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Abstract: Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-�lling
diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and
other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a
linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the
space-�lling diagram.We give a formula for the derivative of the weightedmean curvature. Together with the
derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1],
this yields the derivative of the morphometric expression of the solvation free energy.
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1 Introduction
This paper makes a signi�cant step toward turning the morphometric approach to modeling the solvation
free energy in molecular dynamics into practice. We recall that molecular dynamics uses Newton’s second
law of motion to simulate the dynamic behavior of molecules. We focus on the case in which the motion is
computed within an implicit solvent model, in which the e�ect of water is captured by an e�ective solvation
potential, W = Welec + Wnp. The �rst term on the right-hand side accounts for the electrostatic polarization,
and the second term for the van derWaals interactions and the formation of a void in the solvent. Referring to
a large body of work onWelec [18], we focus on the non-polar or hydrophobic e�ect of water, namelyWnp. In an
e�ort to quantify this e�ect, Lee and Richards introduced the solvent-accessible surface of amolecule [14]. It is
the boundary of the space-�lling diagram in which each atom is represented by a ball whose radius is its van
der Waals radius plus 1.4 Angstrom for the approximate radius of a water molecule. Based on this concept,
Eisenberg and McLachlan de�ned the solvation free energy as a weighted sum of the surface area, Wnp =∑

i wiAi, inwhichwi is the atomic solvation parameter and Ai is the area of the spheremodeling the i-th atom
that is accessible to the solvent [9]. There is, however, disagreement about the precise formulation fueled in
part by evidence that for a small solute, Wnp is more closely related to the solvent-excluded volume rather
than the solvent-accessible area [15, 19]. To resolve this controversy, the morphometric approach of Mecke
and Roth [11, 12, 13, 16, 17] suggests thatWnp be a linear combination of the intrinsic volumes, which inR3 are
the volume, area, mean curvature, and Gaussian curvature. This approach is inspired by the mathematical
theory of intrinsic volumes, which we now summarize.

To begin, we let K ⊆ R3 be a compact convex body and write Kr = K ⊕ rB3 for the parallel body obtained
by thickening K by r all around. As proved by Jakob Steiner, the volume of the parallel body is described by
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a degree-3 polynomial,

Volume(Kr) = a0 + a1r + a2r2 + a3r3, (1)

in which a0, a1, a2, and a3 are the volume, surface area, mean curvature, and one third of the Gaussian
curvature of K [20]. Scaled and re-indexed versions of the coe�cients are referred to as the intrinsic volumes of
K. According to Hugo Hadwiger’s characterization theorem, every measure of K that is invariant under rigid
motions, continuous, and additive is a linear combination of the intrinsic volumes [10]. Since the solvent-
accessible model is obtained by thickening the van der Waals model, the analogy seems compelling, except
that molecules are generally not convex. To bridge this gap, we mention a result by Morgan Crofton, which
states that the i-th coe�cient of the Steiner polynomial satis�es

ai = ci
∫

H∈G3
i

∫
x⊥H

χ[K ∩ (H + x)] dx dH, (2)

in which c0 = 1, c1 = 2
π , c2 = 1, c3 = 4π

3 [4]. To explain (2), we note that G3
i is the Grassmannian that con-

sists of all i-planes passing through the origin in R3, H is such an i-plane, x is a point on the orthogonal
(3 − i)-plane, H + x is the i-plane parallel to H that passes through x, and χ is the Euler characteristic. Im-
portantly, Crofton’s integral formula (2) is not restricted to convex bodies and can thus be used to extend the
de�nition of intrinsic volume to non-convex bodies. Returning to themodeling of molecules, we embrace the
morphometric approach. In other words, we write

Wnp = µ0 · a0 + µ1 · a1 + µ2 · a2 + µ3 · a3, (3)

in which the ai are the volume, area, mean curvature, and one third of the Gaussian curvature of the solvent-
accessible model, and physical meanings of the µi can be found in [12, 17]. To model physical properties,
such as hydrophobicity, we consider weighted versions of the four measures. To embed this approach into
molecular dynamics software, we need the derivative of Wnp with respect to the motion or, equivalently, the
derivatives of the weighted volume, the weighted area, the weightedmean curvature, and the weighted Gaus-
sian curvature. The �rst two of those derivatives have been studied in [7] and [3], where we �nd formulas
based on the Voronoi decomposition of the space-�lling diagram as well as characterizations of the con�g-
urations at which the derivative is not continuous. The main result of this paper is a similar analysis of the
weighted mean curvature derivative, and we refer to [1] for the last piece of the puzzle, which is the weighted
Gaussian curvature derivative.

Outline. Section 2 reviews the background relevant to this paper. Section 3 derives the constituents of the
weighted mean curvature of a space-�lling diagram. Section 4 states the derivative in terms of the gradient.
Section 5 analyzes the con�gurations at which the gradient is not continuous. Section 6 concludes this paper.

2 Background
The background needed for the technical results reported in this paper include two classic theorems in geom-
etry attributed toArchimedes and toHeron of Alexandria, the concept of a space-�lling diagram to represent a
molecule, the corresponding alpha complex to do the book-keeping, and the analysis of the weighted volume
and weighted area derivatives, which are heavily based on these concepts.

Two area formulas.Write S2 for the unit sphere inR3 and recall that its area is 4π. Accordingly, the area of a
spherewith radius r is4πr2. Spheres inR3 enjoy aproperty discovered thousands of years agobyArchimedes,
which is unique to three dimensions. To describe it, we use Cartesian coordinates and let f : S2 → R map
every point to its third coordinate, which we call its height. By Archimedes, the area of the cap consisting of
all points at height at most −1 ≤ a ≤ 1 depends linearly on a and is therefore 4π times 1 + a divided by the
diameter of the unit sphere, which is 2.
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Formula 1 (Archimedes’ Theorem). For every −1 ≤ a ≤ 1, the area of the cap f −1[−1, a] ⊆ S2 is 2π(1 + a).

A slice of the sphere can be written as the preimage of an interval, [a, b] ⊆ [−1, 1]. The area of f −1[a, b] is
the area of f −1[−1, b] minus the area of f −1[−1, a], which is 2π(b − a). We note that the area of the slice thus
depends on the width, b − a, but is independent of the location of the interval within [−1, 1].

A formula that gives the area of a triangle in terms of the lengths of the three edges is attributed to Heron
of Alexandria, although it has been suggested that Archimedes knew about the formula two centuries earlier.

Formula 2 (Heron’s Theorem). Thearea of a trianglewith edges of length a, b, c isA =
√
s(s − a)(s − b)(s − c),

in which s = 1
2 (a + b + c).

There are various proofs of this formula and a number of equivalent statements. We will use A =
1
4
√

2(a2b2 + b2c2 + a2c2) − (a4 + b4 + c4).

Space-�lling diagrams.Mathematically, such a diagram is merely the union of �nitely many closed balls in
R3. Its signi�cance derives from the use as a geometric model of biomolecules [14], such as proteins, DNA,
and the like. There are competing models, such as the level sets of a sum of isotropic Gaussian distributions,
but we focus on the geometrically more concrete space-�lling diagrams. This section introduces the concept
along with most of the notation needed for its discussion in the technical sections.

Throughout this paper,we assumea set of n closed balls inR3, X = {Bi | 0 ≤ i < n}, inwhich xi ∈ R3 is the
center and ri ∈ R is the radius of Bi. The space-�lling diagram is the union of these balls,⋃ X = ⋃n−1

i=0 Bi. We
are interested in the volume, area, mean curvature, Gaussian curvature of this diagram. The volume should
be clear. To describe the other threemeasures,wenote that the boundary of⋃ X consists of patches of spheres
that remain after we remove open caps, Si \

⋃
j= ̸i int Bj, in which Si = bd Bi. These patchesmeet along portions

of circles that remain after we remove open arcs, Sij \
⋃
k= ̸i,j int Bk, in which Sij = Si ∩ Sj. These portions of

circles consist of closed arcs that meet at corners of the form Sijk \
⋃

`= ̸i,j,k int B`, in which Sijk = Si ∩ Sj ∩ Sk.
For ease of reference, we summarize and extend the introduced notation in Table 2, which is given in the
appendix. The area is simply the sum of areas of the sphere patches. The mean curvature is more subtle
because the boundary of the space-�lling diagram is not a smooth surface. Instead of de�ning it as an integral
of the point-wise mean curvature, we use a discrete formula according to which the contribution of an arc in
the boundary of⋃ X is its length times the dihedral angle between the outward normals of the two spheres
that share the arc; see (7) for the formula in the weighted case. Similarly, wewrite the Gaussian curvature as a
sumof contributions of sphere patches, circular arcs, and corners; see (8) for the formula in theweighted case.
Alternatively, we can make use of the Gauss–Bonnet theorem according to which the Gaussian curvature is
2π times the Euler characteristic of the surface, but no such shortcut is available for the weighted case, which
we discuss next.

Voronoi decomposition and dual alpha complex. To generalize the measures to the weighted case, we
introduce the Voronoi decomposition of the space-�lling diagram and its dual, the alpha complex, which
serves as a book-keeping device.

Recall that X is a set of n closed balls Bi with centers xi and radii ri. The power distance of a point a ∈ R3

from Bi is πi(a) = ‖a − xi‖2− r2
i , andwe note that Bi = πi−1(−∞, 0]. TheVoronoi domain of Bi is Vi = {a ∈ R3 |

πi(a) ≤ πj(a) for 0 ≤ j < n}, and we write Vij, Vijk, and Vijk` for the pair-wise, triple-wise, and quadruple-wise
intersections. The Voronoi domains decompose the space-�lling diagram into convex sets of the type Bi ∩Vi.
We will need notation for the fraction of the ball represented by this set, and similarly for the fractions of
common intersections, which we collect in Table 2, which is given in the appendix. Letting wi ∈ R be the
weight of the i-th closed ball, the formulas for the weighted measures of a space-�lling diagram are given in
(5), (6), (7), and (8) below.

The fractional measures listed in Table 2 are conveniently computed using the alpha complex of X, which
is the nerve of the sets Bi∩Vi [8]. Recall that theDelaunaymosaic is the nerve of the sets Vi, which implies that
the alpha complex is a subcomplex of the Delaunay mosaic, and generically, both are simplicial complexes
realized inR3. It will be convenient to denote a simplex by the set of indices of its vertices, or by the sequence
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if we need an ordered version of the simplex. By alpha shape we mean the underlying space of the alpha
complex. To explain the connection between the simplices and the measures, we note that a tetrahedron ijk`
in the Delaunay mosaic belongs to the alpha complex i� νijk` > 0, and the same rule applies to the triangles,
edges, and vertices of the mosaic. Furthermore, a triangle ijk in the alpha complex belongs to the boundary
of the alpha shape i� σijk > 0, and the same rule applies to the edges and vertices of the complex. To compute
these fractions, we use inclusion-exclusion over subsets of simplices in the alpha complex. For example,

σi = 1 −
∑

j Area(Bj∩Si)
Area(Si) +

∑
j,k Area(Bj∩Bk∩Si)

Area(Si) −
∑

j,k,` Area(Bj∩Bk∩B`∩Si)
Area(Si) , (4)

in which the sums are over all edges, triangles, tetrahedra in the alpha complex that share xi as a vertex.
Proofs and additional formulas can be found in [5].

Weighted intrinsic volume. Recall that ⋃ X is the union of the balls Bi, for 0 ≤ i < n. Its state, x ∈ R3n, is
the concatenation of the center vectors. In other words, the (3i + `)-th coordinate of x is the `-th coordinate of
xi. We use the Voronoi tessellation to divide the space-�lling diagram into individual contributions and get
the weighted intrinsic volume by multiplication with the corresponding weight.

Proposition 3 (Weighted Intrinsic Volumes). The weighted volume, surface area, mean curvature, and Gaus-
sian curvature of the space-�lling diagram,

⋃
X, are

vol(x) = 4π
3
∑
i
wiνir3

i , (5)

area(x) = 4π
∑
i
wiσir2

i , (6)

mean(x) = 4π
∑
i
wiσiri −

π
2
∑
i,j

(wi + wj)σijϕijrij , (7)

gauss(x) = 4π
∑
i
wiσi −

π
2
∑
i,j

(wi+wj)σijλij + 1
3
∑
i,j,k

(αiwi+αjwj+αkwk)σijkϕijk . (8)

To get the above formula for the mean curvature, we smoothen the crevices of the space-�lling diagram by
rolling a ball of radius ε > 0 about the surface. For su�ciently small ε, the resulting surface is everywhere
di�erentiable, and we take the limit of its total mean curvature as ε goes to zero. Along circular arcs, we
partition the mean curvature in equal parts to the two intersecting spheres. The rationale for this rule is that
the surface swept out by the centers of the rolling balls of di�erent radii partitions the exterior dihedral angle
at the arc in equal parts. Using the same geometric intuition, we partition the contribution of a corner of the
space-�lling diagram to the Gaussian curvature in proportions αi +αj +αk = 1; see [1] for details. All variables
have been de�ned above, except for ϕij (the angle between the unit normals of the spheres at a point of
Sij = Si ∩ Sj), λij (the combined length of the two normals after projection to the line passing through xi and
xj), and ϕijk (the solid angle spanned by the unit normals of Si, Sj, Sk at a point of common intersection,
P ∈ Sijk).

Weighted volume and area derivatives. To state the derivative of the weighted volume, we introduce
the momentum, t ∈ R3n, which is the concatenation of the velocity vectors. In other words, the vector
ti = [t3i+1, t3i+2, t3i+3]T is the velocity vector of the i-th ball. The derivative of a function F : R3n → R can
be given in terms of the gradient: DFx(t) = 〈∇xf , t〉. Writing v = ∇xvol and vi = [v3i+1, v3i+2, v3i+3]T , [7] gives
the derivative of the weighted volume:
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Proposition 4 (Gradient of Weighted Volume). The derivative of the weighted volume of the space-�lling dia-
gram at state x with momentum t is Dvolx(t) = 〈v, t〉 with

vi =
∑
j

[
(vij + vji)uij + (v̄ij − v̄ji)Uij

]
, (9)

vij = 1
2πwir

2
ijνij

(
1 +

r2
i − r2

j

‖xi − xj‖2

)
, (10)

v̄ij = 2
3πwir

2
ijνij

1
‖xi − xj‖

, (11)

in which Uij is the vector from xij to the centroid of Bij ∩ Vij, and the sum is over all edges in the alpha complex
that are incident to xi.

Writing a = ∇xarea and ai = [a3i+1, a3i+2, a3i+3]T , [3] gives the derivative of the weighted area:

Proposition 5 (Gradient of Weighted Area). The derivative of the weighted area of the space-�lling diagram
at state x with momentum t is Dareax(t) = 〈a, t〉 with

ai =
∑
j

(aij + aji)uij +
∑
j,k

(aijk − ajik)uijk , (12)

aij = πwiσijri

(
1 −

r2
i − r2

j

‖xi − xj‖2

)
, (13)

aijk = 2wirijkνijkri
1

‖xi − xj‖
, (14)

in which the �rst sum is over the boundary edges in the alpha complex incident to xi, and the second sum is over
the triangles incident to these edges.

3 Derivatives
We recall (7) and decompose the weighted mean curvature function into a �rst term, which accounts for the
curvaturewithin the sphere patches, and a second term,which accounts for the curvature concentrated along
the circular arcs:

mean(x) = 4π
∑
i
wiriσi − π

2
∑
i,j

(wi + wj)rijϕijσij . (15)

While not re�ected in the notation, σi, rij, ϕij, and σij depend on the state. It is convenient to write σi(τ) for σi
at state x + τt, and similarly for the other functions. Furthermore, we write σ′i for the derivative of σi at τ = 0,
and similarly we write r′ij, ϕ′

ij, σ′ij. Derivatives with respect to parameters other than τ are explicitly stated as
such.

3.1 Derivative of σi

To derive σi, we follow [3] and decompose the motion into a direction preserving component and a distance
preserving component. The direction preserving motion stretches the distance between two centers, while
the distance preserving motion rotates one center about the other. We therefore write tj − ti = tstr

j + trot
j , in

which tstr
j = 〈tj − ti , uij〉uij. Observe that trot

j = (tj − ti) − tstr
j is the velocity vector of the rotation with angular

momentum

ωj = (tj − ti) × uij
‖xi − xj‖

=
trot
j × uij
‖xi − xj‖

, (16)
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in which × is the cross or outer product that maps vectors a and b to the vector c = a × b of length
‖a‖‖b‖ sin∠ab normal to both in such a way that the sequence a, b, c forms a right-handed system in space;
see Figure 1. The analysis of the direction preserving motion is similar to the analysis of the area derivative in

xj
uij

xi

tj − ti

ωj

trot
j

Figure 1: The angular momentum of the motion of xj relative to xi. Projecting tj − ti onto the tangent vector of the circular orbit,
we get a system of pairwise orthogonal vectors, trot

j , uij, and ωj.

[3], and we repeat the main steps for completeness. Since little in terms of a proof of the distance preserving
motion is o�ered in [3], we give a complete argument, which can be translated back almost verbatim to a
proof in the area case.

Direction preservingmotions. Consider two balls, Bi and Bj, and the change of surface area under amotion
of xi that preserves the direction, uij. Let ‖xi − xj‖ = ξi + ξj, in which the terms on the right-hand side of the
equation are the signed distances from the centers to the plane bisector. As noted in [3], we have

ξi = 1
2

(
‖xi − xj‖ +

r2
i − r2

j
‖xi − xj‖

)
, (17)

and similarly for ξj. Plugging (17) into Formula 1, we get

σi = ri + ξi
2ri

= 1
4ri

(
2ri + ‖xi − xj‖ +

r2
i − r2

j
‖xi − xj‖

)
. (18)

Di�erentiating with respect to the distance between the two centers, we get the rate of area change, which
happens right next to the circle of intersection. In the general case, the cap Bj ∩ Si may overlap with other
caps so that only a fraction of the bounding circle belongs to the boundary of the space-�lling diagram. Ac-
cordingly, the derivative is the same fraction of the derivative without any such overlap:

dσi
d‖xi − xj‖

= σij
4ri

(
1 −

r2
i − r2

j

‖xi − xj‖2

)
. (19)

Multiplying the right-hand side of (19) with 〈tj − ti , uji〉, we get the derivative with respect to the direction
preserving motion of xj, and taking the sum over all j ≠ i, we get the derivative of σi with respect to the
direction preserving motions of all xj; compare with the �rst sum on the right-hand side of (21) in Lemma 6.

Distance preserving motions. Consider �rst the case of a single cap, Bj ∩ Si. The rotation de�ned by ωj
keeps the cap as well as σi at constant size. This is because Si loses area along the front of the circle that
bounds the cap, it gains area along the back of this circle, and the loss equals the gain. In the more general
case depicted in Figure 2, it is possible that the loss and the gain no longer cancel each other.

To calculate the net loss or gain, we let N and S be antipodal points on Si, which we refer to as north-
and south-pole, such that the cap center lies on the equator — the great-circle halfway between N and S —
and the motion follows the equator. We recall that trot

j is the velocity vector of xj, and ri/‖xi − xj‖ times trot
j

is the velocity vector of the cap center. In Figure 2, we draw NS vertical, we place xj and the cap center on
top of xi, and we let the velocity vector go horizontally from right to left. By Formula 1, the area loss along
an arc of the front does not depend on its position but only on the length of its projection onto NS. We are
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N

S

Figure 2: Blue sphere, Si, with cap, Bj ∩ Si, in the middle moving due west. We shade the relevant part, which is the cap clipped
to within the Voronoi domain of xj. The motion divides its boundary into the front part (on the left) and the back part (on the
right). Area loss and gain happen along the circular arcs bounding the clipped cap. The dotted caps surrounding Bj ∩ Si are of
the form Bk ∩ Si, and their vectors uijk are all orthogonal to the edge connecting xi with xj.

interested in arcs of Sij that lie on the boundary of the space-�lling diagram, and we compute the net loss
or gain indirectly, by measuring the projections of the edges in the Voronoi tessellation de�ned by Bi, Bj,
and a third ball, Bk. Recall that Bijk is the line segment that connects the two points in which Si , Sj , Sk meet,
and that νijk is the fraction of this line segment that belongs to the Voronoi decomposition of the space-
�lling diagram. If this edge belongs to the front of the clipped cap, then its contribution is positive because it
subtracts from the loss along the front. Symmetrically, if the edge belongs to the back of the clipped cap, then
its contribution is negative. To quantify, we recall the de�nition of uijk given in Table 2. The signed fraction of
the projection of the relevant portion of Bijk onto NS is its length, 2rijkνijk, times the cosine of the projection
angle, 〈trot

j , uijk〉/‖trot
j ‖, divided by the diameter of the sphere, 2ri. By Formula 1, this is also the area fraction

of the corresponding strip around the sphere. Dividing by the length of the circular orbit, 2π‖xi − xj‖, we get
the derivative:

dσi
d∠xixj

=
∑
k

rijkνijk
2πri‖xi − xj‖

〈trot
j , uijk〉/‖trot

j ‖, (20)

in which we write ∠xixj for the angle that parametrizes the rotation of xj. We get the contribution to σ′i by
multiplying with ‖trot

j ‖ and observing that 〈trot
j , uijk〉 = 〈tj − ti , uijk〉 for all k; compare with the second sum

on the right-hand side of (21) in Lemma 6.

Summary.A clipped capwhose entire boundary consists of straight line segments does not touch the bound-
ary of the space-�lling diagram and therefore has no contribution to the derivative. These caps correspond to
interior edges of the alpha complex. Omitting them from the sum, we get the derivative of σi.

Lemma 6 (Derivative of σi). The derivative of the fraction of Si on the boundary of the space-�lling diagram at
state x with momentum t is

σ′i =
∑
j

dσi
d‖xi − xj‖

〈uij , ti − tj〉 +
∑
j,k

rijkνijk
2πri‖xi − xj‖

〈uijk , ti − tj〉, (21)

in which the �rst sum is over the boundary edges of the alpha complex incident to xi, with coe�cient given in
(19), and the second sum is over the triangles incident to these edges.



58 | A. Akopyan and H. Edelsbrunner

3.2 Derivatives of rij and of ϕij

Recall that rij is the radius of the circle Sij = Si∩Sj, assuming the two spheres have a non-empty intersection.
As illustrated in Figure 3, it is also the height of the triangle with base of length ‖xi − xj‖ and edges of length
ri and rj. The area of the triangle is A = 1

2 rij‖xi − xj‖. Alternatively, we can compute the area using the version

xi xj

ϕij

rij

Figure 3: The radius of the circle, rij, in which the two spheres intersect is the height of the triangle whose base connects the
centers of the spheres. Extending the two edges to the outward normals of the two spheres, we get the angle, ϕij, that is rele-
vant in our computations.

of the Heron formula given right after Formula 2:

A = 1
4

√
2
(
r2
i r2
j + r2

i ‖xi − xj‖
2 + r2

j ‖xi − xj‖
2
)
−
(
r4
i + r4

j + ‖xi − xj‖4
)
. (22)

The derivative of the area with respect to the distance between the two centers is

dA
d‖xi − xj‖

= 1
32A

(
4‖xi − xj‖(r2

i + r2
j ) − 4‖xi − xj‖3

)
(23)

= 1
8A ‖xi − xj‖

(
r2
i + r2

j − ‖xi − xj‖2
)
. (24)

From this, we get the derivative of the height of the triangle:

drij
d‖xi − xj‖

=
d 2A
‖xi−xj‖

d‖xi − xj‖
=

2 dA
d‖xi−xj‖‖xi − xj‖ − 2A

‖xi − xj‖2 (25)

=
2‖xi−xj‖2

(
r2
i + r2

j − ‖xi−xj‖2
)
− 16A2

8A‖xi−xj‖2 =
(
r2
i − r2

j
)2 − ‖xi−xj‖4

8A‖xi−xj‖2 (26)

=
(
r2
i − r2

j
)2 − ‖xi − xj‖4

2‖xi−xj‖2
√

2
(
r2
i r2
j + (r2

i + r2
j )‖xi−xj‖2

)
−
(
r4
i + r4

j + ‖xi−xj‖4
) . (27)

Switching our attention, we observe that the angle between the outward normals, ϕij, is also the angle oppo-
site the base inside the triangle in Figure 3. Recall that the Law of Cosines generalizes Pythagoras’ Theorem
beyond right-angled triangles: c2 = a2 + b2 − 2ab cos γ, in which a, b, c are the lengths of the sides and γ is
the angle opposite to the side of length c. In our application, we have a = ri, b = rj, c = ‖xi − xj‖, and γ = ϕij.
Hence,

ϕij = arccos
r2
i + r2

j − ‖xi − xj‖2

2rirj
. (28)
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Recall that the derivative of arccos x is −1/
√

1 − x2. Together with the chain rule for di�erentiation, this gives
the derivative of the angle with respect to the length of the base:

dϕij
d‖xi − xj‖

=
‖xi−xj‖
ri rj√

1 −
(
r2
i +r2

j −‖xi−xj‖
2

2ri rj

)2
(29)

= 2‖xi − xj‖√
2(r2

i + r2
j )‖xi − xj‖2 − (r2

i − r2
j )2 − ‖xi − xj‖4

. (30)

We summarize the results of this subsection for later reference.

Lemma 7 (Derivatives of rij and of ϕij). The derivatives of the radius of the intersection circle of two spheres
and of the angle between the outward normals at the intersection at state x with momentum t are

r′ij = drij
d‖xi − xj‖

〈uij , ti − tj〉 and ϕ′
ij = dϕij

d‖xi − xj‖
〈uij , ti − tj〉, (31)

with the coe�cients in the two equations given in (27) and (30).

3.3 Derivative of σij

Recall that σij is the fraction of the circle Sij = Si ∩ Sj that belongs to the space-�lling diagram. We compute
its derivative under the motion t in several steps, the �rst of which modi�es the motion. Without altering the
derivative, we do this such that the center and the plane of the circle are �xed.

Modifying the motion. We begin by �xing xi in space, which we do by changing the velocity vector of xj to
tj − ti for every j, as before. Next, we �x the normal direction of the plane that contains Sij by removing the
angularmomentum. Speci�cally, we change the velocity vector of xj toVij = tj−ti−ωj ×(xj−xi), in whichωj is
given in (16); see Figure 1. After this modi�cation, the point xj moves with speed v along uji, in which v is the
length of the new velocity vector. Accordingly, we change the velocity vector of xk toVijk = tk −ti −ωj ×(xk −xi)
for every k, and note thatViji = 0 andVijj = Vij. We �nally �x the plane of the circle. To this end, we recall that
ξi and ξj given in (17) are the signed distances of xi and xj from the plane of Sij. We have ξi + ξj = ‖xi − xj‖ and
use them to write the center of the circle as an a�ne combination of the centers of the spheres:

xij = ξj
‖xi − xj‖

xi + ξi
‖xi − xj‖

xj (32)

=

(
‖xi − xj‖2 − r2

i + r2
j

)
xi +

(
‖xi − xj‖2 + r2

i − r2
j

)
xj

2‖xi − xj‖2 . (33)

Suppose now that xi is �xed and xj moves with speed v in the direction of uji. To compute the speed of xij
moving in the same direction, we set xi = 0, write xj = ‖xi − xj‖, and simplify (33) to xij = 1

2 (‖xi − xj‖ + (r2
i −

r2
j )/‖xi − xj‖). Its derivative with respect to the distance is

dxij
d‖xi − xj‖

= 1
2

(
1 −

r2
i − r2

j

‖xi − xj‖2

)
, (34)

we write D for the derivative in this special, 1-dimensional scenario, and note that xij moves with speed
Dv. Subtracting the corresponding multiple of uji from the velocity vector of every point xk, we get the �nal
collection of vectors.

Lemma 8 (Change of Motion). Replacing the velocity vector tk by Tijk = Vijk −DVij, for every k, �xes the center
and the plane of the circle Sij = Si ∩ Sj while preserving the derivative of σij. The coe�cient ofVij is given in (34).
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Movement of xk. The circle Sij alternates between the boundary and the interior of the space-�lling diagram,
andwe are interested in the arcs that belong to the boundary. The endpoints of these arcs belong to 0-spheres
of the form Sijk = Si∩Sj∩Sk. Recall that σijk is 0, 1

2 , or 1. If σijk = 1, then both points of Sijk lie on the boundary
of the space-�lling diagram and therefore serve as endpoints of the relevant arcs of Sij, if σijk = 1

2 , then only
one of the twopoints serves in this capacity, and if σijk = 0, then neither point serves in this capacity. Consider
a sphere, Sk, such that σijk = 1

2 or 1, and let P ∈ Sijk be an endpoint of an arc; see Figure 4. We are interested

xij

SkSij

P
xk

vk

uPij

Tijk

v

Figure 4: The sphere intersects the circle in two points, and we draw the tangent plane that touches the sphere in one of these
points. The orthogonal projections of Tijk and of vuPij onto xk − P give the speed vk.

in the speed in which the point P moves along Sij. To compute this speed, we let uPij be the unit vector that is
tangent to Sij at the point P such that xk and P + uPij lie on the same side of the tangent plane, that is:

uPij = ± (xij − P) × uij
‖xij − P‖

, (35)

and the correct sign is the one for which 〈xk − P, uPij〉 > 0; see Figure 4. When xk moves along Tijk with speed
‖Tijk‖, then the tangent planemoves along xk−Pwith speed vk = 〈xk − P, Tijk〉/‖xk − P‖. At the same time, the
tangent planemoves alonguPij with a speed v such that substituting vuPij forTijk in this equation gives the same
speed, namely vk. In other words, v〈xk − P, uPij〉 = 〈xk − P, Tijk〉 and therefore v = 〈xk − P, Tijk〉/〈xk − P, uPij〉.
This implies

dσij
d∠xixjxk

= 1
〈xk − P, uPij〉

〈Tijk , xk − P〉, (36)

in which ∠xixjxk is the angle parametrizing the circular motion of xk about the line passing through xi and
xj, with k is such that P ∈ Sijk; see the �rst sum on the right-hand side of (31) in Lemma 7.

Change of rij. Recall that Lemma 7 gives the rate of change of the radius. We ask how it a�ects the derivative
of σij. To begin, we observe that hk = 〈xij − P, xk − P〉/‖xk − P‖ is the signed distance of xij from the tangent
plane. It is positive if xij and xk lie on the same side of the plane, and negative if they lie on opposite sides.
Letting αP be the angle between xij − P and the line in which the tangent plane intersects the plane of Sij,
we get hk = rij sin αP. Hence, αP = arcsin(hk/rij), and we are interested in the derivative with respect to the
radius. Remembering that the derivative of arcsin x is 1/

√
1 − x2, we get

dαP
drij

= 1√
1 − h2

k /r2
ij

−hk
r2
ij

= −〈xij − P, xk − P〉
rij
√
r2
ij‖xk − P‖

2 − 〈xij − P, xk − P〉2
. (37)

Using the chain rule, we get the derivative with respect to ‖xi − xj‖ by multiplying (37) with (27) and then
taking the sum over all points P; see the second sum on the right-hand side of (31) in Lemma 7.
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Summary. Adding the contribution of the changing radius to those of the movements of the xk and normal-
izing by the length of the circle, we get the desired derivative.

Lemma 9 (Derivative of σij). The derivative of the fraction of Sij on the boundary of the space-�lling diagram
at state x with momentum t is

σ′ij = 1
2πrij

[∑
k

〈Tijk , xk − P〉
〈xk − P, uPij〉

−
∑
k

dαP
drij

drij
d‖xi − xj‖

〈uij , tj − ti〉
]
, (38)

in which the coe�cients in the second sum are given in (37) and (27). Both sums are over all oriented boundary
triangles of the alpha shape that share the edge from xi to xj, and P ∈ Sijk is the corresponding corner of the
space-�lling diagram.

4 Gradients
We write the derivative of the weighted mean curvature function, mean : R3n → R, in terms of the gradient
ofmean at x ∈ R3n, denotedm = ∇xmean. Recalling (15), this derivative ismean′ = p′ + q′ + s′, with

p′ = 4π
∑
i
wiriσ′i , (39)

q′ = −π2
∑
i,j

(wi + wj)
(
r′ijϕijσij + rijϕ′

ijσij
)
, (40)

s′ = −π2
∑
i,j

(wi + wj)rijϕijσ′ij . (41)

Writing m = [m1,m2, . . . ,m3n]T , we recall that mi = [m3i+1,m3i+2,m3i+3]T is the 3-dimensional gradi-
ent that applies to xi. Using boldface letters for the gradients of p, q, s, and similar conventions for the 3-
dimensional sub-vectors, we havem = p + q + s andmi = pi + qi + si for 0 ≤ i < n. We get the gradients by
redistributing the derivatives stated in Lemmas 6 to 9.

First term. To begin, we use Lemma 6 to rewrite (39) as

p′ =
∑
i,j
pij〈uij , ti − tj〉 +

∑
i,j,k

pijk〈uijk , ti − tj〉, (42)

pij = 4πwiri
dσi

d‖xi − xj‖
= πwiσij

(
1 −

r2
i − r2

j

‖xi − xj‖2

)
, (43)

pijk = 4πwiri
rijkνijk

2πri‖xi − xj‖
= 2wirijkνijk

1
‖xi − xj‖

, (44)

in which the �rst sum is over all directed boundary edges of the alpha shape, and the second sum is over
all triangles incident to these edges. Observe that for �xed i, we get possibly non-zero contributions to all pj.
Symmetrically, we get pi by accumulating contributions from all j. Using uji = −uij and ujik = uijk, we get

pi =
∑
j

(pij + pji)uij +
∑
j,k

(pijk − pjik)uijk , (45)

in which the �rst sum is over all boundary edges of the alpha shape incident to xi, and the second sum is over
all triangles incident to these edges. Not surprisingly, the result is similar to the weighted area gradient given
in Proposition 5. Speci�cally, we get aij = pijri and aijk = pijkri.
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Second term.We use Lemma 7 to rewrite (40) as

q′ =
∑
i,j

(
qij + q̄ij

)
〈uij , ti − tj〉, (46)

qij = −π(wi + wj)
2 ϕijσij

drij
d‖xi − xj‖

(47)

=
−π(wi + wj)ϕijσij

(
(r2
i − r2

j )2 − ‖xi − xj‖4
)

4‖xi−xj‖2
√

2
(
r2
i r2
j + (r2

i + r2
j )‖xi−xj‖2

)
−
(
r4
i + r4

j + ‖xi−xj‖4
) , (48)

q̄ij = −π(wi+wj)
2 rijσij

dϕij
d‖xi−xj‖

= −π(wi+wj)rijσij‖xi − xj‖√
2(r2

i +r2
j )‖xi−xj‖2−(r2

i −r2
j )2 − ‖xi−xj‖4

, (49)

in which the sum is over all directed boundary edges of the alpha shape. Redistributing the terms, we get

qi =
∑
j

(qij + qji + q̄ij + q̄ji)uij , (50)

in which the sum is over all boundary edges of the alpha shape incident to xi.

Third term. The redistribution of the pieces on the right-hand side of (38) to get the gradient is complicated
by the change of themotion.We therefore begin by rewriting Tijk. To this end, we recall that the cross product
is distributive: a × b + a × c = a × (b + c), and that the Lagrange formula turns a triple cross product into two
scalar products: (a × b) × c = b〈a, c〉 − a〈b, c〉. Recalling the de�nition of D from (34), we can now rewrite the
new motion vector:

Tijk = tk − ti − ωj × (xk − xi) − D[tj − ti − ωj × (xj − xi)] (51)
= tk − Dtj + (D − 1)ti − ωj × [xk − Dxj + (D − 1)xi] (52)
= tk − Dtj + (D − 1)ti − 〈tj − ti , dijk〉uij + 〈uij , dijk〉(tj − ti), (53)

in which the third line is obtained by applying the Lagrange formula and writing dijk = (xk − Dxj + (D −
1)xi)/‖xi − xj‖. We need the scalar product of Tijk with xk − P:

〈Tijk , xk − P〉 = 〈xk − P, tk − Dtj + (D − 1)ti〉 (54)
− 〈xk − P, uij〉〈dijk , tj − ti〉 + 〈uij , dijk〉〈xk − P, tj − ti〉 (55)

= 〈aijk , tk〉 + 〈bijk , tj〉 + 〈cijk , ti〉, (56)

in which

aijk = xk − P, (57)
bijk = [−D + 〈uij , dijk〉](xk − P) − 〈xk − P, uij〉dijk , (58)
cijk = [D − 1 − 〈uij , dijk〉](xk − P) + 〈xk − P, uij〉dijk . (59)

We are now ready to rewrite (41) using Lemma 9 as

s′ =
∑
i,j,P

[
sijk〈Tijk , xk − P〉 + s̄ijk〈uij , tj − ti〉

]
, (60)

=
∑
i,j,P

[
sijk〈aijk , tk〉+sijk〈bijk , tj〉+sijk〈cijk , ti〉+ s̄ijk〈uij , tj〉− s̄ijk〈uij , ti〉

]
, (61)

sijk = −wi + wj
4 ϕij

1
〈xk − P, uPij〉

, (62)

s̄ijk = wi + wj
4 ϕij

dαP
drij

drij
d‖xi − xj‖

, (63)
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in which the sum is over the three ordered versions of all oriented boundary triangles of the alpha shape.
Letting i, j, k be the vertices of such a triangle, the ordered versions are given by the index triplets ijk, kij, jki,
and we write P for the corresponding corner of the space-�lling diagram, noting that P ∈ Sijk. Observe that
an unordered triangle that belongs to 0, 1, 2 tetrahedra in the alpha complex occurs 2, 1, 0 times in this sum.
Redistributing the terms, we get

si =
∑
j,k

[
sijkaijk + skijbkij + sjkicjki + s̄jikuji − s̄ijkuij

]
, (64)

in which the sum is over all oriented boundary triangles of the alpha shape that share xi. As before, P ∈ Sijk
is the corresponding corner of the space-�lling diagram.

Summary. We �nally get the gradient of the weighted mean curvature function by adding the gradients of
the three component functions:

Theorem 10 (Gradient of Weighted Mean Curvature). The derivative of the weighted mean curvature of the
space-�lling diagram at state x with momentum t is Dmeanx(t) = 〈m, t〉, in whichmi = pi + qi + si as given in
(45), (50), and (64), for all 0 ≤ i < n.

5 Violations of Continuity
To embed our formulas in the inner loop of a molecular dynamics application, the implementation must be
e�cient and robust. We address the latter requirement by identifying the subset ofR3n where the gradient of
theweightedmean curvature function is not continuous. This subset is contained in the subset of non-generic
states, which we describe �rst.

General position.We distinguish two types of degenerate states: where the Delaunay mosaic is ambiguous,
and where the Delaunay mosaic is unambiguous but the alpha complex is ambiguous. Recall that X is a
collection of n closed balls in R3, and that these balls can move individually but their radii are �xed. We say
X is in general position and, equivalently, that its state is generic if the following three conditions hold:

I. the common intersection of p+1 Voronoi domains is either empty or a convex polyhedron of dimension
3 − p;

II. the common intersection of p + 1 spheres bounding balls in X is either empty or a sphere of dimension
2 − p.

Condition I implies that any �ve Voronoi domains have an empty common intersection, and Condition II
implies that any four spheres have an empty common intersection. Each violation of Condition I corresponds
to a (3n − 1)-dimensional submanifold of R3n and so does every violation of Condition II, except when two
radii are the same, in which case we get a submanifold of dimension 3n − 3. LetMI and MII be the union of
submanifolds that correspond to violations of Conditions I and II, respectively. Since there are only �nitely
many such submanifolds,MI andMII have dimension 3n − 1 each.

Condition I and �ips. If Condition I is satis�ed, then the Delaunay mosaic is simplicial. We get a violation
when the state trajectory intersects MI. We limit ourselves to discussing what we call the typical case, in
which there is only one violation of general position. Indeed, multiple violations correspond to intersections
of the (3n − 1)-dimensional submanifolds. In the typical case, the intersection is an isolated point where the
trajectory passes locally fromone side ofMI to the other. The corresponding change in theDelaunaymosaic is
a �ip, ofwhich there are four types. For integers 1 ≤ b ≤ 4 and a = 5−b, the b-to-a �ip replaces b tetrahedra by
a tetrahedra; see [6] for details on this operation. The Delaunaymosaic is a simplicial complex geometrically
realized in R3, both before and after the replacement. This implies that the union of the b tetrahedra before
the �ip be the same as the union of the a tetrahedra after the �ip.
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To be more formal, let B be the complex consisting of the b tetrahedra and their faces, and let A be
the complex consisting of the a tetrahedra and their faces. Then C = B ∩ A is the common boundary of both
complexes, and the �ip substitutes A \C for B \C in the Delaunaymosaic. By construction, either all simplices
of B \ C and of A \ C belong to the alpha complex before and after the �ip, or none does. In the latter case,
none of the formulas in Theorem 10 are a�ected by the �ip. In the former case, some terms in the formulas
get replaced by other terms. At the moment of the �ip, the replaced and the replacing terms evaluate to the
same numerical value, which implies that theweightedmean curvature and its derivative are unchanged and
therefore continuous. We can see this by noting that the �ip does not alter the combinatorial structure of the
space-�lling diagram boundary and therefore a�ects neither the weighted mean curvature nor its derivative.

Condition II and critical simplices. Condition II addresses situations in which the alpha complex changes
while the Delaunay mosaic stays the same: we either add one or more simplices in the mosaic to the complex
or we remove them from the complex. Here we consider the case in which only one simplex is added or re-
moved. With reference to the discrete Morse theory of Delaunay mosaics outlined in [2], we call this a critical
simplex. We distinguish three cases.

Case C1: the added or removed simplex is an edge of the Delaunaymosaic. At themoment of the change, the
spheres whose centers are the endpoints of the edge touch in a single point. Letting i and j be the indices
of the spheres, ε = ri + rj − ‖xi − xj‖ is negative when the spheres are disjoint and positive when they
intersect in a circle. For ε < 0, the edge does not belong to the alpha complex and therefore contributes
neither to the weighted mean curvature nor to its gradient. For ε > 0, the change to the weighted mean
curvature caused by the edge depends on the change in area of the space-�lling diagram, the change in
length of its arcs, and the dihedral angles at the arcs. Focussing on the rough order of the changes, it is
not di�cult to see that ∆area = ε, ∆length = √ε,Angle = 1, and therefore ∆mean = √ε and ‖∇mean‖ = ∞
at ε = 0.

The other two cases are similar so we will be brief. In each case, we use ε to parameterize the local motion,
with ε = 0 at the moment of change. We feel free to make further non-essential simplifying assumptions,
such as the radii being distinct.

Case C2: the added or removed simplex is a triangle of the Delaunay mosaic. At the moment of change, the
spheres whose centers are the vertices of the triangle meet in a single point. By easy analysis, we get
∆area = ε√ε, ∆length = √ε, Angle = 1, and therefore ∆mean = √ε and ‖∇mean‖ = ∞ at ε = 0.

Case C3: the added or removed simplex is a tetrahedron of the Delaunay mosaic. At the moment of change,
the spheres whose centers are the vertices of the tetrahedron meet in a single point. By easy analysis, we
get ∆area = ε2, ∆length = ε, Angle = 1, and therefore ∆mean = ε and ∆‖∇mean‖ = 1 at ε = 0.

In conclusion, the weighted mean curvature is continuous but its gradient occasionally changes discontinu-
ously; see Table 1 for a convenient summary of the three cases above as well as the six cases to be discussed
shortly.

Table 1: The order of change of the weighted mean curvature and of its gradient at states that violate Condition II.

C1 C2 C3 N01 N02 N03 N12 N13 N23

∆mean
√
ε
√
ε ε ε

√
ε ε

√
ε ε ε

∆‖∇mean‖ ∞ ∞ 1 1 ∞ 1 ∞ 1 1
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Condition II and non-singular intervals. Here we consider the case in which at least two simplices are
added or removed at the samemoment. Generically, these simplices form an interval of size 2, 4, or 8; see [2]
for details. We encounter six cases.

Case N01: A vertex together with an incident edge are added or removed. At the moment of change, the
sphere centered at the vertex breaks through the surface of the sphere whose center is the other end-
point of the edge. By easy analysis, we get ∆area = ε, ∆length = √ε, and because ϕij is proportional to rij
also Angle = √ε. Hence ∆mean = ε and ∆‖∇mean‖ = 1 at ε = 0.

Case N02: A vertex together with an incident triangle and its two edges that share the vertex are added or
removed. At the moment of change, the sphere centered at the vertex breaks through the circle at which
the two spheres centered at the other vertices of the triangle intersect. By easy analysis, we get ∆area =
ε
√
ε, ∆length = √ε, Angle = 1, and therefore ∆mean = √ε and ‖∇mean‖ = ∞ at ε = 0.

Case N03: A vertex together with an incident tetrahedron and its three edges and three triangles that share
the vertex are added or removed. At the moment of change, the sphere centered at the vertex breaks
through the pair of points in which the three spheres centered at the other vertices of the tetrahedron
intersect. We get ∆area = ε2, ∆length = ε, Angle = 1, and therefore ∆mean = ε and ∆‖∇mean‖ = 1 at
ε = 0.

Case N12: An edge together with an incident triangle are added or removed. At the moment of change, the
circle in which the two spheres centered at the endpoints of the edge intersect breaks through the surface
of the sphere centered at the third vertex of the triangle. By easy analysis, we get ∆area = ε√ε, ∆length =√
ε, Angle = 1, and therefore ∆mean = √ε and ‖∇mean‖ = ∞ at ε = 0.

Case N13: An edge together with an incident tetrahedron and its two triangle that share the edge are added
or removed. At the moment of change, the circle in which the two spheres centered at the endpoints of
the edge intersect breaks through the circle in which the two spheres centered at the other vertices of
the tetrahedron intersect. We get ∆area = ε2, ∆length = ε, Angle = 1, and therefore ∆mean = ε and
∆‖∇mean‖ = 1 at ε = 0.

Case N23: A triangle together with an incident tetrahedron are added or removed. At the moment of change,
the pair of points inwhich the three spheres centered at the vertices of the triangle intersect break through
the surface of the sphere centered at the fourth vertex of the tetrahedron. We get ∆area = ε2, ∆length = ε,
Angle = 1, and therefore ∆mean = ε and ∆‖∇mean‖ = 1 at ε = 0.

See again Table 1 for a convenient summary of the results in all cases. We note that the situation in the un-
weighted case has better continuity properties along MII ⊆ R3n in some cases, but the analysis is more in-
volved. SubtractingMI ∪MII from R3n, we are left with �nitely many open cells such that the formula of the
weighted mean curvature and of its derivative are both invariant over each cell. All terms in these formulas
are continuous over the cell, which implies that bothmean : R3n → R and∇mean : R3n → R3n are continu-
ous over the open cell. As argued above,mean and∇mean are also continuous at states x ∈MI \MII, hence
they are continuous at all x ∈ R3n \MII. We summarize the �ndings of this section.

Theorem 11 (Continuity of Gradient). The gradient of the weighted mean curvature of a space-�lling diagram
of n closed balls in R3 is continuous provided the state x ∈ R3n of the diagram does not belong toMII, which is
a (3n − 1)-dimensional subset of R3n.

6 Discussion
The main contribution of this paper is the analysis of the derivative of the weighted mean curvature of the
space-�lling diagramof a set ofmovingballs. Speci�cally,we give an explicit description of the gradient of the
weighted mean curvature function, which for n spheres is a map from R3n to R. In addition, we characterize
the subset of R3n at which the derivative violates continuity. In total, this is su�cient information for an
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e�cient and robust implementation of the weighted mean curvature derivative, one that can be added to the
inner loop of a molecular dynamics simulation of a physical system. There are several questions about this
application that go beyond the scope of this paper:

• Is there a connection between the coe�cients with which the morphological approach combines the
intrinsic volumes [12, 17] and the states at which their gradients are not continuous?

• Splitting the mean curvature concentrated along an arc in equal parts is suggested by the Apollonius
diagram of the spheres, but splitting it according to the Voronoi diagram is also feasible. Are there
physical reasons to prefer one split over the other?

We remark that the formulas in this paper can be easily adapted to splitting the mean curvature according
to the Voronoi tessellation of the spheres.
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Notation

Table 2: Notation for concepts, sets, functions, vectors, variables.

Si = bd Bi sphere bounding ball
Sij = bd Bij circle bounding disk
Sijk = bd Bijk pair of points bounding line segment
xi , xij , xijk centers of Si, Sij, Sijk
ri , rij , rijk radii of Si, Sij, Sijk
uij = xi−xj

‖xi−xj‖ unit vector between centers
uijk = uik−〈uik ,uij〉uij

‖uik−〈uik ,uij〉uij‖ unit normal to uij with positive component in direction uik
νi = Volume(Bi∩Vi)

Volume(Bi) volume fraction of ball
νij = Area(Bij∩Vij)

Area(Bij) area fraction of disk

νijk = Length(Bijk∩Vijk)
Length(Bijk) length fraction of line segment

νijk` = #(Bijk`∩Vijk`)
#(Bijk`) 0 or 1

σi = Area(Si∩Vi)
Area(Bi) area fraction of sphere

σij = Length(Sij∩Vij)
Length(Sij) length fraction of circle

σijk = #(Sijk∩Vijk)
#(Sijk) 0, 1

2 , or 1

W = Welec + Wnp e�ective solvation potential
K, Kr = K ⊕ rB3 convex body, parallel body
H ∈ G3

i , χ[K ∩ H] i-plane, Euler characteristic of intersection
X = {Bi},

⋃
X set of balls, space-�lling diagram

S2,B3,R3; f : S2 → R unit sphere, unit ball, Euclidean space; height function
x, t;v, a state, momentum; gradients of volume, area
F : R3n → R intrinsic volume function
vij , v̄ij , aij , aijk constants
x, a, b, c, γ abstract variables
ξi , ξj signed distances
tk , Tijk velocity vectors
ωj; tstr

j , trot
j angular momentum; components of motion

A; P; v;uPij; αP area; point; speed; vector; angle
Vij ,Vijk , vk , hk auxiliary variables
mean′ = p′ + q′ + s′ derivatives
p, q, s;pi , qi , si gradients; as they apply to xi
aijk , bijk , cijk , dijk auxiliary vectors
pij , pijk , qij , q̄ij , sijk , s̄ijk constants
∠xixj ,∠xixjxk; ε angle parameters; motion parameter
MI,MII subsets of R3n
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