbouring cells not adjacent to the wound in the same roots.
Notably, after the first division, daughter cells that were still adjacent to the wound retained
the high auxin signalling activity, while the non-adjacent daughter cells quickly regained
normal auxin signalling levels (Fig. 1A, C). These dynamics were not due to any possible
bleaching effects of the ablation or propidium iodide staining (SI Appendix, Fig. STA-SIE,
Movie S2&S3), and at least ~ 50% of all wound-adjacent cortex and ~20% of all wound-
adjacent endodermis cells exhibited this downregulation of DII-Venus (SI Appendix, Figure
S1QG); altogether suggesting increased auxin signalling in cells activated by wounding.

To elucidate the source of this increased auxin signalling in the wound-adjacent cells,
we performed long-term imaging of roots treated with the auxin biosynthesis inhibitors
Kynurenine and Yucasin as well as the polar auxin transport inhibitor NPA (21-23).
Notwithstanding the overall auxin accumulation throughout the root tip after NPA treatment,
we still observed consistently DII signal downregulation specifically in the wound-adjacent
cells as compared to their direct neighbours (SI Appendix, Fig. S1F, Movie S4). Wounding-
induced, local increase in auxin signalling also occurred after inhibition of auxin biosynthesis
(SI Appendix, Fig. STH, Movie S5). Despite some role of these processes cannot be
completely ruled out, these pharmacological manipulations suggest that auxin biosynthesis or

polar transport are not major contributors to the local increase in auxin signalling during
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regeneration. Other, so far unidentified auxin homeostasis processes, such as release of free
auxin from conjugates may play a role.

In summary, our observation detected a local increase of auxin signalling in wound-
adjacent cells; specifically those, which contribute to the regeneration process by later
restorative divisions and expansion. The underlying mechanism for this elevated auxin
signalling remains elusive, but it appears to be independent of both on-site auxin biosynthesis

and polar auxin transport.

R2D2

G
1.00 1 T % *4
§ \\ ns. 'L .
@ \ * wx%
g \\ wEHR
g 0751 N
o
E \
2 e \/ 2 * | ns.
=
£ 0.254 = before
= adjacent
@ wound-adjacentcell (@ WouNd-adiacent . no-n.'?g i
: daughter  0.00 neighbour
not wound-adjacent cell nen-adjacent -5 0 5 10
@ ] © daughter hours relative to division

Figure 1. Auxin signalling in wound-adjacent cells

(A-B) Wound-adjacent cells exhibit increased auxin signalling compared to neighbouring cells. (A)
DII-Venus (green) expression (of R2D2 negative auxin marker line) in cells next/adjacent to ablated
cell (marked with asterisk) during 1, 3, 11 and 17 hours after cell ablation. Notice that lower DII-
Venus signal indicates higher auxin signalling. Cell walls and dead cells are stained with PI (pink).
(B) Schematic representation of wound-adjacent cells at different stages of regeneration. Ablated cell
is in pink with an asterisk. (C) Quantification of DII-Venus fluorescence signal over time from
wound-adjacent cells before (red), or after cell division (wound-adjacent in green; non-wound
adjacent in blue). Data are represented as DII-Venus fluorescence in observed cells relative to

neighbouring, not-adjacent cells. Time “0 h” represents time of restorative cell division. Thick lines
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represent the smoothed mean and lighter background represents smoothed standard error from n=18

cells each. Statistical significance was computed from a one-sample Wilcoxon test.

Dual auxin effect on regeneration efficiency

The local increase in auxin signalling after wounding implies a role for auxin in restorative
patterning. Auxin might accelerate the cell cycle progression, determine the cell division
plane or the stem cell fate acquisition, the cell expansion towards the wound, or a
combination of those. As reported previously (5), cortex and endodermis exhibit different
rates of restorative, periclinal cell divisions after 12 hours; endodermis cells divide rapidly
while cortex cells are usually slower. However, after sufficient time (over 32 hours), all

ablated cells are replaced by restorative divisions of wound-adjacent cells.

To test for an auxin effect in wound regeneration, we applied synthetic auxin (1-
Napthylacetic acid; NAA) 1 hour before the ablation, imaged the wounded roots 12 hours
after ablation and quantified how many ablation sites triggered periclinal cell divisions in the
inner adjacent cell types. These experiments revealed that NAA application increased the
division rates at concentrations up to 1 uM (Fig. 2A; SI Appendix, Fig. S2A), particularly in
cortex cells, which usually possess a relatively low regeneration rate in the first 12 hours. On
the other hand, the already fast regeneration rate of the endodermis cells (~75%; SI
Appendix, Fig. S2A) was not much further increased by auxin. To examine effects of
decreased auxin levels, we treated roots with 10 uM Kynurenine and observed that roots with
lower auxin levels exhibited decreased restorative division rates in all cell types, indicating
again a positive auxin effect on restorative cell divisions (SI Appendix, Fig. S2C).

Nonetheless, at higher concentrations, NAA caused a decrease in division rates with 1
uM NAA representing apparently a breaking point, where two populations of auxin-treated
roots were observed: (1) roots with fast and efficient regeneration similar to 250 — 500 nM
treated plants or (i1) roots with strongly inhibited regeneration. The inhibitory auxin effect
became more pronounced at 2 uM NAA and at 5 -10 uM NAA no regeneration occurred any
more (Fig. 2A; SI Appendix, Fig. S2A). This concentration-dependent auxin effect on
restorative division rates suggests a dual, both positive and negative mode of action for auxin

during tissue regeneration.
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Figure 2. Auxin effect on regeneration capacity

(A) Auxin increases division rates until 1 uM and decreases wound response at higher concentrations.
Quantification of restorative periclinal division rates (in %) of endodermal (blue) and cortex (red)
cells, after different auxin (NAA, from 0 to 10 uM) concentration application compared to mock. Big
dots represent weighted mean and lighter dots represent individual experiments (area indicates sample
size).

(B) Auxin treated tir triple mutant plants have higher division rates than Wt plants. Quantification of
relative restorative periclinal divisions rate (in %) of endodermal (blue) and cortex (red) cells,
comparing tir triple mutant with Wt plants on mock, tir triple mutant with Wt plants upon 1 uM NAA
treatment, or 1 uM NAA treated tir triple with Wt plants on mock. Data are represented as weighted
mean difference (bar) and difference in individual experiments (dots, area indicates sample size).
(C-D) Auxin expands zone of wound-responsive divisions. (C) Restorative cortex divisions on mock

(left) or upon 1 pM NAA treatment (right) after epidermal cell ablation (asterisk). (D) Restorative cell

67



divisions in outer epidermis cells on mock (left) or upon 1 uM NAA treatment (right) after cortex cell
ablation (asterisk). Red arrows indicate new, oblique-periclinal cell plates.

(E) Restorative cell divisions after cell ablations (marked with asterisk) in Wt roots supplemented
with 1 uM NAA. Notice that the increment of restorative cell divisions in these conditions induce root
swelling.

(F) Quantification of root swelling (in %) after restorative cortex or endodermal cells division in 1
UM NAA treated Wt (orange bars) or tir triple (purple bars) background plants. Data are represented
as ratios (bars) with error bars indicating upper and lower quartiles. Statistical significance was

computed from a Chi-square test.

TIR1 auxin signalling-mediated, wound-induced cell proliferation

To investigate the signalling mechanism underlying this auxin effect, we tested NAA
application on the tirl-1 afb2-1 afb3-3 (tir triple) mutant, defective in auxin receptors (24,
25). Untreated tir triple mutants showed regeneration capacity not much different from the
Wt (Fig. 2B; SI Appendix, Fig. S2B). However, treatment with 1 pM NAA, which in Wt
normally inhibited divisions, in the fir triple it increased the restorative division rate of
endodermis and cortex cells to almost maximum speed (Fig. 2B; SI Appendix, Fig. S2B); we
even observed repeated divisions within 12 hours (SI Appendix, Fig. S2H). This suggests that
the dual-phase effect of auxin can be differentiated into (i) an activating and (ii) an inhibitory
effect on restorative divisions with at least the latter one depending on the activity of the
TIR1 auxin receptors.

Besides its overall effect on the rate of restorative cell divisions, auxin also influenced
the direct response of the each involved cell towards wounding. Usually, wounds of 1 -2 cells
size are filled by 1 - 3 adjacent cells at the inner side of the wound, which initiate periclinal
divisions (5). Auxin treatment, however, increased the area of activated cells to nearly all
wound-adjacent cells. On some occasions, 4 or more cells responded to the wound by
inducing restorative divisions (Fig. 2C; SI Appendix, Fig. S2D-E). Auxin also triggered
ectopic periclinal cell divisions at the outer wound side, or in adjacent upper and lower cells.
Usually, these cells undergo normal anticlinal divisions and do not contribute greatly to the
wound healing (Marhava et al., 2019, Fig. 2D; SI Appendix, S2F-G). This auxin effect on
activating more adjacent cells and at all sides also occurred in the tir triple mutant and are
hence, likely a component of the activating auxin effect that is less dependent on TIR1/AFB-

mediated auxin perception.
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Figure 3. Cell expansion during wound-responsive divisions

(A-B) Wound-adjacent cells undergoing restorative divisions are actively expanding towards the
wound before the onset of division. (A) Cell expansion dynamics of an endodermal cell during
wounding (cortex cell ablated, asterisk). Wound-induced cell expansion in endodermis 1 hour after
cell ablation (left panel), after 7 hours (middle panel) or after cell division (12 hours, right panel). (B)
Representation of the cell width (in um) of one representative endodermis cell during the restorative
cell division stages (in hours after ablation). ti,g:0-1 hours; texp: 1-7 hours; tgiv: 7-8 hours; texp2:8-15
hours.

(C-D) Pre-mitotic cell expansion during auxin treatment is decreased in Wt roots and increased in tir
triple roots. (C) Representation of endodermal (blue) or cortex (red) cell expansion rate (um/h) during
restorative cell division in Wt (mock or 1 pM NAA) or in tir triple roots upon 1 uM NAA treatment.

Data are represented as pre-mitotic expansion rates and dots indicating values from individual cells.
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Statistical significance was computed from a Student’s t-test. (D) Overlay of wound-adjacent cell
width at two different time points (0.5 hours in magenta, and 6.7 hours in cyan) after ablation in Wt
roots on mock (left panel) or upon 1 uM NAA treatment (middle panel), or in 1 uM NAA treated tir

triple roots (right panel). Asterisk marks ablated cell.

These auxin effects on: (i) the increase in restorative division rates, (ii) the spreading
of wound responses to all adjacent cells and (iii) the ectopic division plane switch from
anticlinal to periclinal, manifested regularly in an overproliferation of the whole wounded
area. Roots treated with 1 pM NAA sometimes contained wound-responsive cells that did not
stop the periclinal cell divisions and continuously divided and expanded to overfill the
induced wounds with new daughter cells. This caused a strong swelling of the root meristem
(Figure 2G), which occurred in ~20-50% of Wt plants. However, in the tir triple mutant,
most ablation sites (60-70%) triggered this strong overproliferation phenotype, likely because
the TIR1 signalling-mediated, inhibitory auxin effect was reduced (Fig. 2E-F; SI Appendix,
Fig. S2I).

To further test the involvement of TIR1 in this regulation, we used the synthetic
CCV-TIR1 — CVX-IAA pair, where a modified auxin ligand, CVX-IAA, can only bind to a
mutated form of TIR1 receptor, CCV-TIR1, but not to Wt-TIR1 (26). CVX-IAA triggered
swelling only in the CCV-TIRI plant, but not in the Wt plants (SI Appendix, Fig. S27J).

This causally links the auxin effect on wound regeneration to the TIR1/AFB pathway
and suggests that both, inhibiting and activating auxin effects are mediated by this pathway.
In this view, the reduction of the inhibitory effect in the fir trip/e mutant can be explained by
the overall shift in sensitivity towards higher auxin concentration due to lack of some of the

TIR1/AFB auxin receptors.

Auxin-induced cell expansion in wound regeneration

The over-proliferated, swollen roots observed after auxin treatment are the consequence of an
increased number of restorative cell division and their consequent cell expansion. Given that
auxin has a well-established role in growth both in roots and shoots (27-30), we analysed cell
expansion changes during wound regeneration. We performed long-term imaging
experiments, in which we quantified the width of wound-adjacent cells as a proxy for cell
expansion. After ablation, the size of the inner adjacent cells remained constant for a short
“lag phase” (tiag) of 0 — 4 hours, followed by a phase of rapid expansion (texp), for usually 10

hours in which the cells continuously grew towards the wound and bulged towards the inner
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intact neighbour suggesting increased turgor pressure. The expansion paused shortly during
the time of division (t4iv) and continued directly afterwards (texp2) (Fig. 3A-B; SI Appendix,
Fig. S3A-C, F, Movie S6).

Auxin treatment reduced the expansion rate in Wt endodermis cells strongly from
0.80 £ 0.3 um/h to 0.42 £+ 0.3um/h and slightly also in cortex cells from 0.68 £ 0.1 um/h to
0.58 £ 0.2um/h (Fig. 3C-D; SI Appendix, Fig. S3D, S4A-C). The decreased expansion rates
lead to a delay in cell size increase, which correlated with the decreased speed of restorative
division induction (SI Appendix, Fig. S3E). In contrast, auxin treatment in the tir triple
mutant strongly increased expansion in both endodermis (1.0 + 0.2um/h) and cortex (1.1 +
0.3um/h) (Fig. 3C-D; SI Appendix, Fig. S3D, S4B-D) again correlating with higher rate of
regeneration in these conditions. These observations collectively suggest that cell expansion
is an important component of regeneration after wounding correlating this process.

Notably, wound-adjacent cells in untreated Wt plants exhibited stable cell expansion
rates, which decreased only during mitosis. In contrast, cell expansion in auxin treated zir
triple cells strongly fluctuated: phases of extremely high expansion (2 pm/h) were followed
by a complete collapse (< 0.5 um/h) far before onset of mitosis (SI Appendix, Fig. S4E).
Steady cell expansion usually requires coordination of cell wall properties and turgor
pressure, suggesting that this may be uncoupled in the case of tir triple on 1 uM NAA.

In summary, we observed that cell expansion correlates strongly with induction of
regenerative divisions. Auxin has a similar dual effect on both cell expansion and
regenerative division presumably balancing turgor pressure and cell wall properties to

regulate a steady growth towards the wound and permit accelerated periclinal divisions.

Auxin and wounding in activation of ERF115 expression

ERF115 is a wound-responsive transcription factor and so far, the prime candidate for
mediating regeneration in plant roots. It is typically not expressed in the undisturbed root
meristems but is highly upregulated after removal of the root tip and required for its
restoration (5, 6, 10). After single cell ablation, its expression is induced only in those 1 — 3
wound-adjacent endodermis or stele cells that later undergo wound-responsive divisions (Fig.
4A). In contrast, auxin (1 pM NAA) treatment, while having no effect in non-wounded roots,
strongly induced ERF'115::GFP expression around the wound (Fig. 4A-B) spreading to all
adjacent cells including cortex cells and those above and below the ablation. Notably,

ERF115 expression expanded also to cells non-adjacent to the wound, which normally do not
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undergo wound-responsive cell expansion and cell division. Overall, auxin induced approx.

8-fold increment of the ERF'115::GFP expression after wounding (Fig. 4C).
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Figure 4. ERF115 expression is connected to auxin and expansion

(A-C) Auxin application massively increases ERF115 expression around wounds. ERF115::GFP
(green) expression on wound-adjacent cells in mock (A) upon 1 pM NAA treatment (B). Asterisks
mark ablated cells. Red arrows indicate ERF'115::GFP expression expansion to wound-adjacent
cortex cells and white arrow indicates ERF'115::GFP expression expansion to non-wound adjacent
endodermis and stele cells. (C) Quantification of the relative ERF115::GFP fluorescence in wound-
adjacent cells (normalized to the ERF'115::GFP mean intensity on mock conditions), on mock
conditions (green dots) or upon pM NAA treatment. Data are represented as relative fluorescence
intensities of individual cells. Statistical significance was computed from a two-sample Wilcoxon test.
(D-F) ERF115::GFP expression correlates with pre-mitotic expansion. (D) Quantification of
ERF115::GFP relative gene expression (compared to to) of wound-adjacent cells before and after the
expansion onset - ti,g (= 0 hours) - on mock (green line) or upon 1 pM NAA treatment (orange line).
Lighter background represents standard error. (E) Expression of ERF115::GFP in wound-adjacent

cells after restorative cell division. Red arrows indicate to junctions where the cell is not fully
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connected to the wounded-cell (asterisk). (F) Quantification of the percentage of cells expressing
ERF115::GFP, grouped by grade of connection (connected or non-fully connected to the wound).
Data are represented as ratios (bars) with error bars indicating upper and lower quartiles. Statistical

significance was computed from a Chi-square test.

Next, we evaluated the ERF'115::GFP expression using different auxin
concentrations. We observed that the minimum concentration of NAA required to enhance
ERF115 was 100 nM NAA, which significantly increased the GFP intensity in the few cells
undergoing restorative cell divisions. In contrast, the expression domain expanded only at
higher concentrations like I pM NAA (SI Appendix, Fig. SSA). To test the involvement of
the canonical TIR1 pathway, we evaluated the ERF'115::GFP expression after wounding in
tir triple root tips or in CCV-TIRI background. Both genetic tools confirmed the involvement
of TIR1/AFB signalling (SI Appendix, Fig. SSB-C). Notably, ERF115::GFP expression was
absent also in the untreated tir triple mutant (SI Appendix, Fig. S5C) suggesting an
involvement of TIR1/AFB auxin signalling in activation of ERF115 expression by
endogenous auxin levels.

The ERF115 expression has also been proposed to be regulated by other signals such
as MeJA, H>O» or brassinosteroids (6, 11, 12); nonetheless, unlike in case of auxin, none of
these other signals showed a pronounced effect on wound-responsive ERF'115::GFP
expression (SI Appendix, Fig. S6A-E, K-L). Ethylene, a wound-responsive hormone recently
connected to innate immune system in the Arabidopsis root after wounding and single cell
ablation (7, 31), did not influence the ERF115 expression (SI Appendix, Fig. S6F-H; Heyman
et al., 2013) and only slightly decreased the amount of restorative divisions in the meristem
(ST Appendix, Fig. S6I). Application of other hormones related with cell wound response,
including SA and ABA also did not change the ERF'115.::GFP expression after wounding (SI
Appendix, Fig. S6J, M). These results suggest that auxin is rather a specific signal regulating
the ERF'115::GFP expression after wounding, albeit not the primary trigger for its activation.

Auxin-regulated cell expansion and activation of ERF115 expression

Since auxin regulates both cell expansion and ERF115 expression after wounding, we
performed long-term, live observations to investigate possible correlation between these
processes. Indeed, even in absence of auxin treatment, we found that cells with higher
expansion rates showed also increased ERF'115::GFP signals (SI Appendix, Fig. STE).
Additionally, we observed that ERF'115::GFP expression was absent from those cells that
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were only weakly connected to the wound and hence did not trigger cell expansion (Fig. 4E-
F).

Given this strong spatial connection between ERF115 expression and wound-
responsive expansion, we investigated their time dynamics to gain insight into their
interdependency. ERF115 expression was detectable only after the onset of expansion (Fig.
4D), ruling out ERF115 as a major activator of wound-responsive expansion. However, after
treatment with auxin, ERF115 expression coincided or preceded the onset of expansion (Fig.
4D). Considering the temporal dynamics of upstream transcriptional regulation and GFP
maturation, this also ruled out that ERF115 expression is a direct consequence of cell
expansion.

In conclusion, wound-responsive activation of ERF115 expression and cell expansion
strongly correlated spatially and temporary, but did not directly depend on each other,

suggesting so far unknown, wound-induced upstream signal activating both.

Tissue integrity and turgor in wound regeneration
Given the here identified importance of cell expansion for both the regenerative divisions and
ERF115 expression, we hypothesised that rapid, non-genetic factors such as collapse of
injured cells, changes in turgor or cell wall tensions may be important early cues for inducing
regeneration processes. Therefore, we investigated more closely the immediate responses of
the targeted cell and its surrounding neighbours during ablation-induced injury. Following
ablation, the cellular content of the killed cells was released to the environment resulting in a
pressure drop, which was visible as a strong bulging of the neighbouring cells towards the
wound (SI Appendix, Fig. STA, Movie S7). In those neighbouring cells, we observed a quick
displacement of nuclei (SI Appendix, Fig. S7C) and a slow reduction of the initial bulging (SI
Appendix, Fig. S7TB, Movie S7) suggesting a loss of cell volume in the neighbouring cells.
Over longer time (> 60s), pressure built up again in the neighbouring cells and they bulged
again towards the wound (SI Appendix, Fig. S7A). Notably, the release of cellular content
and the quick pressure changes as quantified by instant nucleus displacements were absent
from roots during a hyperosmotic, 0.5 M Mannitol treatment (SI Appendix, Fig S7D, G).
This suggests that the collapse of killed cells causes a strong turgor pressure shock in the
neighbouring cells influencing the cell expansion and ERF115 expression.

In support of this notion, treatment with Mannitol strongly decreased wound-induced
cell expansion and wound-triggered periclinal divisions (Fig. 5A-B). Notably, the normally

occurring, anticlinal (non-restorative, proliferative) divisions were still ongoing under these
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hyperosmotic conditions (SI Appendix, Fig S7F). Additionally, the bulging of cell walls
towards the inner neighbours, indicative of changes in turgor pressure, was significantly
reduced during mannitol treatment (SI Appendix, Fig. S7G-H). This implies that turgor

changes are specifically required for regenerative but not proliferative divisions.
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Figure 5. ERF115 expression correlates with expansion induction

(A-B) Hyperosmotic treatment inhibits restorative periclinal divisions. (A) Cortex cell ablation 12
hours after ablation during 0.3 M Mannitol treatment. (B) Quantification of restorative periclinal
division rates (in %) of endodermal (blue) and cortex (red) cells, after different Mannitol (from O to
0.3 M) treatments. Bars represent weighted means and dots represent individual experiments (area
indicates sample size). Statistical significance was computed from conditional logistic regression.
(C-D) Hyperosmotic treatment reduces ERF115 induction. (C) ERF115::GFP (green) expression on
root tips after cell ablation (wounding) in mock conditions (left) or in media supplemented with 0.5 M
Mannitol (right). (D) Quantification of wound-adjacent cells expressing ERF'115::GFP on mock
(green bars) or upon auxin treatment (NAA, orange bars) in media supplemented with different
Mannitol concentrations (from 0 to 0.3 M). Data are represented as ratios (bars) and error bars
indicate upper and lower quartiles. Statistical significance was computed from a Chi-Square test
(E-G) Harming only the cell envelope does not trigger ERF115 induction. (E) Schematic

representation of cell wounding after application of 100 or 50% laser power during laser cell ablation.
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(F) Harmed cell region after using 50% laser power presented as vertical section (XY, upper panel)
and horizontal projection (ZY, lower panel). Cell harming is stained by a strictly confined PI
accumulation (in white, red asterisk). (G) Quantification of the percentage of wound-adjacent cells
expressing ERF'115::GFP after using 50% laser power in root tips on mock or upon 1 pM NAA

treatment. Data are represented as ratios (bars) and error bars indicate upper and lower quartiles.

Next, we evaluated the effect of hyperosmotic treatment on ERF115::GFP expression
by application of different concentrations of Mannitol to locally injured roots. In contrast to
cell expansion, we observed that at concentrations of 0.23 M and 0.3 M Mannitol the ERF115
expression was only slightly reduced after wounding in both, mock and auxin (1pM NAA)
treatment. Notably, only hyperosmotic treatment with 0.5 M Mannitol inhibited
ERF115::GFP expression in the wounded root tips (Fig. 5C-D) suggesting that cell collapse
after wounding, which is absent at 0.5 M Mannitol treatment (see above) is crucial for
triggering ERF115 expression.

This prompted us to test the importance of the collapse of the ablated cells for cell
expansion, ERF115 expression and regeneration. To this end, we modified the UV ablation
technique by reducing the laser power to 50%. We regularly managed to harm the cell
envelope between two cells rather than the whole cells (Fig. SE-F). These harmed cells
usually did not induce ERF115 expression (Fig. 5G). However, in rare cases these cells
specifically triggered ERF115 induction, which was strongly enhanced by auxin treatment
(Fig. 5G; SI Appendix, S7I). They also induced periclinal cell divisions accompanied by
minor cell expansion on rare occasions (Fig. SJ), suggesting minor wound signalling without
cell collapse through cell wall integrity sensing or minor pressure changes after cell envelope
harming.

This suggests that cellular collapse after wounding is crucial for ERF115 expression
and wound-responsive cell expansion. Furthermore, turgor pressure stress after ablation is a
component of the wound response and might influence together with the local increase in

auxin signalling fast and efficient regeneration.

Discussion

In this work we addressed the question how plants can effectively regulate the coordination
of wound-responses on a cellular level to mediate tissue regeneration. We found that local
induction of auxin signalling in concert with wound-induced non-genetic mechanisms such as

local expansion of cells in wound vicinity play major roles in this process. In summary, our
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data shows how strictly localized auxin signalling coordinates the wound responses by
regulating (i) cell division rates, (ii) cell expansion rates and (iii) the transduction of the
wound signal through activation of the ERF115 transcription factor (SI Appendix, Fig. S8).

Our data also shows that turgor-driven swelling of the wound-adjacent cells is crucial
for the initiation of restorative divisions and subsequent regeneration. This shows interesting
similarities/parallels to the initiation of lateral root primordia, where pericycle cells swell
before induction of asymmetric divisions (32). This process requires the overlying
endodermis cells to shrink or collapse, which can be imitated by local ablation of endodermis
cells in the elongation zone (33). The capacity to divide after ablation in the pericycle is
independent of auxin signalling; however, local auxin signalling is essential in this context
for the induction of a formative and asymmetric first division leading to the proper formation
of lateral root primordia (33, 34). We have observed a similar phenomenon; local auxin
increase in cells adjacent to the wound regulates both their expansion and division during
regeneration. An accumulation of auxin could have many sources; e.g. release from
conjugates or a production from less known, alternative biosynthetic pathways, altered auxin
importer activities or a general release from the plasmodesmata-associated ER as
consequence of the disrupted connection to the ablated neighbour. Since such processes are
difficult to study, the origin remains elusive; however, daughters of wound-adjacent cells also
exhibit increased auxin signalling activity implying an active process working throughout the
duration of regeneration.

Auxin has a well-established role in expansion on a cellular level, through cell wall
remodelling (35), and on a tissue level, through hydraulic pressure regulation (36). The
biphasic mode of auxin in cell wall remodelling (27) shares similarities with our observed
dual auxin effect of promoting and inhibiting cell expansion and restorative divisions; hence,
suggesting a negative feedback loop, where prolonged auxin signalling would inhibit wound-
responsive division and expansion at the end of the regeneration process. The
overproliferation of cells and the tissue swelling after wounding is similar to defects in LRP
initiation during disturbed auxin signalling (37), suggesting that accurate auxin signalling is
crucial for the regulation of wound-responsive cell expansion and divisions.

The turgor pressure - or osmotic - stress in the adjacent cells following the wounding
might be a key component in the wound signalling mechanism as suggested from other
tissues (38, 39). Recently, a similar, locally restricted induction of wound responses in the
root - the activation of immune signalling - has been proposed to be caused by local pressure

changes (31). Notably, the wound-responsive expression of ERF115 is also inducible by
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osmotic stress (40) and a direct target of ERF115 includes one member of the expansin
family (9); cell wall remodelling proteins expressed during osmotic stress to maintain steady
growth even during reduced turgor pressure (41). This suggests that ERF115 is a key
component of a hydraulic/osmotic stress response after wounding and might be involved in
integrating auxin signalling and pressure stress to define the zone of wound response and to
both induce and spatially restrict regeneration processes.

Further investigation of the induction of ERF115 expression, as a marker for
restorative patterning and involvement of other components suggested in wounding responses
in the root could help revealing upstream regulators of such local yet distinctive regeneration

processes of inducing cell expansion and targeted, restorative cell divisions.
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METHODS

Plant material

Arabidopsis thaliana (L.) Heynh (accession Columbia-0) was used in this work (Wt). The
following transgenic Arabidopsis thaliana lines and mutant lines were described previously:
RPS5A: :mDII-ntdTomato - RPS5A::DII-n3Venus (R2D2, Liao et al., 2015), HTRS5::NLS-GFP
(42), tirl-1 afb2-1 afb3-1 (tir triple, Dharmasiri et al., 2005), CCV-TIRI tirl-1 afb2-1 (26),
ERF115::NLS-GFP-GUS (ERF115::GFP, (10), ERFI115::NLS-GFP-GUS coil-2 (6)
358::MAP4-GFP (43). ERF115::NLS-GFP-GUS was introduced into the tir/-1 afb2-1 afb3-1
and CCV-TIRI backgrounds by genetic crossing. tirl-1 afb2-1 afb3-1 seedlings were identified
by PCR-cased genotyping (Dharmasiri et al., 2005) in F2 and F3 generations ERF115::NLS-
GFP-GUS and CCV-TIRI carrying plants were identified in F2, F3 and F4 generations by

kanamycin and basta resistance, respectively.

Growth conditions

Seeds of 4. thaliana were sown on Murashige and Skoog (1/2MS) medium (Duchefa) with
1% sucrose and 1% agar, stratified for 1-2 d and grown for 3-5 d at 21°C in a 16 h light/8 h
dark cycle.

Pharmacological treatments
Seedlings were transferred on solid MS medium containing the indicated chemicals: propidium

iodide (PI, 10 uM, Sigma-Aldrich or Thermofisher), Naphthylacetic acid (NAA, Duchefa
Biochemie, final concentration as indicated - if nothing indicated: 1 uM), Naphthylphthalamic
acid (NPA, final concentration 10 pM), Yucasin (Wako Chemicals GmbH, final concentration
100uM), L-Kynurenine (Kyn, Sigma-Aldrich, final concentration 10 or 50 uM, as indicated),
convex IAA (CVX-IAA, TCI - Tokyo Chemical Industry Co., final concentration 250 nM),
Methyl Jasmonate (MeJA, Sigma-Aldrich, final concentration 50 pM), Hydrogen peroxide
(H202, Sigma-Aldrich, final concentration 200 uM), (£)-Abscisic acid (ABA, Sigma-Aldrich,
final concentration 25 uM), Epibrassinolide (EBL, Sigma-Aldrich, final concentration 1 uM),
Brassinazole (Bz, Sigma-Aldrich, final concentration 1uM), Salicylic acid (SA, Sigma-
Aldrich, final concentration 40 pM), Mannitol (Sigma-Aldrich, final concentration 0.1 - 0.5 M,

as indicated).

Sample preparation
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Seedlings were placed on chambered cover glass (VWR, Kammerdeckglaser, Lab-Tek™,
Nunc™ - eine kammer, catalog number: 734-2056) as described (Marhavy & Benkova, 2015).
With the chamber, a block of solid MS media was cut out and propidium iodide solution was
added. After the liquid soaked in, 10-15 seedlings were transferred to the agar and the block

was inserted into the chamber.

Confocal imaging and image processing

Confocal imaging was performed with Zeiss LSM700/800 inverted microscopes using 20x or
40x objectives or a Spinning disk imaging system. Detection of fluorescence signals was
carried out for GFP (excitation 488 nm, emission 507 nm), YFP (excitation 514 nm, emission
527 nm) and PI (excitation 536 nm, emission 617 nm). For fixed time point measurements,
samples were observed 12 hours after ablation or at indicated time points. Images were

analyzed using the ImageJ (NIH; http://rsb.info.nih.gov/ij) and Zeiss Zen 2.3 “Black” or “Blue”

software. Where necessary, images were processed by adjusting contrast and lightness.

Spinning disk imaging

For the observation of immediate effects during/after ablation, an Andor spinning disk
microscopy (CSU X-1, camera iXon 897 [back-thinned EMCCD], FRAPPA unit and
motorized piezo stage) 63x water immersion objective was used. Videos were acquired with 1
focal plane, every 0.2 seconds, for 1-10 min. All images in a single experiment were captured

with the same settings.

Vertical stage microscopy, root tracking and image processing

Vertical stage microscopy for long-term tracking of root meristems was performed as described
(5, 19). Roots were imaged with a vertically positioned LSM700 or LSM800 inverted confocal
microscope and Zeiss Zen 2.3 “Black™ or “Blue” software, respectively, with 20x objective
and detection of PI, GFP (see above) and transmitted light. Z-stacks of 30-42 um were set
accordingly to image each cell at least once. For the root-tracking, the TipTracker MATLAB
script (Zen Black) or the TipTracker internal macro (Zen Blue) were used; interval duration
was set between 600 s (10 min) and 720 s (12 min). The resulting images were concatenated
and analysed using Imagel. For registration, Imagel] macros “correct 3D drift”, “StackReg” or
“MultiStackReg” were used. Kymographs were generated using the “Reslice” tool and

restacked in case of non-registered videos.
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UV laser ablation setup
The UV laser ablation was performed as described in ref. (5, 33) which are based on the layout

published in ref. (45). For the cell envelope harming, we used 50% of the laser power needed
for the elimination of a full cell. The laser was applied in the upper corner of the outer

neighbouring cell of the cell of interest (Fig. 5C).

Quantification and statistical significance
Asterisks illustrate the p-value: p <0.001 is ***, p < 0.01 is ** and p <0.05 is *
Periclinal divisions
For counting the (absolute) amount of periclinal divisions after ablation, the amount of
ablations with and without periclinal divisions (division plane parallel or oblique to the growth
axis) in any of the adjacent cells (if nothing else indicated: only inner cells) were recorded and
the ratio of positive to all events was calculated. For the differences, the ratios for each sample
experiments were subtracted from the respective control experiment (untreated Wt). The mean
of these differences from multiple experiments was weighted based on the sample size.

As in ref. (5) the binary data was analysed using conditional logistic regression (46,
47), pairing the data within individual experiments. The statistical significance was computed

using the clogit function from the R package “survival”.

Fluorescence intensity in time series experiments
Signal intensity of each observed nucleus from multi-stack (3D) videos in the green (or for
mDII-ntdTomato: red) channel was quantified using ImageJ and recorded for each available
time frame. Similarly, data from reference nuclei (neighbouring, non-adjacent cells) was
recorded and the ratio of sample to reference value was calculated for each single time point.
For ERF115::GFP, the ratio of each time frame to the first time frame was calculated.
Statistical significance was calculated on the ratios using a one-sample Wilcoxon test
(based on the non-normal distribution of the data) using wilcox.test() in R with mu=1 (reference

cell).

Cell expansion

Cell expansion was approximated by the cell width, which was quantified as the distance
between the midpoint of the cell wall segment touching the ablation site and the midpoint of
the opposite cell wall at every time point using ImageJ. Expansion rates were calculated

between the onset of expansion (end of lag phase) and the initiation of cell division (nuclear
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envelope breakdown). Statistical significance between samples was calculated using a
Student’s t-test using t.test() in R. For calculating the point of expansion collapse (SI Appendix,
Fig. S4E), expansion rates at each time point were calculated from cell width expansion
throughout the previous 5 time frames (50 minutes). The point of expansion collapse was

determined as the first time point in which the expansion rate dropped below 1 um/h.

Cell wall bulging
The distance between (i) the midpoint of a straight line connecting the two cell corners facing
the inner adjacent cell and (ii) the midpoint of the cell wall facing the inner adjacent neighbour
was calculated as inner cell wall bulging. The obtained values from wound-adjacent cells were
subtracted from the closest, non-adjacent cells of the same cell type (usually the direct
neighbour).

The statistical significance was calculated using a two-sample Wilcoxon test between

the mock and the Mannitol treatment values with wilcox.test() from R.

Nucleus displacement

The distance of nucleus movement/displacement directly after ablation was measured until
maximum 5 seconds after ablation from videos obtained from a spinning disk imaging system
(1 frame per 0.2 seconds). The statistical significance was calculated using a two-sample

Wilcoxon test between the mock and the Mannitol treatment values with wilcox.test() from R.

Fluorescence intensity in fixed time point experiments
For quantitative measurements, the signal intensity of all wound adjacent (inner) cells within
one focal plane was measured using ImageJ in the green channel. Each obtained value from
one experiment/repetition was divided by the mean fluorescence intensity in the reference
sample (untreated Wt) to obtain (comparable) relative fluorescence intensities.

The statistical significance was calculated using a two-sample Wilcoxon test between
the reference and the sample values with wilcox.test() from R.
For qualitative data, the amount of cells with and without a visible GFP accumulation in the
nucleus was counted and the ratio of positive to all observed events was computed. For the
error bars, the borders of the upper and lower quartiles were calculated assuming a beta
distribution of the binary values with gbeta() from R.

The statistical significance was computed with a Qui-Square test for binary data using

the chisq.test() function in R.
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Data Availability

The R code to compute statistical significance for binary data using a conditional logistic
regression can be found in the SI Appendix, Code S1. Raw data in the form of microscope
images and compiled videos is available and can be accessed at

http://idr.openmicroscopy.org/tissue/.
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Figure S1. Downregulation of DII-Venus is specific and occurs only in wound-adjacent cells

(A-B) The ubiquitously expressed HTRS5::NLS-GFP is not downregulated in wound-adjacent cells.
(A) Quantification of the relative GFP fluorescence (of HTRS::NLS-GFP) over time of wound-
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adjacent cells before (red), or after cell division (wound-adjacent in green; non-wound adjacent in
blue). Data are represented as GFP fluorescence in observed cells relative to neighbouring, not-
adjacent cells. Time 0 hours represents time of wound-adjacent cell division. Thick lines represent the
smoothed mean and lighter background represents smoothed standard error from n=7 cells each. (B)
Cells expressing HTR5::NLS-GFP (green) in cells next/adjacent to ablated cell (marked with asterisk)
at three different times (1, 3 and 12 hours). Notice that intensity is not affected during the progress of
regeneration or after the first division.

(C-D) Downregulation in wound-adjacent cells is specific to DII-Venus compared to mDII-
ntdTomato. (C) Quantification of the relative DII/mDII (= D2/R2) ratio over time of wound-adjacent
cells before (red), or after cell division (wound-adjacent in green; non-wound adjacent in blue). Data
are represented as DII/mDII fluorescence intensity ratio in observed cells relative to neighbouring,
not-adjacent cells. Time 0 hours represents time of wound-adjacent cell division. Thick lines represent
the smoothed mean and lighter background represents smoothed standard error from n=5 cells each.
(D) Cells expressing R2D2 marker (green) without PI staining, in cells next/adjacent to ablated cell
(asterisk) at three different times after ablation (0, 2 and 5 hours). Notice the downregulation of DII-
Venus (green) in wound-adjacent cells before and after the first division.

(E) Non-wounding adjacent cells expressing DII-Venus before (left) and after (right) anticlinal
(normal) divisions.

(G) Quantification of percentage of wound-adjacent cortex or endodermal cells with downregulation
(black bars), n/a (not measurable; grey bars) or non-downregulation (dark grey bars) of DII-Venus
expression during long-term imaging. Data are represented as weighted mean from 3 experiments
(bars) and individual values (dots, area indicates sample size).

(F, H) Transport or local synthesis of auxin are not determinant for controlling the upregulation of
auxin signalling in the wounding-adjacent cell. DII-Venus (green) expression (of R2D2 negative
auxin marker line) in cells around/next/adjacent to ablated cell (marked with asterisk) between 0-19
hours after cell ablation in media supplemented with 10 pM NPA (F) or 100 uM + 50 uM Kynurenine
(H). Ablated cells are marked with asterisk.
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Figure S2. Auxin effect on restorative divisions and dependency on TIR1 activity

(A-B) Representation of the absolute division rates from Fig. 2A and 2B as number of periclinal
divisions 12 hours after ablation. (A) Restorative periclinal division rates (in %) of endodermal (blue)
and cortex (red) cells, after different auxin (NAA, from 0 to 10 phM) concentration application. Big
dots represent weighted mean and lighter dots represent individual experiments (area indicates sample
size). (B) Restorative periclinal divisions rate (in %) of cortex and endodermal cells of Wt and #ir
triple mutant plants on mock and upon 1 uM NAA treatments. Data are represented as weighted mean
(bar) and individual experiments (dots, area indicates sample size).

(C) Restorative periclinal divisions rate (in %) of cortex and endodermal cells during mock and 10
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uM Kynurenine treatments. Data are represented as weighted mean (bar) and individual experiments
(dots, area indicates sample size).

(D-G) Auxin expands zone of wound-responsive divisions in Wt and tir triple plants. (D)
Quantification of the number of inner adjacent cells undergoing periclinal divisions from Wt mock
treated (green), Wt 1uM NAA treated (orange) and tir triple 1M NAA treated (violet) plants. Data
are represented as frequency of the respective amount of divisions. (E) Restorative cortex divisions in
1 uM NAA treated tir triple plants after epidermal cell ablation (asterisk). (F) Restorative cell
divisions in outer epidermis cells in 1 uM NAA treated tir triple plants after epidermal cell ablation
(asterisk). (G) Quantification of the number of outer adjacent cells undergoing periclinal divisions
from Wt mock treated (green) Wt 1uM NAA treated (orange) and tir triple 1 pM NAA treated
(violet) plants. Data are represented as weighted mean (bar) and individual experiments (dots, area
indicates sample size).

(H) Double restorative divisions in 1 uM NAA treated tir triple plants 12 hours after ablation.

(I-J) Root-swelling inducing restorative cell divisions in 1 uM NAA treated tir triple plants (I) and in
250 nM CVX-IAA treated CCV-TIR] plants (J) 24 hours after ablation.

Red arrows indicate new, oblique-periclinal cell plates.
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(A-D) Pre-mitotic expansion in cortex cells similar to endodermal cells (Fig. 3). (A) Cell expansion
dynamics of a cortex cell during wounding (epidermis cell ablated, asterisk). Wound-induced cell
expansion in cortex 1 hour after cell ablation (left panel), after 7 hours (middle panel) or after cell
division (12 hours, right panel). (B) Representation of the cell width (in pm) of one representative
cortex cell during the restorative cell division stages (in hours after ablation). (C) Kymograph of the
expansion of the cortex cell from Fig. S3B. The cell width is represented as the distance between the
ablated epidermis cell (white area on the left) and the inner neighbour (grey line on the right). The
duration of the lag, expansion, division and second expansion phase are indicated on the right. (D)
Overlay of wound-adjacent cell width of cortex cells at two different time points (1 hour in magenta,
and 6 hours in cyan) after ablation in Wt roots on mock (left panel) or upon 1 pM NAA treatment
(middle panel), or in 1 uM NAA treated ¢ir triple roots (right panel). Asterisk marks ablated cell.

(E) Representation of the correlation between pre-mitotic expansion rates and the time required for
restorative divisions. The Spearman correlation (rs) and the statistical significance (p-value) are
indicated in the top right corner.

(F) Kymograph of the expansion of the endodermal cell from Fig. 3B. The cell width is represented as
the distance between the ablated cortex cell (white area on the left) and the inner neighbour (grey line
on the right). The duration of the lag, expansion, division and second expansion phase are indicated

on the right.
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Figure S4. Wound-responsive cell expansion during auxin treatment
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(A-D) Auxin promotes cell expansion in ¢ir triple plants and inhibits in Wt plants. (A) Kymograph of
the 1 uM NAA treated Wt endodermal cell in Fig. S4B. The cell width is represented as the distance
between the ablated cortex cell (white area on the left) and the inner neighbour (grey line on the
right). Note that the cell width increase and first division are significantly delayed. (B-C)
Representation of the cell width (in um) over time in Wt NAA (orange) and tir triple NAA (violet)
samples from representative endodermal (B) and cortex (C) cells. (D) Kymograph of the 1 uM NAA
treated tir triple cortex cell in Fig. S4C. Note that cell expansion and first division are significantly
accelerated resulting in a second division and a third expansion phase.

(E) Representation of the cell expansion collapse in 1 uM NAA treated tir triple plants. Expansion
rates are plotted as mean of N=5 cells (thick line) with standard error (light background). Note that

fast expansion followed by collapse can be observed also in violet lines of Fig. S4B and C.

Figure S5. ERF115 expression depends on auxin concentration and TIR1 activity.
(A) ERF115::GFP (green) expression on wound-adjacent cells on mock or upon 10 nM, 100 nM orl
uM NAA treatments 12 hours after ablation.
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(B) ERF115::GFP (green) expression on wound-adjacent cells in the CCV-TIR background with
mock (left) or 250 nM CVX-IAA treatment (middle) compared to CVX-IAA treated Wt plants (right)
12 hours after ablation.

(C) ERF115::GFP (green) expression on wound-adjacent cells in mock (left) and 1 pM NAA treated
(right) tir triple samples 24 hours after ablation.
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Figure S6. Effects of known regulators and wound hormones on ERF115 expression

(A, C) MeJA treatment slightly increases ERF115 expression after wounding. (A) ERF115::GFP
(green) expression on wound-adjacent cells in mock (MeOH) and 50 uM MeJA treated plants 12
hours after ablation. (C) Quantification of the relative ERF115::GFP fluorescence in wound-adjacent
cells (normalized to the ERF'115::GFP mean intensity on mock conditions), on mock conditions
(green dots) or upon 50 uM MeJA treatment (red dots). Data are represented as relative fluorescence

intensities of individual cells. Statistical significance was computed from a two-sample Wilcoxon test.
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(B, D) H,O; treatment increases ERF115 expression after wounding. (B) ERF115::GFP (green)
expression on wound-adjacent cells in mock (H>O) and 200 uM H,O; treated plants 12 hours after
ablation. (D) Quantification of the relative ERF'/15::GFP fluorescence in wound-adjacent cells
(normalized to the ERF'115::GFP mean intensity on mock conditions), on mock conditions (green
dots) or upon 200 uM H,O, treatment (blue dots). Data are represented as relative fluorescence
intensities of individual cells. Statistical significance was computed from a two-sample Wilcoxon test.
(E) Quantification of the relative ERF'115::GFP fluorescence in wound-adjacent cells (normalized to
the ERF'115::GFP mean intensity on mock conditions), in Wt on mock conditions (green dots) and
upon 1 uM NAA treatment (orange dots) or in coil-2 mutant plants (blue and red dots, respectively).
Data are represented as relative fluorescence intensities of individual cells on a logarithmic scale.
Statistical significance was computed from a two-sample Wilcoxon test.

(F-I) Ethylene does not enhance ERF115 expression or restorative division rates. ERF115::GFP
(green) expression in wound-adjacent cells upon mock (F) and 10uM ethylene precursor ACC (G).
(H) Quantification of the relative ERF'115::GFP fluorescence in wound-adjacent cells (normalized to
the ERF115::GFP mean intensity on mock conditions), on mock conditions (green dots) or upon 10
uM ACC treatment (yellow dots). Data are represented as relative fluorescence intensities of
individual cells. Statistical significance was computed from a two-sample Wilcoxon test. (C)
Restorative periclinal divisions rate (in %) of cortex and endodermal cells during mock and 10 uM
ACC treatments. Data are represented as weighted mean (bar) and individual experiments (dots, area
indicates sample size). Statistical significance was computed conditional logistic regression.

(J-M) ERF115::GFP (green) expression in wound-adjacent cells upon 25 uM ABA (J), 1 uM EBL
(K), 1 uM Bz (L)) or 40 uM SA treatment (M) 12 hours after ablation.
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Figure S7. Wound-triggered changes in tissue pressure

98



(A-B) Ablation of a single cell causes release of cellular content and a reduction of turgor pressure in
neighbouring cells. (A) Short term responses of ablated cells (asterisk) and their neighbours before
ablation (0.0 s) and directly afterwards (1.6 s, 6.2 s and 64.4 s, from left to right). Released cellular
content after ablation can be seen in white and red arrows mark neighbouring cell wall. Note that
neighboring cell walls bulge immediately after ablation, retract afterwards and become bulged again
after later time. (B) Overlay of two time points (1.6 s in magenta, and 6.2 s in cyan) after ablation
(asterisk) showing the retraction of bulging of the neighbouring cells.

(C) Overlay of two time points (0 s in magenta, and 16.4 s in cyan) showing the displacement of
nuclei in neighbouring cells (white arrows) after ablation of a single cell (asterisk).

(D) Short term responses of ablated cells (asterisk) and their neighbours before ablation (0.0 s) and
directly afterwards (2.2 s, and 35.8 s, from left to right) upon 0.5 M Mannitol treatment. Note that
release of cellular content and bulging are absent.

(E) Representation of the correlation between pre-mitotic expansion rates and ERF115::GFP
fluorescence at the time of division. The Spearman correlation (rs) and the statistical significance (p-
value) are indicated in the top left corner.

(F) Anticlinal divisions are marked by 35S::MAP4-GFP (green) stained spindles (white arrows)
during hyperosmotic treatment (0.3 M Mannitol) in PI stained (red), undisturbed (left) and wound-
adjacent cells (right, asterisk marks ablation).

(G) Representation of nucleus displacement immediately (max. 5 seconds) after ablation in cells upon
mock (green) or 0.5M Mannitol treatment (purple). Note that nucleus displacement, i.e. cellular burst
and collapse are merely absent from Mannitol treated samples. Statistical significance was computed
from a two-sample Wilcoxon test.

(H) Turgor pressure driven bulging in wound adjacent cells is reduced upon Mannitol treatment. (H)
Representation of the difference between bulging in wound adjacent to non-adjacent cells in
endodermis (blue) and cortex cells (red) upon different mannitol concentration treatments. The
distance of the bulging from inner neighbours (red) is subtracted from reference, non-adjacent cells
(grey), resulting in positive (more bulging than in neighbours) or negative values (less bulging than
neighbours). Statistical significance between 0.0M (mock) and the respective mannitol treatment was
calculated from a two-sample Wilcoxon test.

(I) Periclinal cell divisions after harming the cell envelope between epidermis and cortex (left) or
cortex and endodermis (right).

(J) ERF115::GFP expression after harming the cell envelope between cortex and endodermis in

untreated (left) but or in 1 pM NAA treated plants (right)

99



Nt/

Nt

LN Ll

i Nt
Ablation %‘ 7
vl

TUFgOF pressure

shock
ERF115 Recovery {
2

Auxin _ ;\_ t _{
signalling Cell expansion TR
Acceierated A

<4 —

division AR

Figure S8. Schematic summary of auxin effects on cell expansion, ERF115 expression and

division rates

Black arrows indicate turgor pressure driven forces on the cell wall, while a blue arrow indicates the
loss of cellular content. A lighter colour of the cell wall indicates a presumable modification of the

cell wall properties. The timeline of events runs from top to bottom.

100



Supplementary Codes

Code S1. Statistical evaluation of binary data with Conditional Logistic Regression

>library(survival)
>library(readxl)

>#provide data in df test as in the following format:

># header: sample|exp|PD|ablated|type

># rows: name of sample (e.g.:"mock")[No. of repetition|No. of positive events (periclinal
divisions)[No. of observed events (ablations)

_n

>typ="endodermis" #type in cell type you want to observe
>test="treatment" #your test sample
>ctrl="mock" #your control sample

>#building of a dataframe with each observed event (each ablation, here called "cell") as a
separate row (with incrementing numbers)

>df test test=df test[df test$sample == ctrl | df test$sample == test,]

>df test test=df test test[df test test$type ==typ,]

>datal=as.data.frame(1:sum(df test test$ablated))
>colnames(datal)="cell"

>#each event gets assigned its respective repetition ("exp")
>exp=NULL

>for (i in 1:max(df test$exp)) {

> exp=c(exp, rep(i,sum(df test test[df test test$exp==i,]$ablated)))
>}

>datal=cbind(datal,exp=exp)

>#teach event gets assigned a binary value whether it triggered a positive (1, here a "PD") or a
negative (0, here "no PD") event

>PD=NULL

>for (i in 1:max(df test$exp)) {

> PD=c(PD, rep(1,df test test[df test testSexp==i & df test test$sample==test ,|$PD),
rep(0,df test test[df test testSexp==i & df test test$sample==test ,]$ablated-

df test test[df test testSexp==i & df test test$sample==test
,J$PD),rep(1,df test test[df test testSexp==i & df test test§sample==ctrl ,]$PD),

rep(0,df test test[df test test$exp==i & df test test$sample==ctrl ,]$ablated-

df test test[df test testSexp==i & df test test$sample==ctrl ,]$PD))
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>}

>datal=cbind(datal,PD=PD)

>#each event gets assigned a binary value whether it is a control sample (0, here" "
or test sample (1, here a "mut" for mutant)

>mut=NULL

>for (i in 1:max(df test$exp)) {

> mut=c(mut, rep(1,df test test[df test testSexp==i & df test test$sample=—test
,|$ablated), rep(0,df test test[df test testSexp==i & df test test$sample==ctrl ,|$ablated))
>}

>datal=cbind(datal,mut=mut)

not mut")

>#calculation considering each experiment individually (conditional)
>model <- clogit(data=datal, PD ~ mut + strata(exp))
>summary(model)
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Abstract

Plants cannot evade uninhabitable growth conditions; hence rely on stress response signalling
and adaption mechanisms. Wounding is a special threat to plants with their rigid body
structures. Recently, our understanding of the underlying stress signalling mechanisms
increased by the discovery of ERF115, a transcription factor specifically expressed in wound-
responding cells. It functions in downstream stem cell replenishment to mediate tissue
regeneration. However, how ERF115 expression is linked to wound perception remains
elusive. In this study, we show how ROS signalling is crucial for the activation of ERF115.
We identify ARF transcription factors facilitating the auxin-mediated enhancement of ERF115
expression and suggest PEPR receptor signalling as a novel regulatory pathway of ERF115.
The here identified pathways are enhancers of the ERF115 expression, but likely do not
participate in the direct wound perception. While the nature of the wound perception remains
mysterious, our results suggest a complex signalling mechanism depending on histone-

mediated transcription regulation and pathogen responses.
Introduction

Plant cells are restricted in movement and mobility by their cell wall. Hence, to organize in a
tissue, plants developed specific mechanisms to position themselves via cell divisions (Dolan
et al., 1993; van den Berg et al., 1995). A special form of this is the restorative division, which
1s induced after tissue damage or wounding and requires cell cycle progression and stem cell-
like gene expression (Marhava et al., 2019; Hoermayer ef al., 2020). Cells undergoing these
restorative divisions specifically express ETHYLEN RESPONSE FACTOR 115 (ERF115) a
wound-responsive transcription factor (TF) (Heyman et al., 2013, 2016; Zhou et al., 2019;
Canher ef al., 2020; Hoermayer et al., 2020). Known downstream targets of ERF115 include
cell cycle progressing phytosulfokines and cell-expansion mediating expansins. It has a crucial
role in quiescent centre (stem cell) replenishment and hence is supposed to act as a mediating

factor between wound response and stem cell activity (Heyman et al., 2013).

ERF115 belongs to a class of six homologues AP2/ERF transcription factors, of which
ERF113 and ERF114, its closest homologues are also involved in cell cycle regulation and
regeneration. ERF109, ERF110 and ERF111 play roles in stress responses and are partly

responsible for stress recovery and development. Generally, those TFs seem to have
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overlapping function, while their tissue and developmental context expression pattern is
thought to be more specific to the individual genes (Heyman et al., 2018). Hence, studying
their function and expression regulation will provide novel insights into stress adaption and

regeneration mechanisms in plants.

Here we identified multiple transcriptional enhancer pathways for the expression of ERF115.
We show that ROS signalling, albeit being a secondary effector, is crucial for the activation of
ERF115. We identify auxin response factors (ARFs) as the main component of the auxin-
mediated enhancement of ERF115 expression and suggest a novel regulatory pathway of

ERF115 expression, mediated by PEPR receptor signalling.

Results
ERF115 expression as a marker for wound signalling activity

ERF115 expression is extremely specific to wound-adjacent cells undergoing restorative
divisions and the dominant negative 35S::ERF115-SRDX line shows significantly reduced
divisions upon wounding (Heyman et al., 2016; Marhava et al., 2019). Known downstream
targets include PSKS5, a mitogen triggering G1/S phase transitions, possibly mediating the
division induction after ablation (Heyman et al., 2013). To investigate this role of ERF115, we
analysed periclinal division rates in the erf715 single mutant. Notably, the mutant displayed no
significant phenotype of division reduction (Fig. 1A). We investigated the mitotic status of
cells in the same conditions and found that without ablation, 80% of cortex or endodermis cells
express HTR2::CDTla-GFP (Yin et al., 2014), indicating S-Phase (Fig. 1B). Furthermore,
multiple homologues of ERF115 (the closest being ERF114 and ERF113), have been proposed
to act in similar or redundant functions (Heyman et al., 2018). This implies that ERF115 is not
crucial to the induction of restorative divisions, albeit being highly specific to wound-adjacent
cells. Hence, studying its expression may reveal so-far unknown wound signalling components

but might be limited in understanding restorative divisions.

ERF115 expression is induced upon ROS signalling (Kong et al., 2018). We also have shown
that H>O» treatment enhances ERF115 activation after ablation (Hoermayer et al., 2020). To
further investigate the role of ROS signalling during activation of ERF115, we used a
fluorescent dye, BES-H>O»>-Ac (Maeda et al., 2004), to stain for intracellular H>O;
accumulations. We found strong upregulation of the dye around wounds starting from couple

of minutes (Fig. 1C). Hence, we investigated the effect of a HoO> quencher — DMTU (Parker
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et al., 1985) — on ERF115 induction. We found a significant reduction of ERF115 expression
in roots treated with 10 mM H>O» (Fig. 1D & E). This suggests that H>O, mediated ROS
signalling is crucial for the activation of ERF115; however, exogenous application cannot
trigger any wound-independent expression. This would suggest that ERF115 activation is
facilitated by active ROS signalling, while the actual upstream components cannot be activated

by H20» application alone.
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Fig. 1 - ERF115 expression as a model for studying the wound signal

(A) Quantification of relative restorative periclinal divisions rate (in %) of endodermal (blue) and cortex
(red) cells, comparing erf115 mutant with WT. Bars represent weighted means and dots represent
individual experiments (area indicates sample size). Statistical significance was computed from
conditional logistic regression. (B) Quantification relative amount of S-Phase cells (in %) in the
Arabidopsis root meristem from HTR2::CDTI1a-GFP seedlings. Data are represented as ratios (bars)
and error bars indicate upper and lower quartiles.

(C-E) ERF115 expression is mediated by ablation-induced ROS. (C) Induction of fluorescent dye BES-
H>0,-AC staining intracellular H»O, 18min after ablation of epidermis cells. Note the strongest
induction in direct wound-adjacent cells. (D) ERF115::GFP (green) expression in wound-adjacent cells
in mock (left) and upon 10 mM DMTU treatment (right). Asterisks mark ablated cells. (E)
Quantification of the relative ERF115::GFP fluorescence in wound-adjacent cells (normalized to the
ERF115::GFP mean intensity on mock conditions), on mock conditions (red dots) or upon 10 mM
DMTU treatment (blue dots). Data are represented as relative fluorescence intensities of individual
cells on a log2 scale. Statistical significance was computed from a two-sample Wilcoxon test.
(F) ERF115::GFP (green) expression in wound-adjacent cells upon 0.25 mM y-Butyrolactone (left)
and upon 1 pM TSA treatment (right). Asterisks mark ablated cells. (G) Quantification of the relative
ERF115::GFP fluorescence in wound-adjacent cells (normalized to the ERF115::GFP mean intensity
on mock conditions), on mock conditions (red dots), 0.25 mM y-Butyrolactone (green dots) or upon 1
uM TSA treatment (blue dots). Data are represented as relative fluorescence intensities of individual
cells on a log2 scale. Statistical significance was computed from a two-sample Wilcoxon test: BuL: p-

value: 0.07, TSA: 2.2e-16.

These results suggest a more complex activation mechanism for ERF115. Recently,
histone acetylation and methylation profiles after wounding in the root meristem have been
published (Rymen et al, 2019). Histones in the ERF115 promoter were shown to be
specifically demethylated (de-repressed) and acetylated (activated) during wounding. Hence,
we wanted to investigate the role of histone acetylation during ablation induced ERF115
expression. We used two chemical inhibitors: y-Butyrolactone (BuL), an inhibitor of histone
acetyl transferases (expression activators) (Biel et al., 2004) and Trichostatin A (TSA), an
inhibitor of histone deacetylases (expression inhibitors) (Yoshida et al., 1990). Notably, BuL
treatment during ablation showed a trend of increased expression of ERF115, while TSA
treatment showed a significant decrease of ERF115 expression (Fig. 1F & G). These expression
profiles are opposite to their primary function, which would imply that the chemicals are

affecting an upstream component of ERF115. This component might be a more complex
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mechanism of repression, which needs to be inhibited by histone deacetylation to allow

ERF115 expression.
Investigation of the ERF115 regulon

Our results suggest a complex regulation system for the activation of ERF115 expression,
based on histone acetylation and deacetylation, and might include a strong repressor gene. To
investigate possible upstream regulators of ERF115, we analysed the promoter sequence with
a bioinformatics tool called JASPAR (Fornes et al., 2020). This tool predicts TF binding sites
based on commonly known motifs in any DNA sequence. When we scanned the whole 2 kB
promoter, we found a repetition of TF-cassettes in the sequence: The most predominant
repetition was a certain hormone-regulated element (Fig. 2A) with jasmonate (JA)-related TFs
(MYC2, MYC3, MYC4) (Carroll et al., 2018), abscissic acid (ABA)-related TFs (ABF2,
ABF3, ABIS, AIB) (Zhang et al., 2019) and brassinosteroid (BL)-related TFs (BZR1, BZR2,
BIM1/2/3, BEE1/2) (Gruszka, 2018). MYC2 and BZR1/2 binding sites in the ERF115
promoter have been found experimentally (Lee ef al., 2015; Zhou et al., 2019). However, our
previous results suggest that neither JA nor BL signalling alone are sufficient for ERF115

activation in the root meristem.

We identified another repetitive motif in the promoter with auxin-responsive elements
(AuxREs) — binding sites for auxin-responsive ARF transcription factors (Fig. 2A). These four
binding sites (one of them in the 5’ untranslated region (UTR)) might facilitate the strong
upregulation of ERF115 upon auxin treatment. Finally, we found a motif of accumulated
binding sites for WRKY-TFs (called W-box) with ~25 possible TFs per W-box. This motif
occurred 3 times in the promoter 1500 bp and more upstream of the transcriptional start site
(TSS) (Fig. 2A). WRKY-TFs are components of stress, wound and pathogen signalling and
might be key components of the upstream wound signalling (Chen et al., 2019).

Investigation of the ERF115 co-expression transcriptome

ERF115 is component of both, wound signalling and salt stress response (Heyman et al., 2016;
Ikeuchi et al., 2016; Krishnamurthy et al., 2017). To understand this possible link and to
investigate which genes accompany the specific induction of ERF115, we analysed microarray
datasets with the Genevestigator bioinformatics tool (Hruz et al., 2008). We found five

“perturbation” conditions in which ERFI115 and its closest homologues are specifically

108



upregulated: two salt studies, one osmotic, one draught, and one Pep2 treatment study (Fig.

2B). We analysed which genes are commonly upregulated in all five conditions and found a

list of 39 genes (Fig. 2C). The list consists of 2/3 known genes, including ERF113, a
homologue of ERF115 (Heyman et al., 2018). GO analysis via pantherdb (Fig. 2D) (Mi et al.,

2021) shows this gene list is highly enriched for auxin biosynthesis genes, defence response

genes (especially oomycete defence) and ROS detoxification genes. This confirms our previous

observation that ROS signalling is a crucial component of ERF115 activation. Further, it would

suggest again the involvement of WRKY TFs in the wound signalling after laser ablation.

Finally, auxin biosynthesis appears to be tightly linked with ERF115 expression, in accordance

with our observation of increased auxin accumulation during restorative divisions and the

strong interconnection of auxin and ERF115 expression (Canher ef al., 2020; Hoermayer et al.,

2020).
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Fig. 2 — Investigation of the ERF115 regulon
(A) Transcription factor motifs within the ERF115 promoter. JASPAR analysed TF binding sites for

WRKY transcription factors (pink), ARF transcription factors (yellow) and other hormonal regulators
(brassinosteroid-related transcription factors, jasmonate-related transcription factors, ABA-related
transcription factors, blue).

(B-D) Co-expression data set for ERF115 and homologues. (B) Microarray experiments with strongest
upregulation of ERF115 and its closest homologues as identified from Genevestigator. (C) List of all
genes commonly upregulated within the ERF115 microarrays. (D) Gene Ontology results from the list

of commonly expressed genes as calculated by pantherdb.org

ERF115 expression is mediated by ARFs and PEPR receptors

Our results suggest that the auxin effect on ERF115 expression is mediated by ARF
transcription factors via the binding of AuxREs. To test this, we mutated the ERF115 promoter
at the position of the predicted AuxREs (with poly-adenine substitution) and analysed the
ERF115 expression. Notably we found that the strong induction of ERF115 upon auxin
treatment was abolished and that the ERF115 expression was generally reduced (Fig. 3A & B).
In accordance with our previous results, this links ERF115 expression directly to the canonical
TIR1/AFB mediated auxin perception and ARF-dependent transcription (Dharmasiri ef al.,
2005; Lavy and Estelle, 2016) and rules out the dependency on other, auxin-activated, upstream
signalling components. This finally shows that auxin signalling acts as a (major) enhancer of

ERF115 signalling but is not involved in the primary perception of the wound signal.

To identify the wound signal, we chose to work with the pepr! pepr2 (pepri;2) double
mutant, which is deficient in triggering defence responses after ablation-induced Ca®" waves
(Hander et al., 2019). We crossed ERF115::GFP with the pepri;2 double mutant and observed
expression strength after ablation. We found a significantly reduced ERF115 expression in the
mutant compared to WT (Fig. 3C & D). However, expression was not completely abolished.

Again, this implies that PEPR signalling is not the primary wound signal.

These results suggest that ERF115 expression relies on a plethora of enhancer
components, mainly auxin signalling, JA and BL signalling. Additionally, we have identified

a novel component: PEPR-mediated signalling (Fig. 3E).
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Fig. 3 — Upstream regulators of ERF115 expression

(A-B) ERF115 expression is mediated by auxin via ARF transcription factors. (A)
ERF115(mutAuxRE)::GFP (green) expression in wound-adjacent cells in mock (left) and upon 1 pM
NAA treatment (right). Asterisks mark ablated cells. (B) Quantification of the relative GFP
fluorescence in wound-adjacent cells (normalized to the ERF'115(mutAuxRE):: GFP mean intensity on
mock conditions), in ERF115(WT)::GFP on mock (red dots) and 1 uM NAA (green) conditions or in
ERF115(mutAuxRE)::GFP on mock (blue) and 1 uM NAA (violet) conditions. Data are represented
as relative fluorescence intensities of individual cells.

(C-D) ERF115 expression depends on PEPR signalling. (C) ERFI15::GFP (green) expression in
wound-adjacent cells in pepri;2 double mutant. Asterisks mark ablated cells. (D) Quantification of the
relative GFP fluorescence in wound-adjacent cells (normalized to the ERF'115:: GFP mean intensity in
WT), in WT (red dots) and pepri;2 double mutant (blue dots). Data are represented as relative
fluorescence intensities of individual cells on a log2 scale.

(E) Scheme of the activation of ERF115 expression. The wound signal, which triggers the expression
remains unknown, while enhancers like auxin, brassinosteroids (BL), jasmonate (JA) and PEPs increase

the expression after wounding.
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Discussion

In this study, we analysed the activation mechanism of ERF115 to increase our knowledge
about the primary wounding signal. We found a strong connection of ERF115 expression with
H>0; accumulations after wounding, auxin signalling and PEPR-mediated signalling. While
the underlying mechanism for activation of ERF115 remains elusive, our results provide some

initial insights.

Expression analysis after TSA treatment suggests the existence of a repressor complex,
which needs to be downregulated transcriptionally by histone deacetylation. Alternatively, the
strong downregulation upon TSA treatment could be a result of off-target effects, e.g. on DNA-
damage components, ROS signalling or interference with cell cycle transitions (Zhang et al.,
2007; Rosa et al., 2014; Wojcikowska et al., 2018). However, in plants TSA treatment showed
increased auxin and ROS accumulation - two activators of ERF115 - suggesting a rather direct

effect of TSA on ERF115 inhibition.

The co-expression data of oomycete defence genes with ERF115 and its homologues
suggest a so-far undiscovered pathway of wound signalling. Oomycete defence is possibly
activated by perception of endogenous plant-derived patterns (Raaymakers and Van Den
Ackerveken, 2016). These include extracellular ATP, and Peps perceived by PEPR receptors.
While there is little genetic material available to study ATP perception, we have identified
PEPRs as enhancer components for ERF115 expression. Another enriched process in ERF115
co-expression data was auxin biosynthesis. Notably, these were ASA1, ASB1 and CYP79B2;
genes involved in tryptophan biosynthesis and IAOx synthesis, respectively (Ruiz Rosquete,
Barbez and Kleine-Vehn, 2012; Crane ef al., 2019). Notably, CYP79B2 is also part of the
oomycete defence response and its product IAOx is a precursor for defence related compounds
(Schlaeppi et al., 2010). This suggests that after wounding, auxin production including
precursors and side metabolites, might be triggered by defence mechanisms similar to

pathogen-induced responses.

In conclusion, our results suggest a pathogen derived stress response as the main trigger for
ERF115 expression. Hence, further investigation of ERF115 expression with genetic and
pharmacological perturbation of pathogen responses will reveal new upstream mechanisms for

wound signalling. Finally, forward genetic screens with the ERF115 marker line and single cell
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sequencing or single cell ChIP experiments might give even broader insight into the wound-

responsive signalling and perception mechanisms.
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METHODS

Plant material

Arabidopsis thaliana (L.) Heynh (accession Columbia-0) was used in this work (Wt). The
following transgenic Arabidopsis thaliana lines and mutant lines were described previously:

ERF115::NLS-GFP-GUS (ERF115::GFP, (Heyman et al. 2016)), peprl pepr2 (Hander et al.
2019). ERF115::NLS-GFP-GUS was introduced into the pepri;2 background by genetic
crossing. peprl pepr2 seedlings were identified by PCR-cased genotyping in F2 and F3
generations ERF115::NLS-GFP-GUS carrying plants were identified in F2, F3 and F4

generations by kanamycin resistance.

Molecular cloning

For the ERF115(mutAuxRE)::GFP reporter construct, the 2,000 bp promoter upstream of
ERF115 (Heyman et al. 2013) was synthesized by invitrogen with mutated AuxREs: multiple
adenines were introduced instead of the WT base sequence at positions -1911bp (9xA), -679bp
(8xA), -174bp (5xA) and -51bp (10xA) upstream of the transcriptional start site. The so
generated promoter was inserted into the pMK7S*NFm14GW plasmid through Gateway
recombination and subsequently introduced into 4. thaliana plants through Agrobacterium
tumefaciens-mediated transformation. Positive transformants were selected by kanamycin

resistance and confirmed by PCR-based genotyping and sequencing.

Growth conditions

Seeds of 4. thaliana were sown on Murashige and Skoog (1/2MS) medium (Duchefa) with 1%
sucrose and 1% agar, stratified for 1-2 d and grown for 3-5 d at 21°C in a 16 h light/8 h dark

cycle.

Pharmacological treatments

Seedlings were transferred on solid MS medium containing the indicated chemicals: propidium
iodide (PI, 10 pM, Sigma-Aldrich or Thermofisher), Naphthylacetic acid (NAA, Duchefa

Biochemie, final concentration as indicated - if nothing indicated: 1 uM), Dimethyl thiourea
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(DMTU, Sigma-Aldrich, final concentration: 10 mM), y-Butyrolactone (BuL, Sigma Aldrich,
final concentration 0.25 mM), Trichostatin A, (TSA, Sigma Aldrich, final concentration: 1
uM), BES-H>0;-Ac (Fujifilm Wako, final concentration: 40uM).

Sample preparation

Seedlings were placed on chambered cover glass (VWR, Kammerdeckgldser, Lab-Tek™,
Nunc™ - eine kammer, catalog number: 734-2056) as described (Marhavy and Benkova 2015).
With the chamber, a block of solid MS media was cut out and propidium iodide solution was
added. After the liquid soaked in, 10-15 seedlings were transferred to the agar and the block

was inserted into the chamber.

Confocal imaging and image processing

Confocal imaging was performed with Zeiss LSM700/800 inverted microscopes using 20x or
40x objectives or a Spinning disk imaging system. Detection of fluorescence signals was
carried out for GFP (excitation 488 nm, emission 507 nm), YFP (excitation 514 nm, emission
527 nm) and PI (excitation 536 nm, emission 617 nm). For fixed time point measurements,
samples were observed 12 hours after ablation or at indicated time points. Images were

analyzed using the ImagelJ (NIH; http://rsb.info.nih.gov/ij) and Zeiss Zen 2.3 “Black” or “Blue”

software. Where necessary, images were processed by adjusting contrast and lightness.

Spinning disk imaging

For the observation of immediate effects during/after ablation, an Andor spinning disk
microscopy (CSU X-1, camera iXon 897 [back-thinned EMCCD], FRAPPA unit and
motorized piezo stage) 63x water immersion objective was used. Videos were acquired with 1
focal plane, every 1 second, for <30 min. All images in a single experiment were captured with

the same settings.
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UV laser ablation setup

The UV laser ablation was performed as described in ref. (Marhava et al. 2019; Marhavy et al.
2016) which are based on the layout published in ref. (Colombelli, Grill, and Stelzer 2004).

Prediction of transcription factor binding sites

TF binding sites in the ERF115 promoter were analysed using JASPAR (Fornes et al. 2020).
The 2kB promoter region of ERF115 was analysed using the “Scan” tool selecting all available
TF motifs from Arabidopsis thaliana. A threshold of 85% confidence was applied, the number
of all TF binding motifs was counted and motifs that occurred equally or less often than in the
promoter of a random reference gene (At4g02980) were removed. Visual examination of the
remaining motifs showed spots of increased binding for 3 different sets of TFs which were then

mapped on the whole promoter.
Analysis of microarrays

Expression of ERF115 and homologues was analysed with Genevestigator (Hruz et al. 2008)
using the “Hierarchical Clustering” tool. The 5 microarrays with to strongest upregulation in
most of the homologues have been chosen for further analysis. Using the “Gene search —
Perturbations” tool, genes commonly upregulated between those sets have been identified. The
set of resulting genes was analysed using pantherdb.org (Mi et al. 2021) gene ontology search

and the 10 most specific, independent GO terms have been chosen for representation.

Quantification and statistical significance

Asterisks illustrate the p-value: p <0.001 is *** p <0.01 is ** and p <0.05 is *

Periclinal divisions

For counting the (absolute) amount of periclinal divisions after ablation, the amount of cells
with and without periclinal divisions (division plane parallel or oblique to the growth axis)
adjacent to ablaitons were recorded and the ratio of positive to all events was calculated.

As in ref. (Marhava et al. 2019) the binary data was analysed using conditional logistic
regression (Campbell 2013; Kleinbaum and Klein 2010), pairing the data within individual
experiments. The statistical significance was computed using the clogit function from the R

package “survival”.
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Fluorescence intensity in fixed time point experiments

For quantitative measurements of ERF115::GFP expression, the signal intensity of all wound
adjacent (inner) cells within one focal plane was measured using ImageJ in the green channel.
Each obtained value from one experiment/repetition was divided by the mean fluorescence
intensity in the reference sample (untreated WT) to obtain relative fluorescence intensities.

The statistical significance was calculated using a two-sample Wilcoxon test between the

reference and the sample values with wilcox.test() from R.

For qualitative data of S-phase ratio, the amount of cells with and without a visible
HTR2::CDTIa-GFP accumulation in the nucleus was counted and the ratio of positive to all
observed events was computed. For the error bars, the borders of the upper and lower quartiles

were calculated assuming a beta distribution of the binary values with gbeta() from R.
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Abstract

Unlike animals, plants do not have mobile cells to heal wounds. Hence, they have evolved
regeneration mechanisms that rely mainly on directional cell expansion and oriented cell
divisions. However, what drives the exact positioning and execution of these programs is not
understood. To unravel these events, we coupled UV-laser ablation in the root meristem with
high-resolution 3D visualisation and long-term imaging at the vertical stage microscopy. By
this, we revealed that division plane selection is independent of wound-adjacency and occurs
through tissue stretching and expansion. Furthermore, we showed instant tissue deformation
after ablation, mainly in inner-lying cells. We also show that expansion is crucial for
microtubule array formation and reveal transient microtubule reorientation during restorative
divisions. Finally, using a micropipette aspiration assay, we demonstrate that fast stretching of
cells induces microtubule bundle formation quickly and reversibly. In conclusion, our results
suggest that altered stretching of cells because of wounding changes microtubule stability and
subsequently division planes. While the effect of mechanical tension on microtubules remains
elusive, our data reveals novel insights in microtubule stability and orientation in the root

meristem, a tissue with a yet undefined set of mechanical forces.

Introduction

Plant cells are fixed in their position within a tissue because they are surrounded by a cell wall
matrix that limits cell expansion and glues them towards their neighbours. Hence, wound
healing in plants tissues relies on oriented cell expansion and subsequent division to achieve
fast and efficient closure of the wound (Bloch, 1941; Hoermayer and Friml, 2019; Ikeuchi et
al., 2019). Recently, we introduced a system of cell ablation in the root meristem, which
mimics wound responses and allows the investigation of tissue restoration on a cellular level,
in situ and in real time (Marhava et al., 2019; Hoermayer et al., 2020). These studies revealed
a phenomenon called restorative divisions, where cells predominately at the inner adjacent side
of the wound change division planes to invade and replace the removed cells through
subsequent cell expansion and cell fate acquisition. Furthermore, cells directly adjacent to
ablated cells undergo certain wound responses: accumulation of auxin and expression of the

wound-responsive transcription factor ERF115 (Heyman et al., 2013, 2016; Zhou et al., 2019;
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Canher et al., 2020; Hoermayer et al., 2020). Both the regeneration capacity and the wound
responses are highly linked to turgor pressure regulation and controlling of cell expansion
followed by the wounding. However, how the cells around the wound trigger division plane

switches and how this is connected to cell expansion is not understood.

Division plane establishment in plants is a crucial process involved in all developmental stages
starting from embryogenesis to final differentiation of leaves and flowers (Abrash and
Bergmann, 2009; Rasmussen and Bellinger, 2018). Owing to their immobility, plant cells will
receive different positional information depending on where they are placed, linking division
plane selection with tissue development and cell type specification (Dolan et al., 1993; van den
Berg et al., 1995). During mitosis the new cell wall that forms between the two daughters is
deposited at a pre-defined position, called the cortical division zone (CDZ) (Damme,
Vanstraelen and Geelen, 2007). In G2 phase of the cell cycle, the CDZ is decorated by tight
bundles of microtubules called the pre-prophase band (PPB) (Rasmussen, Humphries and
Smith, 2011). While the importance of the PPB for robust positioning of the new cell wall is
evident, its role in defining the CDZ is disputed (Schaefer et al., 2017). Many factors for the
establishment of the CDZ have been presented, including hormones like auxin (Rybel et al.,
2014; Yoshida ef al., 2014; Shao and Dong, 2016), transcription factors (Koizumi, Hayashi
and Gallagher, 2012; De Rybel et al., 2013) or simple cell geometry (Besson and Dumais,
2011; Louveaux and Hamant, 2013). Recently, studies emerged linking division plane selection
with mechanical tissue tension and subsequent microtubule orientation (Hamant et al., 2008,
2019; Louveaux ef al., 2016). In the shoot apical meristem, the dome shape impedes certain
mechanical tensions on the cells in the upper layer. The microtubule pattern follows the
predicted stress pattern. Local changes in the dome-shape derived tension through ablations or
pharmacological treatments lead to a shift of microtubule patterns accordingly. However, how

cells can sense those mechanical signals remains mysterious.

Here we show that the division plane orientation follows strictly the direction of cell
expansion. Furthermore, we show that the whole tissue deforms upon wounding, which is
transmitted into division plane switches further away from the wound area. We also show an
asymmetry of inner vs. outer cells deformations after ablation. We also observe an effect of
auxin on inhibiting cell expansion in the root meristem and henceforth destabilizing
microtubules. During restorative divisions, we describe that transverse microtubule arrays
disappear and newly form in perpendicular direction at the same time. Finally, we show that

stretching - as occurring during the wounding or externally applied through a micropipette —
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induces microtubule bundle formation. This suggests that cell expansion and subsequent

stretching forces are required for establishing division plane orientations in the root meristem.
Results:
Division plane cannot be re-positioned after PPB establishment

The division plane switch during restorative divisions can be triggered in any cell type, with or
without the induction of stem-cell like properties (Marhava et al., 2019; Hoermayer et al.,
2020). This suggests that the underlying mechanism is very flexible and universal for any tissue
in the plant body. To investigate this mechanism and its causal relationships, we observed the
capacity to re-orient the division plane at different stages of the plant cell cycle. One possibility
is that the division plane switch can happen any time after the removal of a neighbouring cell,
relying on non-genomic factors only. Hence, we observed cells during the nuclear breakdown
— the first step of the M-phase — and ablated cell patches at their outer adjacent side. Using
35S8::MAP4-GFP, a marker line for microtubule bundles (Marc et al., 1998), we observed
slightly tilted spindle orientations compared to reference cells without ablations (Fig. 1A & B).
However, during the subsequent cytokinesis, the phragmoplast, which contains the new,
dividing cell wall, was dragged back to a complete anticlinal orientation. Occasionally, the cell
in M-phase left the cell cycle by spindle breakdown without cytokinesis, suggesting strong
stress during the ablation (Fig. SIA & B). This implies that the division plane is already pre-

set at this point and cannot be overwritten by the ablation of adjacent cells.

As our results suggest that the division plane is pre-set to be anticlinal at the point of
division, we observed the role of the PPB, which is a presumed determining factor for the CDZ
(Rasmussen, Humphries and Smith, 2011). Indeed, we found cells with narrowed microtubule
arrays, an indication for the PPB, not able to respond to an ablation with the typical periclinal
division (Fig. 1C & D). However, the daughter cells of these anticlinally divided cells still
responded with a change in division plane to periclinal. This further supports our observation
that division planes cannot be switched through ablation if the division plane is already pre-

defined.

Finally, we wanted to observe the earliest point at which the division plane can still
switch from anticlinal to periclinal. For this, we used a variety of cell cycle markers as we have

described previously (Marhava et al., 2019). Using the G2 phase marker CYCBI1;1 (Ubeda-
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Tomas et al., 2009), we observed cells in G2 that performed a division plane switch. Notably,
those cells remained in G2 much longer than usual: ~ 5 h instead of 1-2 h usually (Fig 1E & F)
(Mickelson-Young et al., 2016). This suggests that the division plane orientation is decided at
the early stages of the G2 phase and that the establishment of a new division plane requires
approx. 5 hours. Interestingly, this fits with our previous observation that there are no periclinal

divisions occurring in the first 5 hours after ablation (Marhava et al., 2019).
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Fig. 1 - Division plane cannot be re-positioned after PPB establishment

(A-B) Division plane is fixed during M-phase. (A) 35S::MAP4-GFP marked spindle at the moment of
ablation (left) and phragmoplast after the ablation (right). (B) Quantification of the angles of spindle
(left) and phragmoplast (right) after ablation (blue) and in cells non-adjacent to the ablation (red). Data
are represented as histogram (bars).

(C-D) Division plane is fixed during PPB formation. (C) Time series experiment of an ablation next to
cells with pre-defined PPB (as marked by 35S::MAP4-GFP stained microtubule bundles) at the moment
of ablation (left) and after the first division of the adjacent cells (right). Arrows indicate cells with a
pre-defined PPB that divided anticlinally instead of periclinally. (D) Quantification of the rate of
periclinal divisions over time in cells with pre-defined PPBs (blue) and in control cells without PPB
(red). Data are represented as lines with data points every 0.2 hours.

(E-F) Division plane can re-orient at onset of G2. (E) Time series experiment of an ablation next to
cells in G2 phase (as marked by CYCBI;1::GFP expression - green) at the moment of ablation (left)
and after the first division of the adjacent cells (right). Arrows indicate cells with CYCB1;1 expression
that divided periclinally. Cells were stained with propidium iodide (pink). (F) Quantification of the
CYCBI;1 expression relative to the time point of division in wound-adjacent cells (blue) and in non-
adjacent cells (orange). Notice the expression at the beginning of the time series in the blue cells.

Asterisks mark ablated cells.
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In conclusion, we have observed that the division plane switch cannot occur when the
PPB and the underlying cortical division zone are already defined. This suggests restorative
divisions cannot overwrite the normal division plane selection. Rather, it suggests that the
ablation uses an altered version of the mechanism for normal division plane selection in the

root.
Restorative division orientation is defined by directional expansion

Our results suggest restorative divisions utilize the same mechanism for division plane
orientation as normal proliferative divisions. This is further supported by the fact that no
genetic or pharmacological perturbation has resulted in the complete loss of division plane
reorientation in our previous studies - only division speed has been affected (Marhava et al.,
2019; Hoermayer et al., 2020). With only one exception: The inhibition of cell expansion
(through hyperosmotic treatment) completely abolished periclinal divisions after ablation.
Furthermore, the amount of cell expansion after ablation correlates with the speed and amount
of restorative divisions. This puts cell expansion at the most promising position for

understanding the upstream mechanism of division plane selection.

To study the influence of cell expansion on division plane determination, we investigated
ablation sites after 24 hours in 3D. For this, we imaged z-stacks covering the whole root
meristem stained with PI or FM4-64. We found a variety of different division planes around
the wound, including periclinal divisions and radial divisions (Fig. 2A & C). Additionally, we
found periclinal cell divisions in cells non-adjacent to the ablation (Fig. 2B). We observed
previously a fraction of cells dividing periclinally without a direct contact to the removed cells.
Notably, these cells lacked the expression of the wound-inducible ERF115, which stains only
adjacent cells during normal regeneration (Hoermayer et al., 2020). This suggests that these
non-adjacent cells are not affected by the wound-responses and the induction of restorative

divisions in these cells utilizes a different mechanism.

To test the influence of cell expansion on these cells, we performed long-term life
imaging which allowed us to track the width of cells in close vicinity to the wound. In one of
those ablation sites (Fig. 2D & E), we observed that the directly adjacent cell expanded the
most, reaching ~1.5 times its thickness at the time of division (~5 hours). The non-adjacent cell

expanded slower, reaching ~1.4 times the original thickness at the point of division (~8 hours),
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and the neighbour expanded barely, with ~1.1 times expansion before the anticlinal division
~10 hours after ablation. We have observed this increased expansion in non-adjacent cells

multiple times, however, always expanding slower than their directly adjacent cells (Fig. 2F).
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Fig. 2 - Division orientation is defined by directional expansion
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(A-C) Division plane orientations 24 hours after cortex and epidermis ablation. (A) Front view with
periclinal divisions of the inner-laying endodermis (red arrows). (B) Top view more distant from the
ablation with periclinal divisions of non-adjacent endodermis cells (white arrows). (C) Top view
directly adjacent to the ablation with periclinal divisions in the endodermis and radial division in cortex
and epidermis (red arrows). Roots were stained with FM4-64. Cell types were re-colorized as epidermis
(blue), cortex (red), endodermis (green) and pericycle (purple).

(D-F) Non-adjacent periclinal division are preceded by cell width expansion. (D) Time series of cells
close to ablation. Maximum cell width is drawn as line: red for adjacent cell, green for non-adjacent
cell and blue for distant neighbour. Divisions are marked by arrows. (E) Quantification of cell width
from (D) and time point of division. Division orientation is drawn in schematic next to time of division
(black line). (F) Quantification of cell width expansion in multiple roots in non-adjacent cells (green)
and adjacent cells (red) before periclinal divisions. Expansion was normalized to closest neighbour.
Notice the significant increase of width expansion compared to neighbouring cells in both groups.

Asterisks mark ablated cells.

Here, our results show how non-adjacent cells expand towards the wound resulting in a re-
orientation of the division plane. As those non-adjacent cells are not next to a wound-induced
hole, we assumed that it is the whole tissue, which expands and deforms. This suggests that the
cell expansion can be a passive process and this indirect stretching transforms into a cue for
the division plane positioning mechanism. Again, this suggests that the mechanism utilizes the
pre-existing division plane selection that usually occurs during the growth of the root meristem

with its proliferative divisions.
Tissue regeneration is pre-defined by instant, wound-induced deformations

Our results suggest that the amount and direction of cell expansion is causal to initiating
periclinal, restorative cell divisions. Previously, we have found that the vast majority of
restorative divisions occur at the inner adjacent side of an ablated cell (Marhava et al., 2019).
Similarly, we have not observed any directional cell expansion from outer lying cells after the
ablation of inner cortex or endodermis cells. However, why these outer lying cells cannot
expand remains elusive, especially considering that the same cells (e.g. cortex cells) can expand

after the ablation of their outer neighbour (epidermis) but not if their inner neighbour
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(endodermis). This might suggest that cells cannot sense the death of their inner neighbour and

activate expansion towards the wound.
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Fig. 3 — Tissue regeneration is pre-defined by instant, wound-induced deformations

(A-D) Expansion rate in cortex 24 hours after simultaneous epidermis and endodermis ablation. (A)
Front view with expansion of cortex cells outwards - towards ablated epidermis (blue arrow) - and
inwards - towards ablated endodermis cells (green arrow). (B) Top view more distant from the ablation
without any ablation-induced expansions. (C) Top view directly adjacent to the ablation with expansion
of cortex cells outwards - towards ablated epidermis (blue arrow) - and inwards - towards ablated
endodermis cells (green arrow). Roots were stained with FM4-64. Cell types were re-colorized as
epidermis (blue), cortex (red), endodermis (green) and pericycle (purple). (D) Quantification of
expansion of cortex cells 24 hours after ablation towards outer side (blue) and inner side (green) in
combined ablations and separate ablations of epidermis and endodermis (from left to right).

(E-G) Asymmetry of inner vs. outer expansion is established at moment of ablation. (E) W131Y plasma
membrane marker 20 min after ablation. Image is generated from summed slices of 10 images from a
spinning disk microscope (10 s total). Arrows indicate initial deformations from inner (green) and outer

(blue) cells. (F) Quantification of initial displacement/deformation in pm within first 20min after
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ablation. (G) Time series overlay of cortex cell death directly before death (purple) and 5 min after
death (blue). Cells were stained with FM4-64. Arrows indicate displacement of membranes. Asterisks

mark ablated cells.

To investigate this phenomenon, we studied cortex cells where we ablated cells both on
the inside (endodermis) and the outside (epidermis cells). After 24 h we found that those cells
only expanded towards the outer, epidermal cells, but not the inner endodermis cells (Fig 3 A-
C). The expansion was similar to cells adjacent to only outer ablated epidermis or inner ablated
endodermis (Fig. 3D). This suggests that the expansion towards the inner cells is inhibited

somehow, likely because of geometrical hindrances.

Previously, we found a nearly instantaneous deformation of adjacent cell walls after the
death of the most outer lying cells (Hoermayer et al., 2020). To investigate the asymmetry of
expansion from inner vs. outer cells, we ablated cortex cells and imaged the deformations in
the adjacent cells after 5-20min. Notably, we found that similar to the subsequent expansion,
the deformations also occurred asymmetrically, with stronger deformation in inner endodermis
cells and nearly no deformation in outer epidermal cells (Fig. 3E-G). These deformations occur
within a few minutes only, ruling out the possibility of developmentally driven transcriptional
responses as cause for this asymmetry. Notably, when we ablated bigger areas in the root, we
observed a strong fluid-like dragging-in of the inner tissues into the wound, while the outer
tissue stayed mostly in place (SVideo 1). This suggests that the inner tissues are softer or under
higher pressure, which leads to the asymmetric deformation directly after ablation.
Furthermore, this implies that this tissue-driven asymmetry is the cause of expansion and

divisions only at the inner side of ablated cells.
Auxin inhibition of cell expansion sensitizes cells for ablation-induced stretches

Given that the asymmetry of inner vs. outer divisions is caused by the tissue geometry and its
initial deformation during the wounding, we wanted to observe perturbations, which break this
asymmetry. Previously, we have shown that exogenous auxin increases the amount of outer
cells dividing periclinally, partly breaking the asymmetry (Hoermayer et al., 2020). Further
investigation of 1 uM NAA treated roots revealed that even cells in further inner tissues, not
connected to the wound, can induce periclinal cell divisions 24 hours after ablation (Fig. 4A &

B). To investigate whether auxin affects the initial tissue deformation, we pre-treated roots 1 h
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with auxin, performed ablations and imaged those within 5-20 min. The observed initial
displacement of inner and outer cells completely mimicked the ablation in untreated roots (Fig.
4C, Fig. S2A). This suggests that auxin is not affecting the tissue integrity underlying the

asymmetry of division occurrences.
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Fig. 4 - Auxin reduces expansion and transversal MT arrays in the meristem

(A-C) Divisions and expansion upon auxin treatment 24 hours after ablation. Front view (A) and top
view (B) of auxin treated root 24 hours after ablation. Roots were stained with FM4-64. Cell types were
re-colorized as epidermis (blue), cortex (red), endodermis (green) and pericycle (purple). (C)
Quantification of initial displacement/deformation in um within first 20min after ablation. Note the

similar asymmetry as in untreated roots (see Fig. 3F). Asterisks mark ablated cells.
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(D-E) Auxin inhibition on cell expansion. (D) Kymographs of propidium iodide stained cortex cell
walls upon mock (left), 1uM NAA treatment (middle) and overlay (right). Time is displayed on the x-
axis. (E) Quantification of expansion rates from kymographs between mock (red) and 1 uM NAA
treatment (blue).

(F-G) Auxin inhibition on MT arrays. (F) 35::MAP4-GFP marked microtubule arrays after 12 hours of
mock (left) and 1 uM NAA (middle) treatment, and after 12 hours NAA followed by 12 hours mock
treatment (“washout”, right). Insets show microtubule polarity changes in endodermis cells. (G)
Quantification of 35S::MAP4-GFP signal over time after mock (green) and 1 uM NAA treatment (red).
Dotted lines are after washout: pre-treated seedlings were transferred to a new agar block without any

treatment. Lines represent mean and lighter background represents standard error.

Hence, we assume that auxin affects the later response of cells to increase periclinal
cell divisions in outer cells. One of the most prominent effects of auxin in root tissues is the
inhibition of cell expansion (Barbez ef al., 2017; Fendrych et al., 2018). This phenomenon was
heavily studied in the elongation and transition zone and it is suggested to partly require non-
transcriptional responses. However, this effect was not investigated in the root meristem.
Hence, we observed individual cell elongation rates in the meristem and found that also here,

auxin massively inhibits cell expansion (Fig 4D & E).

The inhibition of cell expansion by auxin is accompanied by a re-orientation of cortical
microtubule arrays - from transversal to longitudinal — inhibiting their role in cell wall
extension (Montesinos et al., 2020). To further explore the effect of auxin on cell expansion in
the root meristem, we investigated microtubule behaviour after auxin treatment. During a long-
term live imaging, we observed a strong downregulation of microtubule arrays by auxin (Fig.
4F & G). The typical transversal arrays either vanished or became replaced by less organized,
partly longitudinal arrays. Furthermore, after a washout of auxin, we found that both general
microtubule abundance and transversal arrays re-appeared during the recovery of root growth
and cell elongation. Notably, in a similar experiment, roots treated with IXB 10 uM (also
reducing cell elongation through cellulose synthesis inhibition (Scheible et al., 2001)) showed
a strong reduction of microtubule arrays (Fig S2B). Upon IXB treatment however, most of the
remaining microtubule arrays became radially longitudinal, leading to radial divisions, which

are usually absent from the meristem (Fig S2C). This suggests that inhibited cell
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elongation/expansion after longer time leads to microtubule de-stabilization and reorientation

towards longitudinal and/or disorganized arrays.

Here our results suggest that auxin effect on restorative divisions is independent of tissue
deformation after wounding. Rather, auxin inhibits elongation and expansion of cells in the
meristematic zone and henceforth reduces the microtubule polymerization and the amount of

transversal arrays.
Wound-induced transient re-orientation of microtubule arrays

The strongly affected microtubule dynamics upon auxin and IXB induced elongation inhibition
motivated us to investigate the microtubule dynamics within the meristem during the division
plane switch. Notably, microtubule strands are strongly disorganized in the meristematic zone,
likely due to the small cells and a plethora of mechanical and developmental cues affecting
their stability. However, transverse arrays can be observed (Panteris ef al., 2013), especially by
examining MAP4 decorated microtubule strands at the lateral and apical/basal walls as imaged

by front view confocal microscopy.

To investigate the microtubule behaviour, we chose 35S.::MAP4-GFP marked microtubules
and used vertical stage microscopy to observe their behaviour in a long term time series. We
found that inner adjacent cells performing restorative, periclinal divisions underwent a series
of altered microtubule stability events: i.) transversal microtubule arrays, as observed at the
inner lateral membrane, were reduced (Fig. 5A); ii.) longitudinal arrays appeared and became
visible at the apical and basal membranes (Fig. 5B); iii) Finally, these longitudinal arrays
contracted to form longitudinally oriented PPBs (Fig. 5C) which then resulted in longitudinal,
1.e. periclinal division planes. Notably, the time series experiments revealed that the loss of
transversal arrays and the gain of longitudinal arrays occur at the same time and not
subsequently (Fig. 5D, FigS5A). This leads to a period in which the restorative dividing cells
show a mixed population of transversal and longitudinal arrays (Fig. SE & F). The length of
this period was varying and probably, the amount of longitudinal vs. transversal arrays was
indicative for which PPB was forming afterwards as during the contraction of the arrays, only
one regime of either transversal or longitudinal arrays was present. The changed microtubule
behaviour was accompanied by cell expansion; however, MT depolymerisation by Oryzaline
treatment did not affect the ability to expand to the wound (Fig. S3B). This suggests that
microtubule orientation responds to changes in cell expansion, possibly with the amount of

transversal vs. longitudinal arrays depending on the amplitude of expansion.
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Fig. 5 - Wound-induced transient re-orientation of microtubule arrays

(A-D) Microtubule arrays changes during restorative divisions. (A) Endodermis cell with a reduced
amount of transversal MT arrays (red arrow) compared to neighbouring cells. (B) Endodermis cell with
increased amount of longitudinal MT arrays (red arrows) compared to neighbouring cells. (C)
Endodermis cell with formed longitudinal PPB. Confocal images from 35S::MAP4-GFP roots were
taken 8 hours after ablation and pictures represent summed slices of 3 z-planes. (D) Quantification of a
MAPA4-GFP fluorescence at transversal and longitudinal sites within the same endodermis cell over
time. Boxed area shows time frame of overlapping increase of longitudinal and decrease of transversal
arrays.

(E-F) 3D reconstruction of MT arrays after ablation. (E) Imaris-generated image of a cortex cell next
to ablation (red asterisk) with mixed population of transversal (bottom inset) and longitudinal (top inset)
MT arrays (red arrows). (F) Imaris-generated image of a non-adjacent control cortex cell from the same

root, with transversal (bottom inset) but no longitudinal (top inset) MT arrays (red arrows).
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Microtubule array formation is driven by cell stretching

Our results suggest an interdependency of cell expansion and microtubule dynamics. Now the
question arises, how is directional expansion transformed into altered microtubule orientation?
We have already seen that auxin and IXB inhibition of cell expansion leads to a loss of MT
bundles and a re-orientation towards radially longitudinal arrays. It has been proposed that MTs
follow the direction of maximal tensile stress and tensile stress is perpendicular to cell
expansion direction (Louveaux et al., 2016; Hamant et al., 2019). Hence, loss of tensile stress
upon expansion inhibition and change of expansion direction might directly influence MT

stability and orientation.

To investigate this, we observed microtubule dynamics around wounds in the very moment of
cell ablation. We pre-treated roots 12 hours with auxin to reduce the amount of transversal MT
arrays. During the application of the UV laser, we observed a complete loss of microtubule
bundles and the above-described dragging-in of the inner tissues (Fig S4A). Shortly afterwards,
the MT arrays re-appeared in a slightly dis-organized way. We wanted to observe the re-
organization of MT bundles further, so we performed laser ablations with weaker pulses to
harm the cell and induce the complete MT depolymerisation, but to retard the collapse of the
harmed cell (Fig. 6A). After a short time frame of 5-20 min the harmed cell collapsed leading
to deformations in the neighbouring cells. Notably, MT bundles did not re-appear until the very
moment of neighbouring cell collapse and subsequent deformation of the observed cell (Fig.
6B, Fig. S4B). This suggests that the MT are involved in the perception of cell stretch and MT

bundles are initialised or stabilised upon cell stretching.

To further test this hypothesis, we used the micropipette system used in animal research to
investigate membrane cortical tension (Maitre et al., 2012) and modified it to induce stretches
on cells in living root tissue. For this, we pre-treated 5 d old MAP4-GFP seedlings with 1%
Macerozyme and 0.2 M Mannitol for 20 min to decrease cell wall stiffness and turgor pressure,
hence softening the tissue. After a 2 hours recovery, we transferred single seedlings to liquid
medium containing 0.2 M Mannitol and mounted them on a confocal microscope with a
micromanipulator. Using micropipettes of 20 um diameter, we applied forces of -750 Pa on the
outer surface of the root and managed to suck up and stretch single epidermis cells for up to 1
hour. Microtubules were mostly depolymerized after mannitol treatment, but when we applied

the stretching force small patches of increased GFP signal, presumably resembling
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polymerisation events appeared (Fig. 6C). This signal increase occurred nearly instantaneous
and was highly reversible: after release of the stretching force, the signal decreased to the
background level within seconds (Fig. 6D). Over longer time, the MT signal continued to
increase to ~2.5 times the pre-stretch levels, and around ~30 min single bundles became
apparent (Fig. 6E-G). To test whether these accumulations are a general effect of the aspiration
on the cytosol, we observed the same effect in 35S::GFP (free cytosolic GFP) and in Oryzalin
treated seedlings (Fig. S4C-E). Both experiments have not showed any accumulation of GFP
after aspiration, indicating that the observed effect is specific to the formation of MT bundles.
These results resemble the previous observation of increased MT bundle formation upon cell
stretching and suggest that MT stability is dependent on cell expansion mediated cell
stretching. Furthermore, our results imply that changes of directional cell expansion, as

observed after ablation, alter MT stability and might be transformed into MT array orientation.
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Fig. 6 — Stretching induced microtubule array formation

(A-B) Microtubule re-polymerisation during neighbour cell collapse. (A) 35S::MAP4-GFP
fluorescence of a cortex cell adjacent to UV-laser harmed neighbour (white asterisk) after 12 hour 1
uM NAA pre-treatment. Microtubule signal before (left), during (middle) and after collapse of
neighbour (right). (B) Schematic representation of observed MT arrays (purple lines) from (A).

(C-G) Micropipette mediated aspiration causes increase in MT marker signal. (C) Short-term aspiration
of epidermis cells from meristems after 20 min cell wall digestion with 1% Macerozyme and 0.2 M
Mannitol and 2 hour recovery on 0.2 M Mannitol. Top row: brightfield; bottom row: 35S::MAP4-GFP
fluorescence before (left) during (middle) and after (right) aspiration. Aspirated cell is marked by white
arrow. (D) Quantification of 35S::MAP4-GFP signal from aspirated epidermis cells. Fluorescence
values are relative to imaging start, smoothed over 5 time points (0.4 s each) and normalized to closest
non-aspirated neighbour. Data are represented as mean from individual cells and lighter background
indicates standard error. Yellow background represents time frame of aspiration. (E) Long-term
aspiration of epidermis cells. Top row: brightfield; bottom row: 35S.::MAP4-GFP fluorescence at start
of aspiration (left) and during aspiration (right). (F) Higher magnification of aspirated cell from 6E. (G)
Quantification of 35S::MAP4-GFP signal from aspirated epidermis cells. Fluorescence values are
relative to imaging start and normalized to closest non-aspirated neighbour. Data are represented as
mean from individual cells and lighter background indicates standard error. Yellow background

represents time frame of aspiration. Yellow arrows mark direction of aspiration.

Discussion

In this work, we addressed the question how root cells can change their division planes towards
the direction of ablated cells in their vicinity. We found that the direction of growth,
independent of the vicinity to the wound is transmitted to microtubule bundle stability and
drives the selection of the division plane directly after ablation. While the underlying
mechanism between this connection of directional cell expansion and MT arrays orientation
remains elusive, our data revealed some behaviours that will help elucidating this mechanism.
In summary, our data shows that (i) MT bundle stability is dependent on the expansion rate,
(i) less expanding cells are orienting MT arrays radially, (iii) MT arrays reorient transiently
with mixed population of different orientations and (iv) MT bundle formation is induced upon

fast cell stretching.

Restorative divisions require at least 5 hours to switch division plane from anticlinal to
periclinal and they are not able to switch division plane once it is set by formation of the PPB.

This suggested us that restorative divisions go through the normal process of cell cycle
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regulation and division-plane selection acting on all root cells. Furthermore, any cell, being
adjacent or non-adjacent can change division plane if it expands towards a changed direction.
This probably distinguishes the basic capacity of restorative divisions from developmentally

regulated division plane switches like during stomatal development or lateral root formation.

Microtubule orientation and cell expansion direction are tightly linked as the microtubules
serve as guiding strings for the deposition of new cell wall material (Kropf, Bisgrove and
Hable, 1998). Cellulose synthase complex is travelling along the microtubule filaments to
deposit cellulose fibrils in the orientation of cortical MTs (Paredez, Somerville and Ehrhardt,
2006). Consequently, the cell wall extends easiest at the position of the MT arrays. Turgor
pressure is equally distributed in the whole cell, hence mediates the anisotropic cell expansion
at the point of easiest extension. As MTs orient perpendicular to the growth axis, this creates a
feedback loop that leads to the anisotropic growth of plant cells. However, what drives MTs to

align perpendicular to the growth axis remains unknown.

MTs itself have been proposed as tensile stress sensors (Louveaux et al., 2016; Hamant
et al., 2019). In vivo experiments have suggested that microtubule stability can be increased
during tensile stress, i.e. stretching. We have provided similar observations here in this study.
Additionally, the well-defined tension field in the shoot allowed prediction of MT orientation
very precisely. Perturbations of this tissue tension by laser ablation led to a reorientation of MT
arrays. In the case of shoot apical meristem that meant circumferential of the ablation site from
the neighbouring cells of the same cell file. This is similar to our observation, where MTs orient

circumferentially from the inner side around the wound.

In conclusion, our results show how division plane selection in the root depends on directional
cell expansion, mediated by tissue stretching and microtubule orientations. The underlying
molecular mechanism remains elusive, but results suggesting MTs as tension sensor indicate
that there are no extra components needed for the observed phenotypes. However further
analysis of cell wall receptors, microtubule associated proteins and cell division plane selective

proteins might give additional hints about whether or not additional mechanisms are needed.
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Supplementary Information

MAP4-GFP

Fig. S1 — Laser ablation induced abortion of mitosis
(A) 35S::MAP4-GFP marked spindle 10min after ablation. Spindle progress is stalled at this point (red
arrow). (B) Subsequent exit of mitosis without division as marked by breakdown of spindle (red arrow),

marked by 35S::MAP4-GFP. Asterisks mark ablated cells.

IXB
MAP4-GFP

Fig. S2 — Effects of inhibited cell expansion on MT arrays and divisions

(A) FM4-64 stained ablation of cortex cell (red asterisk) 20 min after ablation upon 1 hour pre-treatment
with 1uM NAA. Arrows indicate initial deformations from inner (green) and outer (blue) cells. (B)
35::MAP4-GFP marked microtubule arrays after 20 hours of 10 uM IXB treatment. Notice the absence

of transversal arrays. (C) Top view of 10 uM IXB treated root 20 hours after ablation. Roots were
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stained with FM4-64. Cell types were re-colorized as epidermis (blue), cortex (red), endodermis (green)

and pericycle (purple). Arrows indicate radial divisions in cortex.

P

MAP4-GFP @ MAP4-GFP

Fig. S3 — Microtubules during restorative divisions

(A) Times series of 35S::MAP4-GFP decorated MT arrays during restorative division (for
quantification see Fig. 5D). Rectangles show measured area of transversal (blue) arrays and longitudinal
(orange) arrays. (B) Time series of 35S::MAP4-GFP signal (green) upon 5uM Oryzalin treatment.
Notice the predominately cytosolic localisation. Cell walls were stained with propidium iodide (pink).

Asterisks mark ablated cells.
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Fig. S4 — Dynamics of microtubules and free GFP during stretching experiments

(A) Times series of 35S::MAP4-GFP decorated MT arrays during UV laser ablation upon pre-treatment
with 1 pM NAA for 12 hours. Loss of MT arrays happens immediately after laser application (middle)
and re-polymerisation happens after collapse of ablated cell (right). (B) 35S::MAP4-GFP fluorescence
in wound-adjacent cells within first time point after collapse of neighbour, relative to imaging start,
normalized to non-adjacent neighbouring cell. Values above 1 represent increased MT polymerisation.
(C) Long-term aspiration of epidermis cells. Top row: brightfield; bottom row: 35S::GFP fluorescence
during aspiration for 30min. (D) Long-term aspiration of epidermis cells. Top row: brightfield; bottom
row: 35S::MAP4-GFP fluorescence upon 5 uM Oryzalin treatment during aspiration for 30min. Yellow
arrows mark direction of aspiration. Yellow dotted lines indicate position of micropipette. (G)
Quantification of GFP signal from aspirated epidermis cells from mock 35S::MAP4-GFP (red), mock
35S::GFP (green) 5 uM Oryzalin 35S::MAP4-GFP (blue) treatments. Fluorescence values are relative
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to imaging start and normalized to closest non-aspirated neighbour. Data are represented as mean from

individual cells.
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METHODS

Plant material

Arabidopsis thaliana (L.) Heynh (accession Columbia-0) was used in this work (WT). The

following transgenic Arabidopsis thaliana lines were described previously:

358::MAP4-GFP (Marc et al. 1998), CYCB1;1::GFP (Ubeda-Tomas et al. 2009).

Growth conditions
Seeds of A. thaliana were sown on Murashige and Skoog (1/2MS) medium (Duchefa) with 1%
sucrose and 1% agar, stratified for 1-2 d and grown for 3-5 d at 21°C in a 16 h light/8 h dark

cycle.

Pharmacological treatments

Seedlings were transferred on solid MS medium containing the indicated chemicals: propidium
iodide (PI, 10 uM, Sigma-Aldrich or Thermofisher), Naphthylacetic acid (NAA, Duchefa
Biochemie, final concentration as indicated - if nothing indicated: 1 pM), Mannitol (Sigma-
Aldrich, final concentration 0.2 M), Isoxaben (Sigma Aldrich, final concentration 10 pM),
Latrunculin B (LatB, Sigma-Aldrich, final concentration 2 pM), Oryzaline (Duchefa

Biochemie, final concentration 5 uM), Macerozyme R-10 (Serva, final concentration 1% w/v).

Sample preparation

Seedlings were placed on chambered cover glass (VWR, Kammerdeckglidser, Lab-Tek™,
Nunc™ - eine kammer, catalog number: 734-2056) as described (Marhavy and Benkova 2015).
With the chamber, a block of solid MS media was cut out and propidium iodide solution was
added. After the liquid soaked in, 10-15 seedlings were transferred to the agar and the block

was inserted into the chamber.
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Confocal imaging and image processing

Confocal imaging was performed with Zeiss LSM700/800 inverted microscopes using 20x or
40x objectives. Detection of fluorescence signals was carried out for GFP (excitation 488 nm,
emission 507 nm), YFP (excitation 514 nm, emission 527 nm) and PI or FM4-64 (excitation
536 nm, emission 617 nm). For fixed time point measurements, samples were observed 12
hours after ablation or at indicated time points. Images were analyzed using the ImageJ (NIH;

http://rsb.info.nih.gov/ij) and Zeiss Zen 2.3 “Black™ or “Blue” software. Where necessary,

images were processed by adjusting contrast and lightness. Where indicated, images where
processed by sum slice operation to summarize multiple confocal planes or time points into
one image. For 3D images, confocal (z) planes where chosen to fit /2 airy unit. To obtain top

view images, z-stacks were processed using the “Reslice” tool.

Spinning disk imaging

For the observation of immediate effects during/after ablation, an Andor spinning disk
microscopy (CSU X-1, camera iXon 897 [back-thinned EMCCD], FRAPPA unit and
motorized piezo stage) 63x water immersion objective was used. Videos were acquired with 1
focal plane, every 0.2 or 1.0 seconds. All images in a single experiment were captured with the

same settings.

Vertical stage microscopy, root tracking and image processing

Vertical stage microscopy for long-term tracking of root meristems was performed as described
(Glanc, Fendrych, and Friml 2018; Marhava et al. 2019; von Wangenheim et al. 2017). Roots
were imaged with a vertically positioned LSM700 or LSM800 inverted confocal microscope
and Zeiss Zen 2.3 “Black” or “Blue” software, respectively, with 20x objective and detection
of PI, GFP (see above) and transmitted light. Z-stacks of 30-42 um were set accordingly to
image each cell at least once. For the root-tracking, the TipTracker MATLAB script (Zen
Black) or the TipTracker internal macro (Zen Blue) were used; interval duration was set
between 600 s (10 min) and 720 s (12 min). The resulting images were concatenated and
analysed using ImageJ. For registration, ImageJ macros “correct 3D drift”, “StackReg” or

“MultiStackReg” were used. Kymographs were generated using the “Reslice” tool.
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UV laser ablation setup

The UV laser ablation was performed as described in ref. (Marhava et al. 2019; Marhavy et al.
2016) which are based on the layout published in ref. (Colombelli, Grill, and Stelzer 2004).

The laser was applied in the upper corner of the cell of interest.

Aspiration assay

The aspiration setup was designed as previously described (Maitre et al. 2012). 20 pm glass
pipettes (BioMedical Instruments) with 30° bent angle were filled with distilled water and then
connected to a Microfluidic Flow Control System (Fluigent, Fluiwell), with negative pressure
ranging from 7-750 Pa. The microfluidic setup was mounted on a micromanipulator
(Eppendorf, Transferman NK2) and micropipette movement and pressure were controlled via
a custom-programmed Labview (National Instruments) interface.

5-d old seedlings were transferred onto 1% Macerozyme and 0.2 M Mannitol
containing agar medium. After 20 min the seedlings were transferred very carefully to a 0.2 M
Mannitol containing agar medium to recover from the cell wall digestion. Finally, the seedlings
were transferred to liquid medium containing 0.2 M Mannitol in a MatTek 50mm Glass Bottom
Dish, so that the cotyledons touched the glass and the root was facing towards the center of the
coverslip.

For the aspiration, the micropipette was placed touching a single epidermis cell in the
center of the root meristem and during imaging, full negative pressure (-750 Pa) was applied.
After a few minutes, the aspiration force was removed and the imaging was stopped after that.
Imaging was performed using a Leica SP5 confocal microscope with a resonant scanner and a
Leica 20X, 0.7 NA objective, (Argon laser: 488 nm) for simultaneous imaging of fluorescent
and brightfield channels. Higher resolution image (Fig. 6F) was taken with a 40x water

objective.

3D visualization
3D images were obtained and analyzed using Imaris software. For Fig. SE,F, fluorescent signal

was displayed as volume display option “volume shading”.
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Quantification and statistical significance

Asterisks illustrate the p-value: p <0.001 is *** p <0.01 is ** and p <0.05 is *

Spindle and phragmoplast angles

Spindle/phragmoplast angle was determined using the Imagel “Angle” tool, taking the
anticlinal walls as reference (0°). Data was plotted as histogram on a polar coordination system

using R.

Periclinal divisions

Division events were counted by marking the time point at which a new cell wall (stained by
propidium iodide) appeared in the first, inner adjacent cell of the ablation site. Only periclinal
divisions (vertical cell walls) were counted. The percentage of cumulative division events over

time was plotted using R.

Fluorescence intensity within time series

Signal intensity of each observed cell from multi-stack (3D) videos in the green channel was
quantified using ImagelJ and recorded for each available time frame. To obtain relative values,
the raw data was divided by the first time point value. Similarly, data from reference cells
(neighbouring, non-adjacent cells) was recorded and the ratio of sample to reference value was

calculated to obtain normalized values.

Cell expansion

Cell expansion within time series was approximated by the cell width, which was quantified as
the distance between the midpoint of the inner and outer cell wall using ImageJ. Expansion
values are relative to first time point and if indicated, normalized to neighbouring (reference)
cells.

During fixed time points, cell expansion or initial displacement was approximated as
the horizontal distance between the wound-adjacent membrane and the first, non-adjacent

membrane of a neighbouring cell (see dotted lines in Fig. 3A).
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Expansion rates were determined from kymographs of growing root tips. One patch of
cortex cells was registered over time, turned into a kymograph, coordinates of each line were
obtained using Kymobutler, and the rate of expansion was calculated from the slope of the

lines.

Microtubule intensity within time series

Microtubule intensity (35S::MAP4-GFP) in growing root tips was measured in selections from
one confocal plane over time, obtained from the “Threshold” tool in ImageJ. Every time frame
was evaluated separately with a new selection. To obtain relative values, the raw data was
divided by the first time point value.

Microtubule array intensity of a single cell was measured in a rectangular section from
one confocal plane over time (see Fig. S3A). All time frames were evaluated with the same
selection.

Microtubule bundle intensity of a single cell during collapse of the neighbouring cell
was measured in both, the first available time frame before collapse and after collapse and
relative values were obtained by division. Values were normalized by division with values from

neighbouring cells, not adjacent to collapsed cells.

Microtubule intensity within aspiration assays

Microtubule intensity (35S::MAP4-GFP) epidermis cells was measured in selections from one
confocal plane over time. All time frames were evaluated with the same selection, but the
selection was moved if the registration did not allow stable tracking of the aspirated cell. The
same selection was used for reference cells (neighbouring, non-aspirated cells). Time series
data was smoothed by taking the mean of a period of 1.8 s (5 frames for 0.37 s interval and 9
frames for 0.2 s interval). No smoothing has been applied for long-term aspiration (10 min
interval). Relative values were obtained from division with first value and normalized values

from division with reference cells.

152



Summary

Plants as sessile organisms have to endure attacks and wounding during their lifecycle. Hence,
they needed to evolve efficient and fast regeneration mechanisms to heal wounds and prevent
further damage. While wounding studies have been performed since centuries, a deep
understanding of how plants deal with wounds on a single cell level is still missing. In my
work, I have addressed these questions. Chapter 1 gives a brief introduction to wounding
studies on whole tissues and organs. Further, it elucidates on single cell ablation studies,
ranging from early investigation of positional information to primary and secondary messenger
analyses. The chapter aims to draw attention to the possibilities of studying cellular responses
after wounding in vivo and in situ under controlled conditions.

In Chapter 2, restorative divisions and their importance for tissue regeneration are
introduced. Within this study, we showed that those periclinal, asymmetric divisions occur only
at the inner side of ablations, are universal for the whole meristem and lead to eventual cell fate
changes of the outer daughter cells touching the wound. Furthermore, the chapter shows the
importance of stem cell regulators PLETHORA and key components of the stem cell niche
transcriptional program, which is supporting the execution of those restorative divisions.
Finally, it shows that restorative divisions accumulate between 5 and 12 hours after ablation
and require normal cell cycle progression.

In Chapter 3, we discovered a small auxin accumulation in cells continuously adjacent
to ablated cells. These cells often continuously divided periclinally to regenerate the wounded
tissue — a behaviour that we could induce with exogenous auxin application, even until a level
of tumorous overproliferation at the wound sites. We also showed the strong induction of the
wound-responsive expression of ERF115 upon auxin. Finally, we show how the maintenance
of turgor pressure is crucial for the induction of restorative divisions and reveal a link between
cell expansion towards the wound and speed of division initiation. This study shows a universal
inhibition of restorative divisions in hypoosmotic conditions, suggesting a crucial role for
turgor-driven cell expansion and division plane selection.

In Chapter 4, the wound signal responsible for the expression of ERF115 in wound-
adjacent cells is investigated. We showed that ROS signalling, auxin signalling via ARF
transcription factors and PEPR receptor signalling are crucial enhancers of ERF115 expression.
Further, our bioinformatics analysis of the promoter and co-expression data supports the JA
and BL enhanced expression of ERF115. However, while our study provides a long list of

possible enhancers of ERF115, the actual activation signal remains mysterious. Histone
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acetylation datasets and our bioinformatics investigation suggest a complex involvement of
pathogen related genes and multiple repressor and activator complexes.

In chapter 5, we take on the previous observation of cell expansion driven restorative divisions
and show how tissue stretching that is translated in cell width increase is sufficient to mediate
division plane change. Further, we reveal a connection of expansion rate and MT
polymerisation and array orientation in the root meristem. Finally, we show how MT bundle
stability can be increased through fast stretching or deformation of meristematic cells. While
the underlying molecular mechanism of these processes remain unknown, the provided insights
suggest that a basic cell expansion/stretching-MT interdependence is sufficient to explain the
observed division plane switches after wounding and the contribution of inner vs. outer tissues

during the regeneration process.

154





