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Abstract. We study turn-based stochastic zero-sum games with lexi-
cographic preferences over reachability and safety objectives. Stochas-
tic games are standard models in control, verification, and synthesis
of stochastic reactive systems that exhibit both randomness as well as
angelic and demonic non-determinism. Lexicographic order allows to con-
sider multiple objectives with a strict preference order over the satisfac-
tion of the objectives. To the best of our knowledge, stochastic games
with lexicographic objectives have not been studied before. We estab-
lish determinacy of such games and present strategy and computational
complexity results. For strategy complexity, we show that lexicographi-
cally optimal strategies exist that are deterministic and memory is only
required to remember the already satisfied and violated objectives. For
a constant number of objectives, we show that the relevant decision
problem is in NP ∩ coNP, matching the current known bound for sin-
gle objectives; and in general the decision problem is PSPACE-hard and
can be solved in NEXPTIME ∩ coNEXPTIME. We present an algorithm
that computes the lexicographically optimal strategies via a reduction
to computation of optimal strategies in a sequence of single-objectives
games. We have implemented our algorithm and report experimental
results on various case studies.

1 Introduction

Simple stochastic games (SGs) [26] are zero-sum turn-based stochastic games
played over a finite state space by two adversarial players, the Maximizer and
Minimizer, along with randomness in the transition function. These games allow
the interaction of angelic and demonic non-determinism as well as stochastic
uncertainty. They generalize classical models such as Markov decision processes
(MDPs) [39] which have only one player and stochastic uncertainty. An objective
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specifies a desired set of trajectories of the game, and the goal of the Maximizer
is to maximize the probability of satisfying the objective against all choices of
the Minimizer. The basic decision problem is to determine whether the Maxi-
mizer can ensure satisfaction of the objective with a given probability threshold.
This problem is among the rare and intriguing combinatorial problems that are
NP ∩ coNP, and whether it belongs to P is a major and long-standing open
problem. Besides the theoretical interest, SGs are a standard model in con-
trol and verification of stochastic reactive systems [4,18,31,39], as well as they
provide robust versions of MDPs when precise transition probabilities are not
known [22,45].

The multi-objective optimization problem is relevant in the analysis of sys-
tems with multiple, potentially conflicting goals, and a trade-off must be consid-
ered for the objectives. While the multi-objective optimization has been exten-
sively studied for MDPs with various classes of objectives [1,28,39], the problem
is notoriously hard for SGs. Even for multiple reachability objectives, such games
are not determined [23] and their decidability is still open.

This work considers SGs with multiple reachability and safety objectives with
lexicographic preference order over the objectives. That is, we consider SGs with
several objectives where each objective is either reachability or safety, and there
is a total preference order over the objectives. The motivation to study such lex-
icographic objectives is twofold. First, they provide an important special case of
general multiple objectives. Second, lexicographic objectives are useful in many
scenarios. For example, (i) an autonomus vehicle might have a primary objective
to avoid clashes and a secondary objective to optimize performance; and (b) a
robot saving lives during fire in a building might have a primary objective to
save as many lives as possible, and a secondary objective to minimize energy con-
sumption. Thus studying reactive systems with lexicographic objectives is a very
relevant problem which has been considered in many different contexts [7,33]. In
particular non-stochastic games with lexicographic objectives [6,25] and MDPs
with lexicographic objectives [47] have been considered, but to the best of our
knowledge SGs with lexicographic objectives have not been studied.

In this work we present several contributions for SGs with lexicographic
reachability and safety objectives. The main contributions are as follows.

– Determinacy. In contrast to SGs with multiple objectives that are not deter-
mined, we establish determinacy of SGs with lexicographic combination of
reachability and safety objectives.

– Computational complexity. For the associated decision problem we establish
the following: (a) if the number of objectives is constant, then the decision
problem lies in NP ∩ coNP, matching the current known bound for SGs with
a single objective; (b) in general the decision problem is PSPACE-hard and
can be solved in NEXPTIME ∩ coNEXPTIME.

– Strategy complexity. We show that lexicographically optimal strategies exist
that are deterministic but require finite memory. We also show that mem-
ory is only needed in order to remember the already satisfied and violated
objectives.



400 K. Chatterjee et al.

– Algorithm. We present an algorithm that computes the unique lexicographic
value and the witness lexicographically optimal strategies via a reduction to
computation of optimal strategies in a sequence of single-objectives games.

– Experimental results. We have implemented the algorithm and present exper-
imental results on several case studies.

Technical Contribution. The key idea is that, given the lexicographic order of the
objectives, we can consider them sequentially. After every objective, we remove
all actions that are not optimal, thereby forcing all following computation to
consider only locally optimal actions. The main complication is that local opti-
mality of actions does not imply global optimality when interleaving reachability
and safety, as the latter objective can use locally optimal actions to stay in the
safe region without reaching the more important target. We introduce quantified
reachability objectives as a means to solve this problem.

Related Work. We present related works on: (a) MDPs with multiple objectives;
(b) SGs with multiple objectives; (c) lexicographic objectives in related models;
and (d) existing tool support.

(a) MDPs with multiple objectives have been widely studied over a long
time [1,39]. In the context of verifying MDPs with multiple objectives, both
qualitative objectives such as reachability and LTL [29], as well as quanti-
tative objectives, such as mean payoff [8,13], discounted sum [17], or total
reward [34] have been considered. Besides multiple objectives with expecta-
tion criterion, other criteria have also been considered, such as, combination
with variance [9], or multiple percentile (threshold) queries [8,20,32,41].
Practical applications of MDPs with multiple objectives are described
in [2,3,42].

(b) More recently, SGs with multiple objectives have been considered, but the
results are more limited [43]. Multiple mean-payoff objectives were first
examined in [5] and the qualitative problems are coNP-complete [16]. Some
special classes of SGs (namely stopping SGs) have been solved for total-
reward objectives [23] and applied to autonomous driving [24]. However,
even for the most basic question of solving SGs with multiple reachability
objectives, decidability remains open.

(c) The study of lexicographic objectives has been considered in many differ-
ent contexts [7,33]. Non-stochastic games with lexicographic mean-payoff
objectives and parity conditions have been studied in [6] for the synthe-
sis of reactive systems with performance guarantees. Non-stochastic games
with multiple ω-regular objectives equipped with a monotonic preorder,
which subsumes lexicographic order, have been studied in [12]. Moreover,
the beyond worst-case analysis problems studied in [11] also considers pri-
mary and secondary objectives, which has a lexicographic flavor. MDPs
with lexicographic discounted-sum objectives have been studied in [47], and
have been extended with partial-observability in [46]. However, SGs with
lexicographic reachability and safety objectives have not been considered so
far.
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(d) PRISM-Games [37] provides tool support for several multi-player multi-
objective settings. MultiGain [10] is limited to generalized mean-payoff
MDPs. Storm [27] can, among numerous single-objective problems, solve
Markov automata with multiple timed reachability or expected cost objec-
tives [40], multi-cost bounded reachability MDPs [35], and it can provide
simple strategies for multiple expected reward objectives in MDPs [28].

Structure of this Paper. After recalling preliminaries and defining the problem
in Sect. 2, we first consider games where all target sets are absorbing in Sect. 3.
Then, in Sect. 4 we extend our insights to general games, yielding the full algo-
rithm and the theoretical results. Finally, Sect. 5 describes the implementation
and experimental evaluation. Section 6 concludes.

2 Preliminaries

Notation. A probability distribution on a finite set A is a function f : A → [0, 1]
such that

∑
x∈A f(x) = 1. We denote the set of all probability distributions on A

by D(A). Vector-like objects x are denoted in a bold font and we use the notation
xi for the i-th component of x. We use x<n as a shorthand for (x1, . . . ,xn−1).

2.1 Basic Definitions

ProbabilisticModels. In this paper, we consider (simple) stochastic games [26],
which are defined as follows. Let L = {a, b, . . .} be a finite set of actions labels.

Definition 1 (SG). A stochastic game (SG) is a tuple G = (S�, S♦,Act, P )
with S := S� � S♦ �= ∅ a finite set of states, Act : S → 2L \ {∅} defines finitely
many actions available at every state, and P : S × L → D(S) is the transition
probability function. P (s, a) is undefined if a /∈ Act(s).

We abbreviate P (s, a)(s′) to P (s, a, s′). We refer to the two players of the game
as Max and Min and the sets S� and S♦ are the Max- and Min-states, respectively.
As the game is turn based, these sets partition the state space S such that in
each state it is either Max’s or Min’s turn. The intuitive semantics of an SG is
as follows: In every turn, the corresponding player picks one of the finitely many
available actions a ∈ Act(s) in the current state s. The game then transitions
to the next state according to the probability distribution P (s, a). The winning
conditions are not part of the game itself and need to be further specified.

Sinks, Markov Decision Processes and Markov Chains. A state s ∈ S is
called absorbing (or sink) if P (s, a, s) = 1 for all a ∈ Act(s) and Sinks(G) denotes
the set of all absorbing states of SG G. A Markov Decision Process (MDP) is
an SG where either S♦ = ∅ or S� = ∅, i.e. a one-player game. A Markov Chain
(MC) is an SG where |Act(s)| = 1 for all s ∈ S. For technical reasons, we allow
countably infinite state spaces S for both MDPs and MCs.
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Strategies. We define the formal semantics of games by means of paths and
strategies. An infinite path π is an infinite sequence π = s0a0s1a1 · · · ∈ (S ×L)ω,
such that for every i ∈ N, ai ∈ Act(si) and si+1 ∈ {s′ | P (si, ai, s

′) > 0}.
Finite paths are defined analogously as elements of (S ×L)∗ ×S. Note that when
considering MCs, every state just has a single action, so an infinite path can be
identified with an element of Sω.

A strategy of player Max is a function σ : (S × L)∗ × S� → D(L) where
σ(πs)(s′) > 0 only if s ∈ Act(s). It is memoryless if σ(πs) = σ(π′s) for all
π, π′ ∈ (S × L)∗. More generally, σ has memory of class-size at most m if the
set (S × L)∗ can be partitioned in m classes M1, . . . ,Mm ⊆ (S × L)∗ such that
σ(πs) = σ(π′s) for all 1 ≤ i ≤ m, π, π′ ∈ Mi and s ∈ S�. A memory of class-size
m can be represented with 
log(m)� bits.

A strategy is deterministic if σ(πs) is Dirac for all πs. Strategies that are both
memoryless and deterministic are called MD and can be identified as functions
σ : S� → L. Notice that there are at most |L|S� different MD strategies, that is,
exponentially many in S�; in general, there can be uncountably many strategies.

Strategies τ of player Min are defined analogously, with S� replaced by S♦.
The set of all strategies of player Max is denoted with ΣMax, the set of all MD
strategies with ΣMD

Max, and similarly ΣMin and ΣMD
Min for player Min.

Fixing a strategy σ of one player in a game G yields the induced MDP Gσ.
Fixing a strategy τ of the second player too, yields the induced MC Gσ,τ . Notice
that the induced models are finite if and only if the respective strategies use
finite memory.

Given an (induced) MC Gσ,τ , we let P
σ,τ
s be its associated probability mea-

sure on the Borel-measurable sets of infinite paths obtained from the standard
cylinder construction where s is the initial state [39].

Reachability and Safety. In our setting, a property is a Borel-measurable
set Ω ⊆ Sω of infinite paths in an SG. The reachability property Reach (T )
where T ⊆ S is the set Reach (T ) = {s0s1 . . . ∈ Sω | ∃i ≥ 0: si ∈ T}. The set
Safe (T ) = Sω \Reach (T ) is called a safety property. Further, for sets T1, T2 ⊆ S
we define the until property T1 U T2 = {s0s1 . . . ∈ Sω | ∃i ≥ 0: si ∈ T2 ∧ ∀j <
i : sj ∈ T1}. These properties are measurable (e.g. [4]). A reachability or safety
property where the set T satisfies T ⊆ Sinks(G) is called absorbing. For the safety
probabilities in an (induced) MC, it holds that Ps(Safe (T )) = 1−Ps(Reach (T )).
We highlight that an objective Safe (T ) is specified by the set of paths to avoid,
i.e. paths satisfying the objective remain forever in S \ T .

2.2 Stochastic Lexicographic Reachability-Safety Games

SGs with lexicographic preferences are a straightforward adaptation of the ideas
of e.g. [46] to the game setting. The lexicographic order on R

n is defined as
x ≤lex y iff xi ≤ yi where i ≤ n is the greatest position such that for all j < i
it holds that xj = yj . The position i thus acts like a tiebreaker. Notice that for
arbitrary sets X ⊆ [0, 1]n, suprema and infima exist in the lexicographic order.
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Fig. 1. (a) An example of a stochastic game. Max-states are rendered as squares
� and Min-states as rhombs ♦. Probabilistic choices are indicated with small cir-
cles. In this example, all probabilities equal 1/2. The absorbing lex-objective Ω =
{Reach (S1) , Safe (S2)} is indicated by the thick green line around S1 = {s, t} and the
dotted red line around S2 = {t, u}. Self-loops in sinks are omitted. (b) Restriction of
the game to lex-optimal actions only.

Definition 2 (Lex-Objective and Lex-Value). A lexicographic reachability-
safety objective ( lex-objective, for short) is a vector Ω = (Ω1, . . . , Ωn) such that
Ωi ∈ {Reach (Si) ,Safe (Si)} with Si ⊆ S for all 1 ≤ i ≤ n. We call Ω absorb-
ing if all the Ωi are absorbing, i.e., if Si ⊆ Sinks(G) for all 1 ≤ i ≤ n. The lex-
(icographic)value of Ω at state s ∈ S is defined as:

Ωvlex(s) = sup
σ∈ΣMax

inf
τ∈ΣMin

P
σ,τ
s (Ω) (1)

where P
σ,τ
s (Ω) denotes the vector (Pσ,τ

s (Ω1), . . . ,Pσ,τ
s (Ωn)) and the suprema and

infima are taken with respect to the order ≤lex on [0, 1]n.

Thus the lex-value at state s is the lexicographically supremal vector of prob-
abilities that Max can ensure against all possible behaviors of Min. We will prove
in Sect. 4.3 that the supremum and infimum in (1) can be exchanged; this prop-
erty is called determinacy. We omit the superscript Ω in Ωvlex if it is clear from
the context. We also omit the sets ΣMax and ΣMin in the suprema in (1), e.g. we
will just write supσ.

Example 1 (SGs and lex-values). Consider the SG sketched in Fig. 1a with the
lex-objective Ω = {Reach (S1) ,Safe (S2)}. Player Max must thus maximize the
probability to reach S1 and, moreover, among all possible strategies that do so,
it must choose one that maximizes the probability to avoid S2 forever. �

Lex-Value of Actions and Lex-Optimal Actions. We extend the notion of
value to actions. Let s ∈ S be a state. The lex-value of an action a ∈ Act(s) is
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defined as vlex(s, a) =
∑

s′ P (s, a, s′)vlex(s′). If s ∈ S�, then action a is called
lex-optimal if vlex(s, a) = maxb∈Act(s) vlex(s, b). Lex-optimal actions are defined
analogously for states s ∈ S♦ by considering the minimum instead of the maxi-
mum. Notice that there is always at least one optimal action because Act(s) is
finite by definition.

Example 2 (Lex-value of actions). We now intuitively explain the lex-values of
all states in Fig. 1a. The lex-value of sink states s, t, u and w is determined by
their membership in the sets S1 and S2. E.g., vlex(s) = (1, 1), as it is part of
the set S1 that should be reached and not part of the set S2 that should be
avoided. Similarly we get the lex-values of t, u and w as (1, 0), (0, 0) and (0, 1)
respectively. State v has a single action that yields (0, 0) or (0, 1) each with
probability 1/2, thus vlex(v) = (0, 1/2).

State p has one action going to s, which would yield (1, 1). However, as p is a
Min-state, its best strategy is to avoid giving such a high value. Thus, it uses the
action going downwards and vlex(p) = vlex(q). State q only has a single action
going to r, so vlex(q) = vlex(r).

State r has three choices: (i) Going back to q, which results in an infinite
loop between q and r, and thus never reaches S1. So a strategy that commits
to this action will not achieve the optimal value. (ii) Going to t or u each with
probability 1/2. In this case, the safety objective is definitely violated, but the
reachability objective achieved with 1/2. (iii) Going to t or v each with probability
1/2. Similarly to (ii), the probability to reach S1 is 1/2, but additionally, there is
a 1/2 · 1/2 chance to avoid S2. Thus, since r is a Max-state, its lex-optimal choice
is the action leading to t or v and we get vlex(r) = (1/2, 1/4). �

Notice that with the kind of objectives considered, we can easily swap the
roles of Max and Min by exchanging safety objectives with reachability and vice
versa. It is thus no loss of generality to consider subsequently introduced notions
such as optimal strategies only from the perspective of Max.

Definition 3 (Lex-Optimal Strategies). A strategy σ ∈ ΣMax is lex-optimal
for Ω if for all s ∈ S, vlex(s) = infτ ′ Pσ,τ ′

s (Ω). A strategy τ of Min is a lex-
optimal counter-strategy against σ if Pσ,τ

s (Ω) = infτ ′ Pσ,τ ′
s (Ω).

We stress that counter-strategies of Min depend on the strategy chosen by Max.

Locally Lex-Optimal Strategies. An MD strategy σ of Max (Min, resp.) is
called locally lex-optimal if for all s ∈ S� (s ∈ S♦, resp.) and a ∈ Act(s), we
have σ(s)(a) > 0 implies that action a is lex-optimal. Thus, locally lex-optimal
strategies only assign positive probability to lex-optimal actions.

Convention. For the rest of the paper, unless stated otherwise, we use G =
(S�, S♦,Act, P ) to denote an SG and Ω = (Ω1, . . . , Ωn) is a suitable (not neces-
sarily absorbing) lex-objective, that is Ωi ∈ {Reach (Si) ,Safe (Si)} with Si ⊆ S
for all 1 ≤ i ≤ n.
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3 Lexicographic SGs with Absorbing Targets

In this section, we show how to compute the lexicographic value for SGs where
all target sets are absorbing. We first show various theoretical results in Sect. 3.1
upon which the algorithm for computing the values and optimal strategies pre-
sented in Sect. 3.2 is then built. The main technical difficulty arises from inter-
leaving reachability and safety objectives. In Sect. 4, we will reduce solving gen-
eral (not necessarily absorbing) SGs to the case with absorbing targets.

3.1 Characterizing Optimal Strategies

This first subsection derives a characterization of lex-optimal strategies in terms
of local optimality and an additional reachability condition (Lemma2 further
below). It is one of the key ingredients for the correctness of the algorithm
presented later and also gives rise to a (non-constructive) proof of existence of
MD lex-optimal strategies in the absorbing case.

We begin with the following lemma that summarizes some straightforward
facts we will frequently use. Recall that a strategy is locally lex-optimal if it only
selects actions with optimal lex-value.

Lemma 1. The following statements hold for any absorbing lex-objective Ω:

(a) If σ ∈ ΣMD
Max is lex-optimal and τ ∈ ΣMD

Min is a lex-optimal counter strategy
against σ, then σ and τ are both locally lex-optimal. (We do not yet claim
that such strategies σ, τ always exist.)

(b) Let G̃ be obtained from G by removing all actions (of both players) that are
not locally lex-optimal. Let ṽlex be the lex-values in G̃. Then ṽlex = vlex.

Proof (Sketch). Both claims follow from the definitions of lex-value and lex-
optimal strategy. For (b) in particular, we show that a strategy using actions
which are not lex-optimal can be transformed into a strategy that achieves a
greater (lower, resp.) value. Thus removing the non lex-optimal actions does not
affect the lex-value. See [19, Appendix A.1] for more technical details. ��

Example 3 (Modified game G̃). Consider again the SG from Fig. 1a. Recall the
lex-values from Example 1. Now we remove the actions that are not locally lex-
optimal. This means we drop the action that leads from p to s and the action
that leads from r to t or u (Fig. 1b). Since these actions were not used by the
lex-optimal strategies, the value in the modified SG is the same as that of the
original game. �
Example 4 (Locally lex-optimal does not imply globally lex-optimal). Note that
we do not drop the action that leads from r to q, because vlex(r) = vlex(q), so this
action is locally lex-optimal. In fact, a lex-optimal strategy can use it arbitrarily
many times without reducing the lex-value, as long as eventually it picks the
action leading to t or v. However, if we only played the action leading to q, the
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lex-value would be reduced to (0, 1) as we would not reach S1, but would also
avoid S2.

We stress the following consequence of this: Playing a locally lex-optimal
strategy is not necessarily globally lex-optimal. It is not sufficient to just restrict
the game to locally lex-optimal actions of the previous objectives and then solve
the current one. Note that in fact the optimal strategy for the second objec-
tive Safe (S2) would be to remain in {p, q}; however, we must not pick this
safety strategy, before we have not “tried everything” for all previous reachabil-
ity objectives, in this case reaching S1. �

This idea of “trying everything” for an objective Reach (Si) is equivalent to
the following: either reach the target set Si, or reach a set of states from which
Si cannot be reached anymore. Formally, let Zeroi = {s ∈ S | vlex

i (s) = 0} be the
set of states that cannot reach the target set Si anymore. Note that it depends
on the lex-value, not the single-objective value. This is important, as the single-
objective value could be greater than 0, but a more important objective has to
be sacrificed to achieve it.

We define the set of states where we have “tried everything” for all reacha-
bility objectives as follows:

Definition 4 (Final Set). For absorbing Ω, let R<i = {j < i | Ωj =
Reach (Sj)}. We define the final set F<i =

⋃
k∈R<i

Sk ∪ ⋂
k∈R<i

Zerok with
the convention that F<i = S if R<i = ∅. We also let F = F<n+1.

The final set contains all target states as well as the states that have lex-value 0
for all reachability objectives; we need the intersection of the sets Zerok, because
as long as a state still has a positive probability to reach any target set, its
optimal behaviour is to try that.

Example 5 (Final set). For the game in Fig. 1, we have Zero1 = {u, v, w} and
thus F = Zero1 ∪ S1 = {s, t, u, v, w}. An MD lex-optimal strategy of Max must
almost-surely reach this set against any strategy of Min; only then it has “tried
everything”. �

The following lemma characterizes MD lex-optimal strategies in terms of
local lex-optimality and the final set.

Lemma 2. Let Ω be an absorbing lex-objective and σ ∈ ΣMD
Max. Then σ is lex-

optimal for Ω if and only if σ is locally lex-optimal and for all s ∈ S we have

∀τ ∈ ΣMD
Min : Pσ,τ

s (Reach (F )) = 1. (�)

Proof (Sketch). The “if ”-direction is shown by induction on the number n of tar-
gets. We make a case distinction according to the type of Ωn: If it is safety, then
we prove that local lex-optimality is already sufficient for global lex-optimality.
Else if Ωn is reachability, then intuitively, the additional condition (�) ensures
that the strategy σ indeed “tries everything” and either reaches the target Sn or
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eventually a state in Zeron where the opponent Min can make sure that Max can-
not escape. The technical details of these assertions rely on a fixpoint characteri-
zation of the reachability probabilities combined with the classic Knaster-Tarski
Fixpoint Theorem [44] and are given in [19, Appendix A.2].

For the “only if ”-direction recall that lex-optimal strategies are necessarily
locally lex-optimal by Lemma 1 (a). Further let i be such that Ωi = Reach (Si)
and assume for contradiction that σ remains forever within S \ (Si ∪Zeroi) with
positive probability against some strategy of Min. But then σ visits states with
positive lex-value for Ωi infinitely often without ever reaching Si. Thus σ is not
lex-optimal, contradiction. ��

Finally, this characterization allows us to prove that MD lex-optimal strate-
gies exist for absorbing objectives.

Theorem 1. For an absorbing lex-objective Ω, there exist MD lex-optimal
strategies for both players.

Proof (Sketch). We consider the subgame G̃ obtained by removing lex-sub-
optimal actions for both players and then show that the (single-objective) value
of Reach (F ) in G̃ equals 1. An optimal MD strategy for Reach (F ) exists [26];
further, it is locally lex-optimal, because we are in G̃, and it reaches F almost
surely. Thus, it is lex-optimal for Ω by the “if ”-direction of Lemma 2. See [19,
Appendix A.3] for more details on the proof. ��

3.2 Algorithm for SGs with Absorbing Targets

Theorem 1 is not constructive because it relies on the values vlex without show-
ing how to compute them. Computing the values and constructing an optimal
strategy for Max in the case of an absorbing lex-objective is the topic of this
subsection.

Definition 5 (QRO). A quantified reachability objective (QRO) is deter-
mined by a function q : S′ → [0, 1] where S′ ⊆ S. For all strategies σ and τ ,
we define:

P
σ,τ
s (Reach (q)) =

∑

t∈S′
P

σ,τ
s ((S \ S′) U t) · q(t).

Intuitively, a QRO generalizes its standard Boolean counterpart by additionally
assigning a weight to the states in the target set S′. Thus the probability of a
QRO is obtained by computing the sum of the q(t), t ∈ S′, weighted by the
probability to avoid S′ until reaching t. Note that this probability does not
depend on what happens after reaching S′; so it is unaffected by making all
states in S′ absorbing.

In Sect. 4, we need the dual notion of a quantified safety property, defined as
P

σ,τ
s (Safe (q)) = 1−P

σ,τ
s (Reach (q)); intuitively, this amounts to minimizing the

reachability probability.
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Remark 1. A usual reachability property Reach (S′) is a special case of a quan-
tified one with q(s) = 1 for all s ∈ S′. Vice versa, quantified properties can be
easily reduced to usual ones defined only by the set S′: Convert all states t ∈ S′

into sinks, then for each such t prepend a new state t′ with a single action a
and P (t′, a, t) = q(t) and P (t′, a,⊥) = 1 − q(t) where ⊥ is a sink state. Finally,
redirect all transitions leading into t to t′. Despite this equivalence, it turns out
to be convenient and natural to use QROs.

Example 6 (QRO). Example 4 illustrated that solving a safety objective after a
reachability objective can lead to problems, as the optimal strategy for Safe (S2)
did not use the action that actually reached S1. In Example 5 we indicated that
the final set F = {s, t, u, v, w} has to be reached almost surely, and among those
states the ones with the highest safety values should be preferred. This can be
encoded in a QRO as follows: Compute the values for the Safe (S2) objective for
the states in F . Then construct the function q2 : F → [0, 1] that maps all states
in F to their safety value, i.e., q2 : {s �→ 1, t �→ 0, u �→ 0, v �→ 1/2, w �→ 1}. �

Thus using QROs, we can effectively reduce (interleaved) safety objectives
to quantified reachability objectives:

Lemma 3 (Reduction Safe → Reach). Let Ω be an absorbing lex-objective
with Ωn = Safe (Sn), qn : F → [0, 1] with qn(t) = vlex

n (t) for all t ∈ F where
F is the final set (Definition 4), and Ω′ = (Ω1, . . . , Ωn−1,Reach (qn)). Then:
Ωvlex = Ω ′

vlex.

Proof (Sketch). By definition, Ωvlex(s) = Ω ′
vlex(s) for all s ∈ F , so we only

need to consider the states in S \ F . Since any lex-optimal strategy for Ω or Ω′

must also be lex-optimal for Ω<n, we know by Lemma 2 that such a strategy
reaches F<n almost-surely. Note that we have F<n = F , as the n-th objective,
either the QRO or the safety objective, does not add any new states to F . The
reachability objective Reach (qn) weighs the states in F with their lexicographic
safety values vlex

n . Thus we additionally ensure that in order to reach F , we use
those actions that give us the best safety probability afterwards. In this way we
obtain the correct lex-values vlex

n even for states in S \F . See [19, Appendix A.4]
for the full technical proof. ��
Example 7 (Reduction Safe → Reach). Recall Example 6. By the preceding
Lemma 3, computing supσ infτ P

σ,τ
s (Reach (S1) ,Reach (q2)) yields the correct

lex-value vlex(s) for all s ∈ S. Consider for instance state r in the running exam-
ple: The action leading to q is clearly suboptimal for Reach (q2) as it does not
reach F . Both other actions surely reach F . However, since q2(t) = q2(u) = 0
while q2(v) = 1/2, the action leading to u and v is preferred over that leading to
t and u, as it ensures the higher safety probability after reaching F . �

We now explain the basic structure of Algorithm 1. More technical details
are explained in the proof sketch of Theorem2 and the full proof is in [19,
Appendix A.5]. The idea of Algorithm1 is, as sketched in Sect. 3.1, to consider
the objectives sequentially in the order of importance, i.e., starting with Ω1.
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Algorithm 1. Solve absorbing lex-objective
Input: SG G, absorbing lex-objective Ω = (Ω1, . . . , Ωn)

Output: Vector of lex-values vlex, MD lex-optimal strategy σ for Max
1: procedure SolveAbsorbing(G, Ω )

2: initialize vlex and σ arbitrarily

3: ˜G ← G � Consider whole game in the beginning.

4: for 1 ≤ i ≤ n do

5: (v, σ̃) ← SolveSingleObj(˜G, Ωi)
6: if Ωi = Safe (Si) then

7: F<i ← final set with respect to ˜G and Ω<i � see Def. 4
8: qi(s) ← v(s) for all s ∈ F<i � see Def. 5

9: (v, σQ) ← SolveSingleObj(˜G,Reach (qi))
10: end if

11: ˜G ← restriction of ˜G to optimal actions w.r.t. v

12: vlex
i ← v

13: for s ∈ S do
14: if (Ωi = Reach (Si) and v(s) > 0) or (Ωi = Safe (Si) and s ∈ F<i) then
15: σ(s) ← σ̃(s) � Strategy improvement
16: else if Ωi = Safe (Si) and s /∈ F<i

17: σ(s) ← σQ(s)
18: end if
19: end for
20: end for

return (vlex, σ)
21: end procedure

The i-th objective is solved (Lines 5–10) and the game is restricted to only the
locally optimal actions (Line 11). This way, in the i-th iteration of the main
loop, only actions that are locally lex-optimal for objectives 1 through (i−1)
are considered. Finally, we construct the optimal strategy and update the result
variables (Lines 12–19).

Theorem 2. Given an SG G and an absorbing lex-objective Ω = (Ω1, . . . , Ωn),
Algorithm 1 correctly computes the vector of lex-values vlex and an MD lex-
optimal strategy σ for player Max. It needs n calls to a single objective solver.

Proof (Sketch).

– G̃-invariant: For i > 1, in the i-th iteration of the loop, G̃ is the original SG
restricted to only those actions that are locally lex-optimal for the targets 1 to
(i−1); this is the case because Line 11 was executed for all previous targets.

– Single-objective case: The single-objective that is solved in Line 5 can be
either reachability or safety. We can use any (precise) single-objective solver
as a black box, e.g. strategy iteration [36]. Recall that by Remark 1, it is no
problem to call a single-objective solver with a QRO since there is a trivial
reduction.

– QRO for safety: If an objective is of type reachability, no further steps
need to be taken; if on the other hand it is safety, we need to ensure that
the problem explained in Example 4 does not occur. Thus we compute the
final set F<i for the i-th target and then construct and solve the QRO as in
Lemma 3.
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– Resulting strategy: When storing the resulting strategy, we again need to
avoid errors induced by the fact that locally lex-optimal actions need not be
globally lex-optimal. This is why for a reachability objective, we only update
the strategy in states that have a positive value for the current objective;
if the value is 0, the current strategy does not have any preference, and we
need to keep the old strategy. For safety objectives, we need to update the
strategy in two ways: for all states in the final set F<i, we set it to the safety
strategy σ̃ (from Line 5) as within F<i we do not have to consider the previous
reachability objectives and therefore must follow an optimal safety strategy.
For all states in S \ F<i, we set it to the reachability strategy from the QRO
σQ (from Line9). This is correct, as σQ ensures almost-sure reachability of F<i

which is necessary to satisfy all preceding reachability objectives; moreover
σQ prefers those states in F<i that have a higher safety value (cf. Lemma 3).

– Termination: The main loop of the algorithm invokes SolveSingleObj for
each of the n objectives. ��

4 General Lexicographic SGs

We now consider Ω where Si ⊆ Sinks(G) does not necessarily hold. Section 4.1
describes how we can reduce these general lex-objectives to the absorbing case.
The resulting algorithm is given in Sect. 4.2 and the theoretical implications in
Sect. 4.3.

4.1 Reducing General Lexicographic SGs to SGs with Absorbing
Targets

In general lexicographic SG, strategies need memory, because they need to
remember which of the Si have already been visited and behave accordingly.
We formalize the solution of such games by means of stages. Intuitively, one can
think of a stage as a copy of the game with less objectives, or as the sub-game
that is played after visiting some previously unseen set Si.

Definition 6 (Stage). Given an arbitrary lex-objective Ω = (Ω1, . . . ,Ωn) and
a set I ⊆ {i ≤ n}, a stage Ω(I) is the objective vector where the objectives Ωi

are removed for all i ∈ I.
For state s ∈ S, let Ω(s) = Ω({i | s ∈ Si}). If a stage contains only one

objective, we call it simple.

Example 8 (Stages). Consider the SG in Fig. 2a. As there are two objectives,
there are four possible stages: The one where we consider both objectives (the
region denoted with Ω in Fig. 2b), the simple ones where we consider only one of
the objectives (regions Ω({1}) and Ω({2})), and the one where both objectives
have been visited. The last stage is trivial since there are no more objectives,
hence we do not depict it and do not have to consider it. The actions of q and
r are omitted in the Ω-stage, as upon visiting these states, a new stage begins.
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Fig. 2. (a) SG with non-absorbing lex-objective Ω = (Reach (S1) ,Reach (S2)). (b) The
three stages identified by the sub-objectives Ω, Ω({1}) = (Reach (S2)) and Ω({2}) =
(Reach (S1)). The two stages on the right are both simple.

Consider the simple stages: in stage Ω({1}), q has value 0, as it is a Min-state
and will use the self-loop to avoid reaching r ∈ S2. In stage Ω({2}), both p and
r have value 1, as they can just go to the target state q ∈ S1. Combining this
knowledge, we can get an optimal strategy for every state. In particular, note
that an optimal strategy for state p needs memory: First go to r and thereby
reach stage Ω({2}). Afterwards, go from r to p and now, on the second visit
in a different stage, use the other action in p to reach q. In this example, we
observe another interesting fact about lexicographic games: it can be optimal to
first satisfy less important objectives. �

In the example, we combined our knowledge of the sub-stages to find the
lex-values for the whole lex-objective. In general, the values for the stages are
numbers in [0, 1]. Thus we reuse the idea of quantified reachability and safety
objectives, see Definition 5.

For all 1 ≤ i ≤ n, let qi :
⋃

j≤n Sj → [0, 1] by defined by:

qi(s) =

⎧
⎪⎨

⎪⎩

1 if s ∈ Si and else:
Ω (s)vlex

i (s) if Ωi is reachability
1 − Ω (s)vlex

i (s) if Ωi is safety.

To keep the correct type of every objective, we let qΩ = (type1(q1), . . . , typen(qn))
where for all 1 ≤ i ≤ n, typei = Reach if Ωi = Reach (Si) and else typei = Safe if
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Ωi = Safe (Si). So we have now reduced a general lexicographic objective Ω to a
vector of quantitative objectives qΩ. Lemma 4 shows that this reduction preserves
the values.

Lemma 4. For arbitrary lex-objectives Ω it holds that Ωvlex = qΩvlex.

Proof (Sketch). We write S =
⋃

j≤n Sj for the sake of readability in this sketch.
By induction on the length n of the lex-objective Ω, it is easy to show that the
equation holds in states s ∈ S, i.e., Ωvlex(s) = qΩvlex(s). For a state s which is
not contained in any of the Sj , and for any strategies σ, τ we have the following
equation

P
σ,τ
s (Reach (Si)) =

∑

πt∈Pathsfin(S)

P
σ,τ
s (πt) · Pσ,τ

πt (Reach (Si))

where Pathsfin(S) = {πt ∈ ((S \ S) × L)∗ × S | t ∈ S} denotes the set of
all finite paths to a state in S in the Markov chain Gσ,τ and P

σ,τ
s (πt) is the

probability of such a path when Gσ,τ starts in s. From this we deduce that in
order to maximize the left hand size of the equation in the lexicographic order,
we should play such that we prefer reaching states in S where qi has a higher
value; that is, we should maximize the QRO Reach (qi). The argument for safety
is similar and detailed in [19, Appendix A.6]. ��

The functions qi involved in qΩ all have the same domain
⋃

j≤n Sj . Hence
we can, as mentioned below Definition 5, consider qΩ on the game where all
states in

⋃
j≤n Sj are sinks without changing the lex-value. This is precisely

the definition of an absorbing game, and hence we can compute qΩvlex using
Algorithm 1 from Sect. 3.2.

4.2 Algorithm for General SG

Algorithm 2 computes the lex-value Ωvlex for a given lexicographic objective Ω
and an arbitrary SG G. We highlight the following technical details:

– Reduction to absorbing case: We just have seen, that once we have the
quantitative objective vector qΩ, we can use the algorithm for absorbing SG
(Line 12).

– Computing the quantitative objective vector: To compute qΩ, the
algorithm calls itself recursively on all states in the union of all target sets
(Line 5–7). We annotated this recursive call “With dynamic programming”,
as we can reuse the results of the computations. In the worst case, we have to
solve all 2n − 1 possible non-empty stages. Finally, given the values Ω (s)vlex

for all s ∈ ⋃
j≤n Sj , we can construct the quantitative objective (Line 9 and

11) that is used for the call to SolveAbsorbing.
– Termination: Since there are finitely many objectives in Ω and in every

recursive call at least one objective is removed from consideration, eventually
we have a simple objective that can be solved by SolveSingleObj (Line 3).
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Algorithm 2. Solve general lex-objective
Input: SG G, lex-objective Ω = (Ω1, . . . , Ωn)
Output: Lex-values Ω vlex, lex-optimal σ ∈ ΣMax with memory of class-size ≤ 2n − 1
1: procedure SolveLex(G, Ω)
2: if Ω is simple then
3: return SolveSingleObj(G, Ω1)
4: end if

5: for s ∈ ⋃
j≤n Sj do

6:
(

Ω (s)vlex, Ω (s)σ
)

← SolveLex(G, Ω(s)) � With dynamic programming

7: end for
8: for 1 ≤ i ≤ n do

9: Let qi :
⋃

j≤n Sj → [0, 1], qi(s) ←

⎧
⎪⎨

⎪⎩

1 if s ∈ Si and else:
Ω (s)vlex

i (s) if type(Ωi) = Reach

1 − Ω (s)vlex
i (s) if type(Ωi) = Safe

10: end for
11: qΩ ← (type1(q1), . . . , typen(qn))

12: (qΩ vlex, qΩ σ) ← SolveAbsorbing(G, qΩ)
13: σ ← adhere to qΩ σ until some s ∈ ⋃

j≤n Sj is reached. Then adhere to Ω (s)σ.

14: return (qΩ vlex, σ)
15: end procedure

– Resulting strategy: The resulting strategy is composed in Line 13: It
adheres to the strategy for the quantitative query qΩ σ until some s ∈ ⋃

j≤n Sj

is reached. Then, to achieve the values promised by qi(s) for all i with s /∈ Si,
it adheres to Ω (s)σ, the optimal strategy for stage Ω(s) obtained by the
recursive call.

Corollary 1. Given an SG G and an arbitrary lex-objective Ω = (Ω1, . . . , Ωn),
Algorithm2 correctly computes the vector of lex-values vlex and a deterministic
lex-optimal strategy σ of player Max which uses memory of class-size ≤ 2n − 1.
The algorithm needs at most 2n−1 calls to SolveAbsorbing or SolveSingleObj.

Proof. Correctness of the algorithm and termination follows from the discussion
of the algorithm, Lemma 4 and Theorem 2. ��

4.3 Theoretical Implications: Determinacy and Complexity

Theorem 3 below states that lexicographic games are determined for arbitrary
lex-objectives Ω. Intuitively, this means that the lex-value is independent from
the player who fixes their strategy first. Recall that this property does not hold
for non-lexicographic multi-reachability/safety objectives [23].

Theorem 3 (Determinacy). For general SG G and lex-objective Ω, it holds
for all s ∈ S that:

vlex(s) = sup
σ

inf
τ

P
σ,τ
s (Ω) = inf

τ
sup

σ
P

σ,τ
s (Ω).
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Proof. This statement follows because single-objective games are determined [26]
and Algorithm 2 obtains all values by either solving single-objective instances
directly (Line 3) or calling Algorithm 1, which also reduces everything to
the single-objective case (Line 5 of Algorithm 1). Thus the sup-inf values vlex

returned by the algorithm are in fact equal to the inf-sup values. ��
By analyzing Algorithm2, we also get the following complexity results:

Theorem 4 (Complexity). For any SG G and lex-objective Ω =
(Ω1, . . . , Ωn):

1. Strategy complexity: Deterministic strategies with 2n − 1 memory-classes
(i.e., bit-size n) are sufficient and necessary for lex-optimal strategies.

2. Computational complexity: The lex-game decision problem (vlex(s0) ≥lex x?)
is PSPACE-hard and can be solved in NEXPTIME ∩ coNEXPTIME. If n is a
constant or Ω is absorbing, then it is contained in NP ∩ coNP.

Proof. 1. For each stage, Algorithm 2 computes an MD strategy for the quanti-
tative objective. These strategies are then concatenated whenever a new stage
is entered. Equivalently, every stage has an MD strategy for every state, so
as there are at most 2n − 1 stages (since there are n objectives), the strat-
egy needs at most 2n − 1 states of memory; these can be represented with
n bits. Intuitively, we save for every target set whether it has been visited.
The memory lower bound already holds in non-stochastic reachability games
where all n targets have to be visited with certainty [30].

2. The work of [41] shows that in MDPs, it is PSPACE-hard to decide if n
targets can be visited almost-surely. This problem trivially reduces to ours.
For the NP upper bound, observe that there are at most 2n − 1 stages, i.e., a
constant amount if n is assumed to be constant (or even just one stage if Ω is
absorbing). Thus we can guess an MD strategy for player Max in every stage.
The guessed overall strategy can then be checked by analyzing the induced
MDP in polynomial time [29]. The same procedure works for player Min and
since the game is determined, we have membership in coNP. In the same way
we obtain the NEXPTIME ∩ coNEXPTIME upper bound in the general case
where n is arbitrary. ��
We leave the question whether PSPACE is also an upper bound open. The

main obstacle towards proving PSPACE-membership is that it is unclear if the
lex-value – being dependent on the value of exponentially many stages in the
worst-case – may actually have exponential bit-complexity.

5 Experimental Evaluation

In this section, we report the results of a series of experiments made with a
prototypical implementation of our algorithm.
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CaseStudies. We have considered the following case studies for our experiments:

Dice. This example is shipped with PRISM-games [37] and models a simple
dice game between two players. The number of throws in this game is a
configurable parameter, which we instantiate with 10, 20 and 50. The game
has three possible outcomes: Player Max wins, Player Min wins or draw. A
natural lex-objective is thus to maximize the winning probability and then
the probability of a draw.

Charlton. This case study [24] is also included in PRISM-games. It models an
autonomous car navigating through a road network. A natural lex-objective
is to minimize the probability of an accident (possibly damaging human life)
and then maximize the probability to reach the destination.

Hallway (HW). This instance is based on the Hallway example standard in
the AI literature [15,38]. A robot can move north, east, south or west in a
known environment, but each move only succeeds with a certain probability
and otherwise rotates or moves the robot in an undesired direction. We extend
the example by a target wandering around based on a mixture of probabilis-
tic and demonic non-deterministic behavior, thereby obtaining a stochastic
game modeling for instance a panicking human in a building on fire. More-
over, we assume a 0.01 probability of damaging the robot when executing
certain movements; the damaged robot’s actions succeed with even smaller
probability. The primary objective is to save the human and the secondary
objective is to avoid damaging the robot. We use square grid-worlds of sizes
5 × 5, 8 × 8 and 10 × 10.

Avoid the Observer (AV). This case study is inspired by a similar example in
[14]. It models a game between an intruder and an observer in a grid-world.
The grid can have different sizes as in HW, and we use 10 × 10, 15 × 15
and 20 × 20. The most important objective of the intruder is to avoid the
observer, its secondary objective is to exit the grid. We assume that the
observer can only detect the intruder within a certain distance and otherwise
makes random moves. At every position, the intruder moreover has the option
to stay and search to find a precious item. In our example, this occurs with
probability 0.1 and is assumed to be the third objective.

Implementation and Experimental Results. We have implemented our
algorithm within PRISM-games [37]. Since PRISM-games does not provide an
exact algorithm to solve SGs, we used the available value iteration to implement
our single-objective blackbox. Note that since this value iteration is not exact
for single-objective SGs, we cannot compute the exact lex-values. Nevertheless,
we can still measure the overhead introduced by our algorithm compared to a
single-objective solver.

In our implementation, value iteration stops if the values do not change
by more than 10−8 per iteration, which is PRISM’s default configuration. The
experiments were conducted on a 2.4 GHz Quad-Core Intel c© CoreTM i5 pro-
cessor, with 4 GB of RAM available to the Java VM. The results are reported
in Table 1. We only recorded the run time of the actual algorithms; the time
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needed to parse and build the model is excluded. All numbers are rounded to
full seconds. All instances (even those with state spaces of order 106) could be
solved within a few minutes.

Table 1. Experimental Results. The two leftmost columns of the table show the type
of the lex-objective, the name of the case studies, possibly with scaling parameters,
and the number of states in the model. The next three columns give the verification
times (excluding time to parse and build the model), rounded to full seconds. The final
three columns provide the average number of actions for the original SG as well as all
considered subgames G̃ in the main stage, and lastly the fraction of stages considered,
i.e. the stages solved by the algorithm compared to the theoretically maximal possible
number of stages (2n − 1).

Model |S| Time Avg. actions Stages

Lex. First All G G̃
R – R

Dice[10] 4,855 <1 <1 <1 1.42 1.41 1/3

Dice[20] 16,915 <1 <1 <1 1.45 1.45 1/3

Dice[50] 96,295 3 2 2 1.48 1.48 1/3

S – R

Charlton 502 <1 <1 <1 1.56 1.07 3/3

R – S

HW[5 × 5] 25,000 10 7.15 7 2.44 1.02 3/3

HW[8 × 8] 163,840 152 117 117 2.50 1.01 3/3

HW[10 × 10] 400,000 548 435 435 2.52 1.01 3/3

S–R–R

AV[10 × 10] 106,524 15 <1 10 2.17 1.55, 1.36 4/7

AV[15 × 15] 480,464 85 <1 50 2.14 1.52, 1.36 4/7

AV[20 × 20] 1,436,404 281 3 172 2.13 1.51, 1.37 4/7

The case studies are grouped by the type of lex-objective, where R indicates
reachability, S safety. For each combination of case study and scaling parameters,
we report the state size in column |S|, three different model checking runtimes,
the average number of actions in the original and all considered restricted games,
and the fraction of stages considered, i.e. the stages solved by the algorithm
compared to the theoretically maximal possible number of stages (2n − 1).

We compare the time of our algorithm on the lexicographic objective (Lex.)
to the time for checking the first single objective (First) and the sum of checking
all single objectives (All). We see that the runtimes of our algorithm and checking
all single objectives are always in the same order of magnitude. This shows that
our algorithm works well in practice and that the overhead is often small. Even
on SGs of non-trivial size (HW[10× 10] and AV[20× 20]), our algorithm returns
the result within a few minutes.
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Regarding the average number of actions, we see that the decrease in the
number of actions in the sub-games G̃ obtained by restricting the input game to
optimal actions varies: For example, very few actions are removed in the Dice
instances, in AV we have a moderate decrease and in HW a significant decrease,
almost eliminating all non-determinism after the first objective. It is our intuition
that the less actions are removed, the higher is the overhead compared to the
individual single-objective solutions. Consider the AV and HW examples: While
for AV[20 × 20], computing the lexicographic solution takes 1.7 times as long as
all the single-objective solutions, it took only about 25% longer for HW[10×10];
this could be because in HW, after the first objective only little nondeterminism
remains, while in AV also for the second and third objectives lots of choices have
to be considered. Note that the first objective sometimes (HW), but not always
(AV) needs the majority of the runtime.

We also see that the algorithm does not have to explore all possible stages.
For example, for Dice we always just need a single stage, because the SG is
absorbing. For charlton and HW all stages are relevant for the lex-objective,
while for AV 4 of 7 need to be considered.

6 Conclusion and Future Work

In this work we considered simple stochastic games with lexicographic reacha-
bility and safety objectives. Simple stochastic games are a standard model in
reactive synthesis of stochastic systems, and lexicographic objectives let one
consider multiple objectives with an order of preference. We focused on the
most basic objectives: safety and reachability. While simple stochastic games
with lexicographic objectives have not been studied before, we have presented
(a) determinacy; (b) strategy complexity; (c) computational complexity; and
(d) algorithms; for these games. Moreover, we showed how these games can
model many different case studies and we present experimental results for them.

There are several directions for future work. First, for the general case closing
the complexity gap (NEXPTIME∩coNEXPTIME upper bound and PSPACE lower
bound) is an open question. Second, the study of lexicographic simple stochastic
games with more general objectives, e.g., quantitative or parity objectives poses
interesting questions. In particular, in the case of parity objectives, there are
some indications that the problem is significantly harder: Consider the case of
a reachability-safety lex-objective. If the lex-value is (1, 1) then both objectives
can be guaranteed almost surely. Since almost-sure safety is sure safety, our
results imply that sure safety and almost-sure reachability can be achieved with
constant memory. In contrast, for parity objectives the combination of sure and
almost-sure requires infinite-memory (e.g, see [21, Appendix A.1]).
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thesis tool for MDPs with multiple mean-payoff objectives. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 181–187. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 12

11. Bruyère, V., Filiot, E., Randour, M., Raskin, J.: Meet your expectations with
guarantees: beyond worst-case synthesis in quantitative games. Inf. Comput. 254,
259–295 (2017)

12. Bruyère, V., Hautem, Q., Raskin, J.: Parameterized complexity of games with
monotonically ordered omega-regular objectives. CoRR abs/1707.05968 (2017)

13. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–
484. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77050-3 39
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