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Origin and functions of intermittent transitions among sleep stages, including brief awakenings and arousals, constitute a challenge to
the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that
the complex micro-architecture characterizing sleep on scales of seconds and minutes results from intrinsic non-equilibrium critical
dynamics. We investigate �- and �-wave dynamics in control rats and in rats where the sleep-promoting ventrolateral preoptic nucleus
(VLPO) is lesioned (male Sprague-Dawley rats). We demonstrate that bursts in � and � cortical rhythms exhibit complex temporal
organization, with long-range correlations and robust duality of power-law (�-bursts, active phase) and exponential-like (�-bursts,
quiescent phase) duration distributions, features typical of non-equilibrium systems self-organizing at criticality. We show that such
non-equilibrium behavior relates to anti-correlated coupling between �- and �-bursts, persists across a range of time scales, and is
independent of the dominant physiologic state; indications of a basic principle in sleep regulation. Further, we find that VLPO lesions lead
to a modulation of cortical dynamics resulting in altered dynamical parameters of �- and �-bursts and significant reduction in �–�
coupling. Our empirical findings and model simulations demonstrate that �–� coupling is essential for the emerging non-
equilibrium critical dynamics observed across the sleep–wake cycle, and indicate that VLPO neurons may have dual role for both
sleep and arousal/brief wake activation. The uncovered critical behavior in sleep- and wake-related cortical rhythms indicates a
mechanism essential for the micro-architecture of spontaneous sleep-stage and arousal transitions within a novel, non-
homeostatic paradigm of sleep regulation.
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Significance Statement

We show that the complex micro-architecture of sleep-stage/arousal transitions arises from intrinsic non-equilibrium critical
dynamics, connecting the temporal organization of dominant cortical rhythms with empirical observations across scales. We link
such behavior to sleep-promoting neuronal population, and demonstrate that VLPO lesion (model of insomnia) alters dynamical
features of � and � rhythms, and leads to significant reduction in �–� coupling. This indicates that VLPO neurons may have dual
role for both sleep and arousal/brief wake control. The reported empirical findings and modeling simulations constitute first
evidences of a neurophysiological fingerprint of self-organization and criticality in sleep- and wake-related cortical rhythms; a
mechanism essential for spontaneous sleep-stage and arousal transitions that lays the bases for a novel, non-homeostatic para-
digm of sleep regulation.
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Introduction
Sleep periods exhibit numerous transitions among sleep stages
and short awakenings, with intermittent fluctuations within sleep
stages that trigger micro-states and brief arousals (Halász, 1998;
Hirshkowitz, 2002; Lo et al., 2002). Such behavior is typically
observed in non-equilibrium systems characterized by multi-
component nonlinear feedback interactions and exhibiting crit-
ical behavior, with irregular alternation between active and
quiescent phases (Bak, 1996; Chialvo, 2010; Munoz, 2018). This
constitutes a challenge to the current homeostatic framework for
sleep regulation, which considers sleep as an equilibrium process,
and focuses on factors modulating sleep over large time scales,
such as homeostatic sleep drive, sleep propensity and inertia, and
ultradian and circadian rhythms (Borbély and Achermann, 1999;
Saper et al., 2005; Brown et al., 2012). Existing homeostatic mod-
els, although successfully providing a good description of consol-
idated sleep and wakefulness over time scales of hours (Borbély
and Achermann, 1999; Achermann and Borbély, 2003; Saper et
al., 2001, 2010), do not capture the emergent complexity of tran-
sient and abrupt behaviors at scales of seconds and minutes (Lo et
al., 2004; Olbrich et al., 2011), and do not account for the related
dynamics of bursts in cortical rhythms.

The intrinsic fluctuations in cortical rhythmic activity in response to
feedback interactions among sleep- and wake-promoting neuronal
groups, and the corresponding complex temporal patterns of in-
termittent transitions in sleep micro-architecture, suggest that
critical dynamics may underlie sleep regulation at small time
scales, in parallel with the well established homeostatic behavior
at large time scales. Such hypothesis is further motivated by re-
cent work showing a peculiar coexistence of power-law and ex-
ponential probability distributions for the durations of brief
awakenings/arousals and sleep bouts, in both humans and animal
models (Lo et al., 2002, 2004; Blumberg et al., 2005; Behn et al.,
2007; Dvir et al., 2018). This scenario is closely reminiscent of
non-equilibrium systems self-tuning at criticality, where a quies-
cent phase with exponential dynamics coexists with an active
phase characterized by bursts/avalanches with power-law distrib-
uted sizes and durations (Boffetta et al., 1999; Chialvo, 2010;
Munoz, 2018). Because brief awakenings/arousals can be viewed
as “active” states of the brain that interrupt the “inactive” phase
represented by sleep periods, the coexistence of power-law dis-
tributed arousal durations with sleep bouts durations following
exponential behavior has been interpreted as a fingerprint of crit-
icality in sleep dynamics (Lo et al., 2004, 2013).

To test this hypothesis, we investigate the dynamics of domi-
nant brain waves in the sleep–wake cycle of rats in relation to the
neuronal circuitry responsible for wake and sleep control. In par-
ticular, we focus on the ventrolateral preoptic nucleus (VLPO), a
key sleep promoting brain region (Sherin et al., 1996), and study
whether alterations in the sleep–wake cycle are mirrored by a
reorganization of dominant brain rhythms. The sleep–wake cycle
of rats is largely dominated by the � and � rhythm. During

non-rapid eye movement sleep (NREM) sleep, cortical activity is
characterized by � rhythm, low-frequency high-amplitude oscil-
lations referred to as slow-wave activity (Steriade et al., 1993),
whereas REM sleep and arousals/wake state are characterized by �
rhythm, desynchronized and localized oscillations of higher fre-
quency and lower amplitude (Brown et al., 2012). Lesions of the
central cluster of the VLPO lead to a large decrease in delta power
and NREM sleep time, and a fragmentation of the sleep–wake cycle
(Lu et al., 2000). REM sleep may also be affected by lesions in the
VLPO area, especially in the medial and dorsal extended VLPO
region (Vetrivelan et al., 2012). However, the influence of
VLPO neurons on the dynamics and temporal organization of
� and � waves during the sleep–wake cycle has not been
investigated.

To this aim, we analyze long-term continuous EEG recordings
in control rats and rats with lesions in the VLPO, and dissect
emergent signatures of criticality in the dynamics of �- and
�-bursts in relation to VLPO neuronal integrity. We link altera-
tions of the sleep–wake cycle with non-equilibrium properties
of the underlying dynamics, providing first evidence for a
criticality-based framework of sleep regulation that unifies sleep
stage and arousal transitions with basic dynamics of dominant
cortical rhythms.

Materials and Methods
Experimental setup and statistical analysis
Twelve pathogen-free, 12- to 16-week-old male Sprague-Dawley rats
(300 –365 g; Harlan) were used for this study. Data analyzed here were
selected from a previously presented study (Vetrivelan et al., 2012) with 7
control and 34 VLPO-lesioned rats. The VLPO-lesioned group used for
the present study includes all animals with �85% cell loss in the VLPO;
n � 7 of the entire cohort of 34 VLPO-lesioned rats. One control rat and
one VLPO-lesioned rat were excluded from the final analysis after the
preprocessing procedure. For the purpose of our study of sleep micrody-
namics, we selected and analyzed rats with �10% artifacts in the EEG
(see Data preprocessing). The experimental procedure is briefly summa-
rized below. For further details regarding data collection and protocol,
please refer to Vetrivelan et al. (2012).

Rat surgery. Animals were anesthetized with chloral hydrate (350
mg/kg body weight, i.p.) and the fur over the skull was shaved, and the
skin was prepped with betadine and alcohol. The animals were then fixed
in a stereotaxic frame. All surgery was conducted using sterile autoclaved
instruments and under aseptic conditions. To produce VLPO lesions,
orexin-B-saporin (OX-SAP; Advanced Targeting Systems) was injected
into the VLPO as described below. Skin (�1 cm) was incised and small
burr holes were drilled in the skull corresponding to the VLPO coordi-
nates. A glass micropipette (tip diameter 10 –20 �m) was then lowered to
coordinates (AP: �0.6 from bregma, L: 1.00, DV: 8.5) corresponding to
the VLPO as per the rat atlas of Paxinos and Watson (2004) and OX-SAP
(200 nl of 0.1% solution) was injected using a compressed air delivery
system (Amaral and Price, 1983). The micropipette was then left in place
for 5 min and slowly withdrawn. Control animals received saline (vehi-
cle) injections into the VLPO. Following the injections, four EEG screw
electrodes were implanted into the skull, in the frontal (2) and parietal
bones (2) of each side, and two flexible EMG wire electrodes were placed
into the neck muscles for the collection of sleep–wake data. Four burr
holes were made in the skull (1 mm rostral and 3 mm lateral; 3 mm caudal
and 3 mm lateral) and EEG electrodes were inserted into those burr holes
so that they would be close to dura mater. EMG wire electrodes were
placed onto the neck extensor muscles on either side. The free ends of the
leads were soldered into a socket that was attached to the skull with dental
cement, and the incision was then closed by wound clips (Lu et al., 2000,
2002).

EEG recording across dark and light and sleep–wake analysis. EEG re-
cordings from each rat were performed on Day 20 post-lesion using
Grass polygraph. The rats were connected via flexible recording cables to
a commutator, which in turn was connected to a Grass polygraph and
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computer. The rats were habituated to the connecting cables and the
recording room conditions for 2 d and then uninterrupted recordings of
the EEG/EMG (sampling rate 256 Hz) and time-lock video were con-
ducted for 48 h (2 d, 12 h light/dark) beginning of Day 20 postlesion. EEG
signals were recorded continuously from the frontal and parietal elec-
trode on both left and right hemisphere. The parietal electrode picks up �
rhythm from the hippocampus during REM sleep; both the frontal and
parietal electrodes pick up � rhythm during wakefulness. Hippocampal �
rhythm can be also present during wakefulness, mainly during locomo-
tion and cognitive wakefulness. The signal analyzed in this study is the
difference between frontal and parietal EEG electrode potentials (fron-
tal–parietal EEG) from one hemisphere (ipsilateral). The EEG/EMG data
of each rat was divided into 12 s epochs and visually scored as wake,
NREM sleep, or rapid eye movement (REM) sleep using scoring criteria
previously described (Lu et al., 2000). Wakefulness was identified by the
presence of desynchronized-EEG and high-EMG activity. NREM sleep
was identified by the presence of a high-amplitude, slow-wave EEG and
low-EMG activity relative to that of waking. REM sleep was identified by
the presence of regular theta activity on EEG, coupled with low-EMG
activity relative to that of NREM sleep. When two states (for example,
NREM sleep and wake) occurred within a 12 s epoch, the epoch was scored
for the state that predominated. Scoring was done before histological exam-
ination, so the scorer was unaware of the extent of the lesions. The daily
percentage of time spent in wake, NREM sleep, and REM sleep and fre-
quency and durations of episodes of each stage were calculated.

Histology. On completion of the recordings, the rats were deeply anes-
thetized (chloral hydrate, 500 mg/kg) and transcardially perfused with
100 ml saline, followed by 500 ml of neutral phosphate buffered formalin
(ThermoFisher Scientific). The brains were removed and processed for
Nissl staining. For this, the harvested brains were sectioned in the coronal
plane on a freezing microtome into four series of 40 �m sections and one
series was mounted on gelatin-coated slides, washed in H2O, and washed
in PBS. Sections were then incubated in 0.25% thionin in 0.1 M acetate
buffer solution for 2 min, differentiated in graded ethanols, delipidated
in xylene and coverslipped (Lu et al., 2000).

Statistical analysis. Power-law exponent and fitting parameters for
burst duration distributions were evaluated for each rat and condition
(24 h: 12 h dark/light periods) in both the control group and VLPO.
Pairwise comparisons between groups and conditions were conducted
(see Figs. 2 and 3). The temporal correlations detrended fluctuation anal-
ysis (DFA) exponent (see Fig. 11) and �–� coupling Spearman’s correla-
tion coefficient (see Fig. 12) were evaluated for each rat in both groups,
and then pairwise comparisons between conditions and groups were
conducted. Individual group data were tested for normality using the
Shapiro–Wilk test. Pairwise comparisons were conducted using Students
two-tailed t test with Welch’s correction, unless the Shapiro–Wilk test
was significant, in which case the nonparametric Mann–Whitney U test
was used. Paired tests: control 12 h dark versus 12 h light period; VLPO-
lesioned 12 h dark versus 12 h light period. Comparisons between control
and VLPO-lesioned group were performed for each condition (12 h
dark/light period), and for the 24 h period. Surrogate tests were used to
test significance of correlations between theta- and delta-bursts, and
are described in Data analysis. All statistical tests were performed in
MATLAB (MathWorks).

Data preprocessing
EEG recordings were first normalized to zero mean, � � 0, and unit SD,
� � 1. For each rat, EEG signals were visually inspected and noisy seg-
ments were discarded according to the following semiautomatic proce-
dure. Data were first examined to identify most typical noise/artifact
waveforms and their specific characteristics, such as amplitude and av-
erage duration �T� expressed in number of sampling points. Based on this
preliminary analysis, two amplitude thresholds S1 and s2, with S1 � s2,
were introduced. The values of these thresholds are multiples of the EEG
signal SD �, and depend on the specific noise/artifact waveform for each
particular rat. Typical values of threshold S1 range between 3.5� and 6�,
and s2 is between 2.5� and 4�. EEG signals were then scanned using a
non-overlapping window W1 � �T�/2. Whenever a window W1 con-
tained a significant number of points (e.g., ns � 15; EEG signals were

sampled at 256 Hz) with amplitude exceeding the threshold S1, our algo-
rithm identifies an artifact, and a non-overlapping sub-window of size
w2 � W1 was used to scan again the identified artifact segment and clean
it up. Specifically, this second step works as follows: inside the artifact
window W1, segments of length w2 containing points with amplitude
exceeding the threshold s2 are sequentially cleaned up by substituting all
points in w2 with zeros. An artifact segment w2 that follows a preceding
cleaned segment but does not contain points exceeding the threshold s2 is
also cleaned; this removes subthreshold points in W1 that belong to the
decaying part of an artifact. In this case, such procedure continues and
the following sub-windows w2 are also cleaned until the signal crosses
zero. These steps are repeated until the entire artifact segment W1 is
scanned. Finally, 500 points (	2 s) are removed from the EEG on both
sides of the cleaned artifact segment W1, to eliminate possible pre-artifact
and post-artifact influence on the signal. These steps carefully take into
account the general slow decaying waveform of some EEG artifacts, and
are needed to ensure an optimal cleaning of the data. For all rats in this
study W1 � 500 and w2 � 100 data points. At the end of the preprocess-
ing procedure EEG signals were visually inspected to ensure that all noisy
segments were properly removed. The total length of removed noisy
segments ranges between 5 and 10% of the 48 h recording for each rat. Of
the 7 control and 7 VLPO-lesioned rats, 1 control and 1 VLPO rat had
�10% of the signal removed after the preprocessing, and correspond-
ingly were removed from the analysis. The code used for EEG prepro-
cessing is available upon request.

Data filtering. Data were bandpass filtered in the range 0.5–25 Hz using
a FIR (finite impulse response) filter designed in MATLAB.

Data analysis
Spectral analysis. The clean EEG signal is divided in N non-overlapping
windows of size w and the spectral power in the � band (0.5– 4 Hz), S�,
and in the � band (4 – 8 Hz), S�, is estimated in each window using
Welch’s method (Welch, 1967). The analysis is performed for several
values of the window size w, from 2 to 10 s. Results are generally inde-
pendent of w, as shown in Figures 5, 6, and 7, and extensively discussed in
the main text.

� and � burst detection and definition. The ratio R�� � S�/S� between �
and � power is calculated in each window k, with k � 1,2, . . . , N, and a
time series R��
k� is obtained. Given a threshold Th � 1, a �-burst is
defined as a sequence of n consecutive windows where R�� � Th, while a
�-burst consists in a sequence of n consecutive windows where R�� 	 1/Th
(Fig. 1). The duration of a burst is given by d � n � w. Durations of � (�)
bursts are denoted by d� (d�). The threshold Th is set equal to 1 through-
out the analysis. Results are independent of Th, as shown in Figures 4, 5,
and 6, and extensively discussed in the main text.

Surrogate test for �- and �-burst duration distributions. For each rat, the
time series R��
k� is randomly reshuffled to obtain a surrogate R��

� 
k��.
Surrogate �- and �-bursts durations (see Fig. 2) are then calculated from
R��

� 
k�� following the procedure illustrated in the previous paragraph.
The corresponding �- and �-burst duration distributions are shown in
Figure 2, insets, together with distributions from original data.

Definition of quiet time 
t. A quiet time 
t is defined as the time
interval between the ending time of a burst tj

e and the starting time tj�1
s of

the following one, namely 
tj � tj�1
s 
 tj

e.
Data binning. Probability distributions of �-burst durations are calcu-

lated using logarithmic binning, i.e., linear binning in logarithmic scale.
Denoting a set of bin boundaries as B � (b1,b2, . . . , bk) and fixing b1 �
0.03w, the logarithmic bins fulfill the relation bi�1 � bi � 10c, which implies
that the bin size is constant in logarithmic scale, i.e., logbi�1 
 logbi � c.
The following bin size c have been used in this study: Figures 2–9 and 15;
c � 0.18. Probability distributions of �-burst durations are calculated
using the following binning procedure. Given a window size w, the bin
boundaries e1,e2,. . . ,en, . . . , ek are obtained using the recursive relation

en � e1 � w�
i�2

n bi�1, with e1 � 0.5w and n � 2. The following values of

the parameter b have been used in this study: Figures 10, b � 1.6; all other
figures, b � 1.2.

Duration distributions: error bars. An error �P is associated to each bin
of the distribution for pooled data presented in Figures 2 and 3. The
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number of data n in a particular interval [D,D
� dD] can be considered as given by the bi-
nomial distribution, given that the total num-
ber of data N is much larger than the range of
correlations. Therefore, the associated SD is
� � �Np
1 
 p�. Because P( D) � n/(NdD),
the error on P( D) is given by the following:

�P �
1

dD�p
1 
 p�

N
, (1)

where p � P( D)dD is the probability to observe
a duration D in the range [D,D � dD] and N
is the total number of bursts and dD is the cor-
responding bin size. Power-law fits for �-burst
duration distributions shown in Figures 2 and
3 are performed on the pooled data. Estimates
are reported in the corresponding figure cap-
tions together with associated errors on the fit.

Spearman’s correlation. Given to variables X
and Y, the Spearman’s correlation coefficient is
defined as follows:

�s �
cov
rgX,rgY�

�rgX
�rgY

, (2)

where rgX and rgY are the tied rankings of X and
Y, respectively, �rgX

and �rgY
their SDs, and cov

(rgX, rgY) indicates the covariance between rgX

and rgY.
Surrogate test for correlations between consec-

utive �- and �-burst duration. To test signifi-
cance of correlations between consecutive �-
and �-burst durations, a surrogate sequence
of burst durations is generated for each rat by
randomly reshuffling the original order of
�- and �-bursts. The Spearman’s correlation
coefficient �s between consecutive �- and
�-bursts is calculated for each surrogate. The
average Spearman’s correlation coefficient ob-
tained from all surrogates is then compared
with the average correlation coefficient cal-
culated from the original sequences of burst
durations via t test (see Results; Fig. 12). Cor-
relation coefficients for surrogate data for
both control and VLPO-lesioned rats dur-
ing dark, light, and 24 h are all with value
��s� 	 103.

DFA. The DFA is a method based on ran-
dom walk (Peng et al., 1994). It improves the
classical fluctuation analysis (FA) for nonsta-
tionary signals where embedded polynomial
trends mask the intrinsic correlation proper-
ties in the fluctuations (Peng et al., 1994). The
performance of DFA for signals with differ-
ent types of non-stationarities and artifacts
has been extensively studied and compared
with other methods of correlation analysis
(Taqqu et al., 1995; Hu et al., 2001; Chen et al., 2005; Xu et al., 2005).
The DFA method is briefly described by the following steps (Peng et
al., 1994):

(1) A given signal ui (i � 1, . . . , N, where N is the length of the signal) is
integrated to obtain y
k� � �

i�1
k �u
i� 
 �u��, where �u� is the mean of ui;

(2) The integrated signal y(k) is divided into boxes of equal length n;
(3) In each box of length n we fit y(k) using a first-order polynomial

function, which represents the trend in that box. The y-coordinate of the
fit curve in each box is denoted by yn(k);

(4) The integrated profile y(k) is detrended by subtracting the local
trend yn(k) in each box of length n:

Y
k� � y
k� 
 yn
k�; (3)

(5) For a given box length n, calculate the root mean square (rms) fluc-
tuation function for this integrated and detrended signal:

F
n� � �1

N�
k�1

N

�Y
k��2; (4)

(6) Repeat the above computation over a broad range of box lengths n,
where n represents a specific space or time scale, to obtain a functional
relationship between F(n) and n.

Figure 1. Cortical activity across the sleep–wake cycle is characterized by intermittent transitions between distinct dominant
brain rhythms. a, Representative 5 min EEG trace for a control rat during a 12 h dark period. b, A 16 s segment from the 5 min EEG
trace shown in a. The time evolution of the EEG signal is analyzed by evaluating the spectral power in several frequency bands on
non-overlapping windows of length w, as shown in d–f. c, Average power spectra for control and VLPO-lesioned rats during Wake,
brief wake periods (�1 min), REM, and NREM sleep. d, Top, Spectrogram obtained from cortical EEG signal of a control rat over a
2 h segment of 12 h lights-on period. Spectral power is calculated in non-overlapping time windows w � 4 s, and is color coded
over a range (0 –20 Hz) of physiologically-relevant frequencies. Segments in red indicate bursts of prominent activity in the
low-frequency band (0- 4 Hz, corresponding to � waves) and in the intermediate frequency band (4 – 8 Hz, corresponding to �
waves). Bottom, Ratio R�� � S
��/S
�� of the spectral power in the � and � band in logarithmic scale obtained from the
spectrogram at the top. Values R�� above log(Th) � 0 (Th � 1) indicate predominance of � rhythm (red), whereas values below
log(Th) � 0 correspond to predominance of � rhythm (blue). e, Top, Spectrogram obtained from cortical EEG signal over 2 h of
concatenated wake segments. Spectral power is calculated in non-overlapping time windows w � 4 s, and is color coded as in
explained in d. Segments in red, indicating bursts of prominent activity, are mostly concentrated in the � band (4 – 8 Hz). Bottom,
Ratio R�� of the spectral power in � and � band in logarithmic scale obtained from the spectrogram at the top. Values R�� above
log(Th) � 0 (Th � 1) indicate predominance of � rhythm (red), whereas values below log(Th) � 0 correspond to predominance
of � rhythm (blue). The ratio R�� is almost always larger than 1, indicating that wake periods are dominated by bursting activity
in the � band. f, Smoothed ratio R�� of the spectral power in the � and � band during 30 min segment of 12 h dark (lights-off)
period for a control rat (top) and a VLPO-lesioned rat (bottom). R�� is calculated on non-overlapping windows w � 4 s and the
smoothing is performed using a 5 point moving average. �- and �-bursts are defined as sequences of consecutive windows where
either the power in � or � band is dominant.
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For a power-law correlated time series, the average rms fluctuation
function F(n) and the box size n are connected by a power-law relation,
that is F
n� � n
d. The exponent 
d is a parameter that quantifies the
long-range power-law correlation properties of the signal. Values of 
d �
0.5 indicate the presence of anti-correlations in the time series, 
d � 0.5
absence of correlations (white noise) and 
d � 0.5 indicates the presence
of positive correlations in the time series.

Conditional probabilities analysis. The conditional probability of an
event H for a given event X is defined as follows:

P
H�X� �
P
H � X�

P
X�
, (5)

where P
H � X� is the probability that H and X jointly occur, and
P( X) � 0 is the probability of the event X. The condition X reduces the
statistics and increases the fluctuations of the distribution P
H�X� com-
pared with P( H). The following error is associated to each bin of the

densities (Corral, 2006): �H �
1

dH�p
1 
 p�

N
, where p � P
H�dH is

the probability to observe a H in the range H,H � dH and N is the total
number of events. From probability theory P
H�X� � P
X� if and only if
H does not depend on X. On the contrary, P
H�X� � P
X� implies that H
and X are not independent of each other, and their relation can be quan-
tified by a suitable correlation measure. In the analysis of burst coupling
(see Results, Anti-correlated coupling between the durations of consec-
utive � and �-bursts), H and X are considered significantly correlated if
P
H�X� 
 P
X� � �H.

Software accessibility. Software used for data preprocessing is available
upon request.

Model of anti-correlated burst coupling
The model consists of the following steps.

Random drawing and ranking. N durations d� and d� are randomly
drawn from the empirical distributions previously obtained using a spe-
cific window size w. d� and d� are separately sorted in ascending order,
i.e., from shortest to longest, and get a distinct ordinal numbers from k �
1,2, . . . , N, which corresponds to their rank. This procedure ensures that
each duration has a unique rank. The ranked d� and d� are then paired
with a tunable degree of anti-correlation and a new time series of alter-
nating �- and �-burst durations is thus generated. The coarse-grained
properties of the resulting time series depends on the degree of anti-
correlations used in the pairing.

Correlated pairing. Once d� and d� are ranked and a distinct, unique
ordinal number is associated to them, one randomly choose a d� with
rank k1 between 1 and N. To choose the following d�, one draws a random
number k2 from a Gaussian distribution with mean � � 1 � N � k1 and
SD �, and takes d� as the duration corresponding to rank k2. This proce-
dure is iterated N times, and at each iteration i the mean of the Gaussian
from which one draws the next random rank, ki, depends on ki�1, i.e.,
� 
 1 � N 
 ki�1. At each iteration, ki will correspond to a duration
d� from the sorted �-burst durations if the preceding burst was a �-burst
with duration d�, whereas ki will select a duration d� from the sorted
�-burst durations if the preceding burst was a �-burst with duration d�.
As a result one obtains a sequence of d� and d� whose degree of anti-
correlations is controlled by a single parameter, �. The smaller �, the
stronger anti-correlations are.

Binary series and coarse-graining. To characterize the coarse-grained
properties, the time series is first converted in a binary sequence, namely
a sequence of “�” and “�”. Because each duration is by definition a
multiple n of the unit window w, namely d � nw, the n windows belong-
ing to a d� are populated with �, whereas the n windows belonging to a d�

with � (see Fig. 14c). As a result one has a sequence of windows popu-
lated with � and �. This binary sequence is then coarse-grained group-
ing a given number 
 of consecutive windows, with 
 odd number, and
assigning � or � to the new windows of size 
 according to a majority
rule, i.e., one assign � (�) if the number of � is larger (smaller) than the
number of � (see Fig. 14). A coarse-grained binary sequence (CGBS) is
thus obtained, and dCG coarse-grained durations are calculated as shown
in Figure 14.

Results
Transient dynamics in bursting activity of � and � rhythms
Statistics of sleep and wake bout durations show that control rats
spend on average 50.47 � 3.37% of the time in wakefulness,
42.12 � 2.39% in NREM sleep, and 7.41 � 1.09% in REM sleep in
the 24 h period. Correspondingly, rats with VLPO lesion spend
on average more time in wakefulness (61.46 � 4.17%), and ex-
perience a corresponding decrease in the percentage of NREM
(31.94 � 3.85%) and REM sleep (6.60 � 0.86%) across the 24 h
period, in agreement with previous reports (Lu et al., 2000; Ve-
trivelan et al., 2012). The analysis of power spectra (Fig. 1c) for
control rats indicates dominant delta rhythm in NREM and in-
creasing spectral power in the theta band for REM and WAKE,
and a decrease in relative delta power during NREM in VLPO-
lesioned rats (Lu et al., 2000; Vetrivelan et al., 2012). However,
total sleep–wake time, average bout duration, and spectral power
reflect static characteristics of the sleep process. In contrast, to
investigate emergent signatures of criticality in sleep micro-
architecture, we focus on dynamical characteristics of dominant
cortical rhythms at short time scales.

To dissect the temporal organization of � and �-bursts in the
broadband brain activity across the sleep–wake cycle, we analyze
the time evolution of the EEG signal by evaluating the spectral
power in several frequency bands on non-overlapping windows
of length w (Fig. 1a,b; see Materials and Methods, Data analysis).
Figure 1d shows a typical spectrogram S(f) as a function of time
for a 2 h lights-on recording of a rat in the control group. In each
window, the spectral power is primarily concentrated in either
the �-wave (0 – 4 Hz) or the �-wave (4 – 8 Hz) band, and exhibits
sharp transitions from periods with dominant � to periods with
dominant � waves. In particular, during wake periods most of the
windows in the spectrogram exhibit dominant � band (Fig. 1e),
with fewer transitions to periods with dominant � waves. Such
dynamics can be understood as the temporal evolution of the
ratio R�� � S
��/S
�� between � and � spectral power in associ-
ation with different physiological states; NREM, REM, and
arousals/wake (Fig. 1 shows the transient dynamics of �- and
�-wave power represented by the logarithm of R�� as a function of
time t).

The ratio R��
t� exhibits irregular, intermittent fluctuations
between values larger and smaller than a threshold Th, a typical
characteristic of non-equilibrium dynamics: R�� � Th � 1
indicates that the spectral power in the �-wave band is dominant;
vice versa, for R�� 	 Th � 1 the spectral power is dominated by
the �-wave (Fig. 1d,e). We define bursts in � and � rhythms as
sequences of consecutive time windows where R�� � Th � 1
and R�� 	 Th � 1, respectively (Fig. 1f). We associate a dura-
tion d � n � w to each burst (see Materials and Methods, Data
analysis), where n is the number of consecutive windows belong-
ing to a given burst and w is the window length (Fig. 1f).

Distinct functional forms of �- and �-burst duration
distributions indicative of self-organization at criticality
We next study the probability distribution of the durations of �-
and �-bursts over a 24 h period for control and VLPO-lesioned
rats (see Materials and Methods, Experimental setup). We notice
that �- and �-bursts follow very different statistics. The distribu-
tion P� of �-burst durations exhibits power-law behavior fol-
lowed by a cutoff (Fig. 2a), P�
d� � d�
, where 
 denotes the
scaling exponent of the power-law. Power law distributions
P
x� � x�
 are the statistical hallmark of scale invariance, i.e.,
they are not altered by a change of scale from x to Lx, and depend-
ing on the context, they imply that events of any size, length, or
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duration are likely to occur with some finite probability that is
larger than expected in a random or short-range correlated pro-
cess. Presence of power-law indicates absence of characteristic
time scales in the underlying dynamics, which is a typical feature
of physical systems at the critical point of continuous phase tran-
sition; a highly sensitive state where cooperative behavior spon-
taneously emerges over a range of time scales characterized by
long-range correlations. Importantly, the scale-invariant power-
law behavior characterizing the distribution of �-burst durations
is significantly influenced by lesions in the VLPO. Indeed, we find

that 
 � 2.4 in control rats, whereas 
 � 2.8 in VLPO-lesioned
rats (Fig. 2a). The power-law is consistent across rats in both
groups, and the average exponent in the VLPO-lesioned group is
significantly higher than the exponent in the control group
[
CTRL � 2.29 � 0.15 and 
VLPO � 2.71 � 0.11 (mean � SD); t
test, p � 0.0005]. An increase in the power-law exponent indi-
cates that bilateral lesions of the VLPO alter the dynamical micro-
architecture of �-bursts across the 24 h sleep–wake cycle, leading
to a decreased likelihood of long lasting �-bursts; an effect not
previously observed.

In contrast to the power-law feature of �-burst, the statistics of
�-burst duration follows a different behavior that is described by

a Weibull distribution P�
d; �, �� �
�

��d

�	
��1

e�
d/���
, where �

indicates the characteristic time scale, and � is the shape param-
eter (Fig. 2b). Further, we find that the distribution of �-burst
durations follows the same Weibull functional form for both
control and VLPO-lesioned groups, with similar values of the
parameters � and �.

The functional forms established for the distributions of �-
and �-burst durations in Figure 2, indicate a very different tem-
poral organization of �- and �-bursts. A surrogate test based on
randomizing the sequence of windows w in the EEG spectrogram
(Fig. 1d) leads to exponentially distributed �- and �-burst (Fig. 2,
insets), and shows that the observed temporal organization in
bursting activity of brain rhythms is physiologically relevant and
relates to underlying regulation.

The results demonstrate a remarkable duality of scale-free,
power-law dynamics for �-bursts, and Weibull dynamics with
characteristic time scale for �-bursts. The coexistence of scale-
free �-bursts and Weibull distributed �-bursts appears to be a
general feature of cortical activity across the entire sleep–wake
cycle of individual subjects in each group, and it is preserved after
major lesions of the VLPO area. Remarkably, VLPO lesions, al-
though significantly affecting sleep statistics (Lu et al., 2000; Ve-
trivelan et al., 2012), do not disrupt the fundamental duality of
power-law and Weibull. Coexistence of scale-invariant and
exponential-like behaviors is a hallmark of self-organization at
criticality in non-equilibrium systems characterized by alternat-
ing active and inactive states; unlike systems at equilibrium, such
systems maintain critical behavior without external tuning (Bof-
fetta et al., 1999; Paczuski et al., 2005; Munoz, 2018). Thus, our
observations point to an intrinsic common mechanism that un-
derlies the temporal organization of bursting activity in both �
and � cortical waves across the distinct physiological states of
wake/arousals and sleep. Importantly, the deviation of the
VLPO-lesioned �-burst power-law exponent from the value
measured in control rats, indicates that lesion of VLPO neurons
alters the optimal underlying dynamics for sleep regulation.

To better describe bursting activity of �- and �-waves across
the sleep–wake cycle, and the role of the VLPO neuronal popu-
lation in this dynamics, we next analyze the distributions of � and
�-burst durations separately during the 12 h dark/light periods.
Although sleep and wake are characterized by different dominant
brain rhythms with distinct dynamics, synchronization and cou-
pling patterns across cortical areas (Kopell et al., 2000; Liu et al.,
2015), our analysis shows that the duality of power-law and
Weibull for �- and �-bursts duration distributions is robust and
independent of the dominant physiologic state. Indeed, such co-
existence appears to be a basic characteristic of cortical activity
during both dark and light periods (Fig. 3). Importantly, the
scaling exponent 
 of the power-law as well as the Weibull pa-

Figure 2. Durations of � and �-bursts across the 24 h sleep–wake cycle follow different
statistics that are modulated by VLPO. a, Distribution of �-burst durations for control (open
circles) and VLPO lesioned rats (full triangles) over the 24 h period (pooled data, 6 control and 6
VLPO-lesioned rats). The distribution exhibits a power-law behavior in both groups (colored tick
lines). Lesions in the VLPO area cause a significant increase in the power-law exponent from

CTRL � 2.44 � 0.07 to 
VLPO � 2.75 � 0.05 (exponent � error on fit), indicating a reduced
probability for long �-bursts (Group comparison, t test, p � 0.0005). b, Distribution of � burst
durations for control (open circles) and VLPO lesioned rats (full triangles) over 24 h period
(pooled data). In contrast to the statistics of �-bursts, �-bursts durations follow Weibull distri-
butions. Weibull parameters are not significantly affected by lesions of the VLPO (�CTRL � 0.64,
�CTRL � 0.38; �VLPO � 0.70, �VLPO � 0.54). The black tick line is a Weibull fit of the distribu-
tion for control rats. All durations are calculated using a window size w � 4 s and threshold
Th � 1 on the ratio R�� (Fig. 1). Insets, Distributions of surrogate �- and �-burst durations
markedly deviate from the original distributions. Error bars �P are calculated for each value of
the distributions as �P � 
�p
1 
 p�/N�/dD, and where not shown are smaller than
the symbol size. Error bar calculation and binning procedure are described in Materials and
Methods, Data analysis.
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rameters � and � concurrently change comparing dark to light
periods, indicating a coordinated modulation of � and � wave
dynamics across sleep and wake. In contrast to humans, rats are
predominantly awake during the dark period and asleep during
the light period. We observe that 
 is larger in the dark than in the
light period (Fig. 3a,c), indicating that long �-bursts are more
likely when rats are predominantly asleep. The higher probability
of longer-lasting �-bursts during the light period could be asso-
ciated with the presence of longer episodes of REM sleep, when
�-waves are dominant. This leads to an average increase of the
power in the � band and thus to a higher likelihood for longer
�-bursts during the light periods. For control rats, we find that
the power-law exponent decreases from 
 	 2.65 during dark to

 	 2.5 during light (Fig. 3a). This variation is more pronounced
in VLPO-lesioned rats, where the exponent decreases from 
 	
3.1 during dark to 
 	 2.5 during light periods (Fig. 3c), and may
be related to the average reduction of REM sleep. These results are
consistent across rats both during dark [
CTRL � 2.62 � 0.18;

VLPO � 3.10 � 0.24 (mean � SD); t test, p � 0.003] and light
[
CTRL � 2.14 � 0.13; 
VLPO � 2.29 � 0.15 (mean � SD); t test,

p � 0.131], and show significant difference particularly for the
12 h dark period. Paired tests also show significant differences
between dark and light periods in each group (Control dark vs
control light t test, p � 0.0005; VLPO dark vs VLPO light t test,
p � 0.0010). The comparison between control and VLPO-
lesioned rats shows that VLPO lesions affect the distributions of
�-burst durations, in particular during the dark period, while
having no particular influence on the distributions of �-burst
durations, which overlap within error bars (Fig. 3). This indicates
that, although lesions of VLPO neurons reduce � power and total
sleep time (Lu et al., 2000; Vetrivelan et al., 2012), they do not
alter the dynamics of �-bursts, but instead influence the power-
law organization in �-burst dynamics and lead to an increase of
the power-law exponent, indicating a decreased likelihood for
long-lasting bursts and a higher probability to observe shorter
bursts; evidence of fragmentation of bursting activity in the
�-wave band that parallels the increased fragmentation of sleep in
VLPO-lesioned rats.

Previous studies have shown that preceding sleep–wake
history affects sleep consolidation and slow-wave activity. In par-

Figure 3. Critical behavior represented by duality of power-law and Weibull distribution for �- and �-bursts characterizes cortical activity during both dark and light periods. a, Probability
distributions of �-burst durations for control (full circles) and VLPO-lesioned (full triangles) rats over the 12 h dark (lights-off) period (pooled data, 6 control and 6 VLPO-lesioned rats) follow a
power-law with exponent 
CTRL � 2.66 � 0.07 and 
VLPO � 3.13 � 0.12 (exponent � error on fit). Both groups exhibit an exponent larger than in the 24 h sleep–wake cycle (Fig. 2), in particular
VLPO-lesioned rats, and the difference between the two groups becomes more pronounced (Control vs VLPO group comparison: t test, p � 0.003). b, Probability distributions of �-burst durations
for control (full circles) and VLPO-lesioned (full triangles) rats over 12 h dark (lights-off) period (pooled data) follow a Weibull behavior in both groups, with no significant differences in the fitting
parameters (�CTRL � 0.66, �CTRL � 0.36; �VLPO � 0.72, �VLPO � 0.49). c, Probability distributions of �-burst durations for control (open circles) and VLPO-lesioned (open triangles) rats over the
12 h lights-on period (pooled data, 6 control and 6 VLPO-lesioned rats) also follow a power-law, but exponents are smaller than in the dark period, with 
CTRL � 2.28 � 0.09 and 
VLPO � 2.51 �
0.07. The difference between the two groups is less pronounced than in dark period (Control vs VLPO comparison: t test, p � 0.131). Paired tests show significant differences between dark and light
periods in each group: control dark versus control light t test, p � 0.0005; VLPO dark vs VLPO light t test, p � 0.0010. d, Probability distributions of � burst durations for control (open circles) and
VLPO lesioned (open triangles) rats over 12 h lights-on period (pooled data) also follow a Weibull behavior, with no significant differences in the fitting parameters (�CTRL � 0.70, �CTRL � 0.37;
�VLPO � 0.67, �VLPO � 0.62). Black tick lines in c and d show Weibull fits for the distribution of the control group. All durations are calculated using a window size w � 4 s and threshold Th � 1
on the ratio R�� (Fig. 1). Error bars are calculated for each value and where not shown are smaller than the symbol size. Error bars �P are calculated for each value of the distributions as
�P � 
�p
1 
 p�/N�/dD, and where not shown are smaller than the symbol size. Error bars calculation and binning procedure are described in Materials and Methods, Data analysis.
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ticular, sleep deprivation increases sleep consolidation and con-
tinuity, reduces frequency of short wake episodes, and thus sleep
fragmentation (Trachsel et al., 1991). Moreover, it has been
shown that after long periods of sleep deprivation NREM epi-
sodes tend to be longer, with a larger amount of slow-wave sleep
and increased EEG amplitude (Tobler and Borbély, 1986; Fran-
ken et al., 1991; Rodriguez et al., 2016). In this context, it would
be important to understand how change in homeostatic drive
(for example in response to sleep deprivation) would impact the
reported underlying critical dynamics of cortical rhythms. While
the established non-equilibrium dynamics in cortical rhythms at
small time scales apparently contrast homeostatic regulation of
the sleep–wake cycle (Borbély and Achermann, 1999; Acher-
mann and Borbély, 2003), the interplay between this two mecha-
nisms remains to be better investigated and understood in future
studies. VLPO-lesioned rats, although exhibiting an increase in the
percentage of wake across the 24 h period and in average duration of
wake bouts (Lu et al., 2000; Vetrivelan et al., 2012), do not show
extended periods of wake comparable to those used in previous
experimental protocol for studying sleep deprivation (Tobler and
Borbély, 1986; Franken et al., 1991; Trachsel et al., 1991), and
therefore we cannot not draw any conclusion on the effect of
homeostatic mechanisms on the underlying critical dynamics
based on the data analyzed here.

Furthermore, loss of VLPO neurons also disinhibit the wake-
promoting system including hypocretin system, and leads to
their increased activity (Lu et al., 2000; Vetrivelan et al., 2012).
These changes are interrelated, and may be difficult to dissociate
from each other. For example, changes in EEG spectra (Fig. 1)
and sleep fragmentation after VLPO lesions (Lu et al., 2000; Ve-
trivelan et al., 2012) could also be due to increased activity of
hypocretin system (Sakurai, 2007). On the other hand, other ma-
nipulations, e.g., water/food availability, LD conditions, ambient
temperature etc., could also alter EEG and sleep–wake cycle by
altering VLPO neuron activity, and therefore influence the �- and
�-burst dynamics. Our current study investigated the intrinsic
properties of cortical dynamics following specific VLPO lesions,
and future investigations are necessary to understand the mech-
anisms (changes in VLPO neural activity) by which other manip-
ulations alter cortical dynamics, and in particular affect the ability
of the system to self-tune at criticality.

Robust scale-invariant critical behavior of �- and �-bursts
across time scales
We have shown that bursts associated with � and � rhythms
exhibit a distinct temporal organization that is captured by spe-
cific duration distributions: a power-law for �-bursts, indicating

Figure 4. Critical characteristics in temporal dynamics of bursts in dominant rhythms are a fundamental feature of cortical activity across the sleep–wake cycle, independent of thresholds used
to define bursts. The functional form of �- and �-burst duration distributions is preserved for different threshold values Th imposed on the ratio R�� (Fig. 1). a, Probability distributions of �-burst
durations for control rats over a 24 h period (pooled data) evaluated using different Th values consistently follow the same power law behavior (red line), with a cutoff that is controlled by Th. With
increasing Th the distribution cutoff shifts toward shorter burst durations. Inset, Data for different Th collapse onto a single universal function f� when we plot P
d�d
 versus Th�d, with 
� 2.4
and �� 0.8. b, Rescaled distribution of �-burst durations for control rats over a 24 h period (pooled data) obtained for different Th values collapse onto a single function following a Weibull behavior
f
d; �, �� (black line), with � � 0.71 and � � 0.11. Distributions are rescaled by �d��

�, where �d�� is the mean �-burst duration and � � 1.3. Inset, Distributions P� for different thresholds
(not rescaled). c, Probability distributions of � burst durations for VLPO-lesioned rats over a 24 h period (pooled data) evaluated using different Th values follow the same power law behavior, with
a cutoff controlled by Th. Inset, Data collapse onto a single function f� by plotting P
d�d
 versus Th�d with 
� 2.8 and �� 0.8 (same as for control rats in a). d, Rescaled distribution of �-burst
durations for VLPO-lesioned rats over a 24 h period (pooled data) obtained for different Th values collapse onto a single Weibull distribution f
d; �, �� (black line) with � � 0.12 and � � 0.72.
Distributions are rescaled by .�d��

�., with �� 1.3. Inset, Distributions P� for different thresholds Th (not rescaled). Results in all panels are obtained for a fixed scale of analysis, keeping the window
size w � 4 s (Fig. 1). Results are consistent when considering separately light and dark periods (Figs. 5, 6).
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absence of a characteristic time scale, and a Weibull for �-bursts,
with a characteristic time scale � (Figs. 2, 3). These findings are
based on a particular observational window size w and threshold
Th that were used to analyze bursting activity (Fig. 1; see Materi-
als and Methods, Data analysis). To demonstrate that our results
are independent of the particular choice of Th and w, we repeat
the analyses for a range of parameter values. We find that the
dynamics of burst durations across the 24 h sleep–wake cycle is
indeed described by unique scaling functions.

We first examine the duration distributions of �- and �-bursts for
different threshold values Th, keeping the window size w fixed. By
increasing the threshold on the ratio R�� from Th � 1 to Th � 2, we
find that the scaling exponent 
 characterizing the power-law distri-
bution of �-burst durations remains stable (data collapse onto a
single curve; Fig. 4a,c). The scaling behavior is followed by a cutoff
that, with increasing Th values, shifts to shorter burst durations d�.
For both control and VLPO-lesioned rats this behavior can be ex-
pressed in terms of the following scaling relation:

P�
d� � d�
f�
d/Th���. (6)

Where 
 is the power-law scaling exponent, f
d/Th��� is a scaling
function, and � expresses the dependence of the cutoff on Th. The
existence of a scaling function f
d/Th��� satisfying Equation 6 is
confirmed by the data collapse obtained by plotting P
d�d
 versus
Th�d for several values of Th (Fig. 4a,c, insets).

Similarly, we show that the distribution of �-burst durations is
independent of the threshold Th, and is described by a single
scaling function (Fig. 4b,d). Because a �-burst is defined as a time
period of consecutive windows w where R�� 	 Th � 1 (Fig.
1f), to properly explore the behavior of the duration distribution
for states with increasingly dominant � power, we repeat the
analysis for different values Th � 1. We observe that, as Th de-
creases, the probability for long �-bursts decreases, while short
�-bursts become more likely (Fig. 4b,d, insets). However, when
distributions are rescaled by their respective mean �-burst dura-
tion �d��, they all collapse onto a unique function f�, which is the
same for both control and VLPO-lesioned rats (Fig. 4b,d, respec-
tively). Such function is defined by the following scaling relation:

P�
d� � �d��
�� � f�
d/�d��

��, (7)

where � � 1.3 for both rat groups, and is well described by a Weibull
functional form, as found by rescaling d� and P� (Fig. 4b,d).

Repeating the analysis for 12 h dark/light periods separately,
we find that Equations 6 and 7 consistently describe the dynamics
of �- and �-bursts in both control and VLPO-lesioned groups
(Figs. 5, 6).

Thus, our results indicate that the duality of power-law and
Weibull behavior, as well as the scaling properties summarized in
Equations 6 and 7, are robust features of the bursting activity

Figure 5. Distribution of �- and �-burst durations in the dark period are independent of the specific threshold Th used to identify bursts and can be described by unique scaling functions.
Distribution of �- and �-burst durations in the dark period for different threshold values Th on the ratio R�� and window size w � 4 s. a, Distribution of � burst durations for control rats over a 12 h
dark period (pooled data). Distributions evaluated using different Th values consistently follow the same power law behavior, with a cutoff that is controlled by Th. Inset, The data collapse onto a
universal function f� when we plot P
d�d
 versus Th�d, with 
 � 2.65 and � � 0.8. b, Rescaled distribution of �-burst durations for control rats over a 12 h dark period (pooled data).
Distributions are rescaled by �d��

�, with �d�� mean �-burst duration and � � 1.3. After rescaling, distributions collapse onto a unique function f� that is well described by a Weibull distribution
f
d; �, �� (thick line), with � � 0.01 and � � 0.72. Inset, Distributions P� for different thresholds (not rescaled). c, Distribution of � burst durations for VLPO-lesioned rats over a 12 h period
(pooled data). Distributions evaluated using different Th values consistently follow the same power law behavior, with a cutoff that is controlled by Th. Data collapse onto a universal function f� by
plotting P
d�d
 versus Th�d with 
� 3.1 and �� 0.8. d, Rescaled distribution of � burst durations for VLPO-lesioned rats over a 12 h dark period (pooled). Distributions are rescaled by �d��

�,
with � � 1.3. After rescaling, the distributions collapse onto a unique function f� that is close to a Weibull distribution f
x; �, �� (thick black line), with � � 0.05 and � � 0.75. Inset,
Distributions P� for different thresholds (not rescaled).
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across the sleep–wake cycle, and do not depend on the particular
threshold Th used to study the dynamics of �- and �-bursts.

Furthermore, we find that the functional behavior of the dis-
tribution of �- and �-burst durations is to a large extent also
independent of the window size w, used to investigate the time
course of the EEG spectral power. Intuitively, a larger w would
tend to fail in identifying short bursts and merge them together,
thus causing an increase in the probability of observing longer
durations. In that regard, considering the power-law temporal
organization of �-bursts, larger window sizes w mainly influence
the tail of the distribution with longer durations, thus leading to
a decrease of the scaling exponent 
 (Fig. 7a,c, insets). We note
that the window size effect becomes visible only for extremely
large w compared with the average �-burst duration �d��. How-
ever, when the �-burst durations are rescaled by the window size
w, all distributions collapse onto a single power-law (Fig. 7a,c),
confirming the robustness of the results obtained in Figure 2a for
both control and VLPO-lesioned rats. Such rescaling is defined
by the following relation:

P�
d� � w�1 � f�
d/w�. (8)

Separate analyses of 12 h dark/light periods for different win-
dow sizes w (Figs. 8a,c, Fig. 9a,c) further confirm the robust-
ness of the established power-law behavior for the �-burst
durations (Fig. 3a,c).

A similar data collapse characterizes the dependence of the
�-burst duration distribution on window size w. Generally, we
observe that for increasing w the probability for long �-bursts
increases, while short �-bursts become less likely (Fig. 7b,d, in-
sets). When �-burst duration distributions corresponding to dif-
ferent window sizes w are rescaled by their respective mean
duration �d��, we find that all distributions collapse onto a unique
function f� following a Weibull behavior (Fig. 7b,d) and obeying
the scaling relation as follows:

P�
d� � �d��
�� � f�
d/�d��

��. (9)

As in the case of �-burst dynamics, the temporal organization of
�-bursts is robust and characterized by a scaling function (Eq. 9),
which is universal for the control and VLPO groups, and remains
stable during light and dark periods (Figs. 8b,d, 9b,d).

The existence of universal scaling functions (Eqs. 6 –9) not
only demonstrates that duration distributions are independent of
the specific set of parameters used to identify �- and �-bursts, but
also constitutes evidence of scale invariance, a property associ-
ated with systems operating at criticality.

Hierarchical micro-architecture in the temporal order of quiet
(�-bursts) and active (�-bursts) states in the sleep–wake cycle
The results reported in the previous sections show a remarkable
coexistence of scale-invariant power-law structure for the dura-

Figure 6. Distribution of �- and �-burst durations in the light period are independent of the specific threshold Th used to identify bursts and can be described by scaling functions. Distribution
of � and � burst durations in the light period for different threshold values Th on the ratio R�� and window size w � 4 s. a, Distribution of � burst durations for control rats over a 12 h light period
(pooled data). Distributions evaluated using different Th values consistently follow the same power law behavior, with a cutoff that is controlled by Th. The data collapse onto a universal function
f� when we plot P
d�d
 versus Th�d, with 
�2.3 and ��0.8 (inset). b, Rescaled distribution of � burst durations for control rats over a 12 h light period (pooled data). Distributions are rescaled
by �d��

�, with �d�� mean �-burst duration and � � 1.3. After rescaling, distributions collapse onto a unique function f� that is close to a Weibull distribution f
d; �, �� (black line), with � �
0.04 and � � 0.70. Inset, Distributions P� for different thresholds (not rescaled). c, Distribution of � burst durations for VLPO-lesion rats over a 12 h period (pooled data). Distributions evaluated
using different Th values consistently follow the same power law behavior, with a cutoff that is controlled by Th. Inset, Data collapse onto a universal function f� by plotting P
d�d
 versus Th�d
with 
 � 2.5 and � � 0.8. d, Rescaled distribution of � burst durations for VLPO-lesion rats over a 12 h light period (pooled). Distributions are rescaled by �d��

�, with � � 1.3, and collapse onto
a unique function f� that is close to a Weibull distribution f
d; �, �� (thick black line), with � � 0.05 and � � 0.74. Inset, Distributions P� for different thresholds (not rescaled).
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tions of �-bursts and a Weibull functional form with a character-
istic time scale for �-burst durations (Figs. 2,3). This evidence
draws a strong parallel with far-from-equilibrium phenomena
that are characterized by bursting dynamics and abrupt transi-
tions between active and quiet states, such as avalanches and
earthquakes (Boffetta et al., 1999; Corral, 2004; Paczuski et al.,
2005; Munoz, 2018). For instance, the intensity of avalanches and
earthquakes (active states) is also described by power-law distri-
butions, while time intervals between consecutive avalanches/
earthquakes (quiet states) follow a generalized Gamma distribution
with a characteristic time scale (exponential tail). In this context
Gamma is a universal scaling function that is independent of
spatial scales and minimum magnitude thresholds, and is consis-
tently observed for a broad range of conditions despite the large
variability associated with phenomena such as avalanches and
earthquakes (Corral, 2004; Ribeiro et al., 2010; de Arcangelis et
al., 2016).

In sleep dynamics, wake and brief arousals during sleep can be
considered as active states that, in rodents, are characterized by
bursts in � rhythms. Hence, we hypothesize that a hierarchical
structure, invariant across time scales, may underlie the occur-
rence of �-bursts, in analogy with non-equilibrium critical phe-
nomena, and investigate the relationship between the duration of
�-bursts and their temporal occurrence (Fig. 10). To this end, we
consider the time sequence of �-bursts, and we study the statisti-

cal features of the quiet times 
t separating consecutive bursts,
taking into account the duration d� of each �-burst (Fig. 10a).
Because �-bursts vary in duration, we impose a threshold D0

representing the time scale of analysis, and we define the quiet
time 
ti as the period from the end of �i-burst to the beginning
�i�1-burst. Thus, the statistical characteristics of 
ti depend on
the threshold value D0. We then obtain the probability distribu-
tion P

t; D0� of quiet times 
ti for different values of D0 (Fig.
6c,d, insets). With increasing threshold (scale of observation) D0,
the probability of longer 
ti increases, whereas the probability of
short 
ti decreases, leading to different curves for the distribu-
tions P

t; D0�.

Visual inspection of the complex profile formed by the time
sequence of �-bursts and their respective durations shows an
apparent similarity when comparing short segments of the pro-
file with the entire sequence above a given threshold D0 (Fig. 6b).
Presence of statistical self-similarity, observed after effective
coarse-graining of the profile, indicates a hierarchical structure
across time scales D0 that characterizes �-bursts occurrence times
and durations, and the associated quiet times. To demonstrate
statistical self-similarity in the quiet times, we systematically ana-
lyze the functional form of the probability distributions P

t; D0�
for different thresholds D0 by rescaling each distribution by the
average quiet time �
t�D0. Remarkably, we find that all distribu-

Figure 7. Critical characteristics in the dynamics of bursts of dominant cortical rhythms are independent of the scale of analysis. Distribution of � and �-burst durations for different scales of
observation defined by window sizes w (Fig. 1). a, Rescaled distribution of �-burst durations for control rats over a 24 h period (pooled data). Distributions are rescaled by the window size w and
consistently show the same power law behavior with 
 � 2.4 (red line), as proven by the data collapse. Inset, Distributions P� for different window sizes w (not rescaled). b, Rescaled distribution
of �-burst durations for control rats over a 24 h period (pooled data). Distributions are rescaled by �d��

�, where �d�� is the mean �-burst duration and � � 1, and collapse onto a single function
that is well described by a Weibull distribution f
d; �, �� with �� 6.18 and � � 0.72 (black line). Inset, Distributions P� for different window sizes (not rescaled). c, Rescaled distribution of �
burst durations for VLPO-lesioned rats over a 24 h period (pooled data). Distributions are rescaled by the window size w and consistently show the same power law behavior with 
� 2.8 (red line),
as proven by the data collapse. Inset, Distributions P� for different window sizes (not rescaled). d, Rescaled distribution of � burst durations for VLPO-lesioned rats over a 24 h period (pooled data).
Distributions are rescaled by �d��

�, with � � 1, and collapse onto a single function following a Weibull behavior f
d; �, �� (black line) with � � 15.20 and � � 0.74. Inset, Distributions P� for
different window sizes (not rescaled). Results in all panels are obtained for fixed threshold Th � 1 on the ratio R�� (Fig. 1). Results are consistent when considering separately light and dark periods
(Figs. 8, 9).
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tion curves collapse onto a single function G (Fig. 6c,d), defined
by the following scaling relation:

P

t� � �
t��1 � G

t/�
t��. (10)

The scaling relation in Equation 10 represents a mathematical expres-
sion of the statistical self-similarity in the profile formed by the quiet
timesand�-burstdurationsshowninFigure6b.Wefindthatthescaling
function G

t/�
t�� is well described by the generalized Gamma distri-
bution G

t/�
t�; b, v, p� � p/bv

t/�t��v�1e�

t/b�t��p

/�
v/p� (Stacy,
1962), where in our analysis 
t/�
t� is a dimensionless quiet time.
The Gamma functional form is homogeneous (Ivanov et al.,
1996) i.e., rescaling the variable leaves the functional form un-
changed. Such scaling function indicates a hierarchical structure
in the quiet times between consecutive �-bursts, independent of
the scale of observation D0. In the limit of D0 � 0, the quiet time
distribution P

t; D0� coincides with the distribution of �-burst
durations P� (Figs. 2b, 3b,d); a Weibull functional form that be-
longs to the same class of homogeneous functions as the general-
ized Gamma.

Our analysis shows that the scaling relation in Equation 10
and the associated Gamma functional form for the quiet times are
robust: (1) we find them in the 24 h period (Fig. 10) as well as
separately during light and dark periods, and (2) they do not
significantly change with lesion in the VLPO (Fig. 10, compare c,
d). Further, the presence of such hierarchical structure in quiet

times indicates specific temporal order in the occurrence of
�-bursts. To explicitly verify this, we randomly reshuffle the se-
quence of �-burst durations, while preserving the �-burst dura-
tions corresponding to quiet times at D0 � 0, and we perform the
analysis on the reshuffled sequence to obtain quiet time distribu-
tions Prand

t; D0� for different thresholds D0. In this case, after
rescaling the distributions Prand

t; D0� by the average quiet time
�
t�D0, their curves collapse onto an exponential distribution
(Fig. 10c,d, dashed lines); a hallmark of temporal independence
between consecutive events (Daley and Vere-Jones, 1988). This
clearly demonstrates that temporal correlations are intimately
related to the existence of non-exponential scaling functions (Eq.
10; Daley and Vere-Jones, 1988; Corral, 2004).

Notably, a similar temporal organization characterized by co-
existence of power-law and generalized Gamma distribution has
been reported for active states and quiet times in a range of non-
equilibrium systems self-tuning at criticality (earthquakes, ava-
lanches; Corral, 2004; Pruessner, 2012; Munoz, 2018). Thus, our
findings of power-law distribution for �-burst durations (Figs.
2,3) combined with a generalized Gamma distribution for the
quiet times between consecutive �-bursts at different scales of
observation D0 (Fig. 10) are a strong evidence in support of our
hypothesis that bursting activity of fundamental brain rhythms
and the associated sleep micro-architecture exhibit critical non-
equilibrium behavior.

Figure 8. Distribution of �- and �-burst durations in the dark period are independent of the scale of analysis and can be described by unique scaling functions. Distribution of � and � burst
durations in dark period for different window sizes w and Th � 1 on the ratio R��. a, Rescaled distribution of � burst durations for control rats over a 12 h dark period (pooled data). Distributions
are rescaled by the window size w and consistently show the same power law behavior with 
�2.65, as proven by the data collapse. Inset, Distributions P� for different window sizes (not rescaled).
b, Rescaled distribution of � burst durations for control rats over a 12 h dark period (pooled data). Distributions are rescaled by �d��

�, with �d�� mean �-burst duration and �� 1, and collapse onto
a signle function f� that is well described by a Weibull distribution f
x; �, �� (black line), with �� 0.66 and �� 0.04. Inset, Distributions P� for different window sizes (not rescaled). c, Rescaled
distribution of � burst durations for VLPO lesioned rats over a 12 h dark period (pooled data). Distributions are rescaled by the window size w and consistently show the same power law behavior
with 
� 3.1, as proven by the data collapse. Inset, Distributions P� for different window sizes (not rescaled). d, Rescaled distribution of � burst durations for VLPO-lesion rats over a 12 h dark period
(pooled data). Distributions are rescaled by �d��

�, and collapse onto a single function that is well fitted by a Weibull distribution f
x; �, �� (black line), with � � 0.70 and � � 0.05. Inset,
Distributions P� for different window sizes (not rescaled).
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Long-range power-law correlations in the durations of � and
� bursts
Physical systems at criticality exhibit long-range correlations that
span the entire system across space and time scales, and lead to
the emergence of collective cooperative behavior (Stanley, 1987).
Indeed, scaling features in such systems often arise in conjunction
with long-range spatiotemporal correlations following power-laws.
Notably, physiological systems under neuro-autonomic regulation
also exhibit dynamics characterized by long-range power-law cor-
relations; a scale-invariant structure that undergoes a phase tran-
sition with transitions from sleep to wake (Kantelhardt et al., 2003;
Schmitt et al., 2009), with circadian rhythms (Hu et al., 2004;
Ivanov, 2007) and under clinical conditions (Ivanov et al., 1999;
Goldberger et al., 2002). Further, the randomization procedure
in the previous subsection (Fig. 10) clearly demonstrates that the
scale invariant structure in quiet times characterized by a Gamma
scaling function (Eq. 10) can arise only in the presence of a certain
temporal order in �-bursts occurrence. Thus, we next perform
correlation analysis to quantify long-range features in the tempo-
ral organization of �- and �-burst durations.

To this end, we use the DFA, a random walk based method
specially tailored to quantify long-range power-law correlations
embedded in nonstationary signals with various polynomial
trends and bursting dynamics (Chen et al., 2002, 2005). The DFA
method is based on evaluation of the rms fluctuation function
F(n) (see Materials and Methods, Data analysis), where n is the

scale of analysis expressed in number of consecutive bursts (Fig.
11). A scaling relationship of the form F
n� � n
d indicates pres-
ence of long-range power-law correlations in the time series of
burst durations. Correlation exponent 
d � 
0, 0.5� indicates
anti-correlations (where short burst durations tend to be fol-
lowed by longer burst durations), whereas 
d � 
0.5, 1� indicates
positive persistent correlations (long bursts tend to be followed
by longer bursts); 
d � 0.5 corresponds to a random walk and
absence of correlations.

We perform DFA on sequences of �- and �-burst durations
separately, distinguishing between dark and light periods (Fig.
11). We find that both �- and �-bursts exhibit long-range power-
law correlations. In control rats, the power-law exponents char-
acterizing �- and �-bursts are 
d � 0.58 � 0.02 and 
d � 0.64 �
0.01 (exponent � error on fit) for the 12 h dark period, and 
d �
0.61 � 0.01 and 
d � 0.64 � 0.01 (exponent � error on fit) for
the 12 h light period. Comparisons between group averages show
that exponents for dark and light periods are not significantly
different [�-bursts: Control dark 
d � 0.57 � 0.05 vs Control
light 
d � 0.56 � 0.04 (mean � SD), t test, p � 0.636; �-bursts:
Control dark 
d � 0.61 � 0.07 vs Control light 
d � 0.59 � 0.04
(mean � SD), Mann–Whitney U test, p � 0.751]. Moreover, our
analysis indicates that VLPO lesions do not affect the nature of
temporal correlations, but may influence their strength (Fig. 11).
As for control rats, power-law exponents characterizing correla-
tions during dark and light periods are not significantly different

Figure 9. Distribution of �- and �-burst durations in the light period are independent of the scale of analysis and can be described by unique scaling functions. Distribution of � and � burst
durations in light period for different window sizes w and Th � 1 on the ratio R��. a, Rescaled distribution of � burst durations for control rats over a 12 h light period (pooled data). Distributions
are rescaled by the window size w and consistently show the same power law behavior with 
� 2.3, as proven by the data collapse. Inset, Distributions P� for different window sizes (not rescaled).
b, Rescaled distribution of � burst durations for control rats over a 12 h light period (pooled data). Distributions are rescaled by �d��

�, with �d�� mean �-burst duration and �� 1, and collapse onto
a single function f� that is well described by a Weibull distribution f
x; �, �� (thick black line), with � � 0.04 and � � 0.70. Inset, Distributions P� for different window sizes (not rescaled).
c, Rescaled distribution of � burst durations for VLPO lesioned rats over a 12 h light period (pooled data). Distributions are rescaled by the window size w and consistently show the same power law
behavior with 
 � 2.5, as proven by the data collapse. Inset, Distributions P� for different window sizes (not rescaled). d, Rescaled distribution of � burst durations for VLPO-lesion rats over a 12 h
light period (pooled data). Distributions are rescaled by �d��

�, with � � 1, and collapse onto a single function f� that is well described by a Weibull distribution f
x; �, �� (thick black line), with
� � 0.04 and � � 0.67. Inset, Distributions P� for different window sizes (not rescaled).
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[�-bursts: VLPO dark 
d � 0.57 � 0.07 vs VLPO light 
d �
0.58 � 0.08 (mean � SD), t test, p � 0.839; �-bursts: VLPO dark

d � 0.57 � 0.04 vs VLPO light 
d � 0.57 � 0.03 (mean � SD),
t test, p � 0.986]. Comparison between group averages do not
show significant differences between DFA �-burst exponents in
control and VLPO-lesioned rats (Control dark vs VLPO dark, t
test, p � 0.916; Control light vs VLPO light, t test, p � 0.475).
Differences appear more pronounced for the DFA �-burst expo-
nents, with the VLPO exponent 
d � 0.59 � 0.01 lower than the
control exponent 
d � 0.64 � 0.01. However, the comparison be-
tween control and the VLPO-lesioned group do not evidence signif-
icant differences (Control dark vs VLPO dark, Mann–Whitney U
test, p � 0.436; Control light vs VLPO light, t test, p � 0.190).

Anti-correlated coupling between the durations of
consecutive �- and �-bursts
Physical and biological systems at equilibrium (homoeostasis)
are typically controlled by mechanisms that either lead to dynam-
ics with specific space or time scales characterized by exponential
behaviors or to scale-invariant dynamics without characteris-

tic scales following power-laws. Non-equilibrium systems self-
organizing at criticality are unique in the sense that they combine
two distinct behaviors, a scale-invariant power-law related to the
dynamics of active states and an exponential related to quiet
states, both of which emerge out of a single regulatory mechanism
(Lo et al., 2002). In that context, our findings of (1) power-law dis-
tribution for �-burst (active states) durations in coexistence with
Weibull distribution for �-burst (quiet states) durations (charac-
teristic time scale in the quiet states) shown in Figures 2 and 3,
(2) universal Gamma function characterizing the temporal orga-
nization of quiet times across a range of scales (Fig. 10), and
(2) long-range power-law correlations in the time sequence of �-
and �-burst durations (Fig. 11), all typical features of systems at
criticality, indicate a common regulatory mechanism for the
bursting activity of both � and � rhythms and associated sleep
micro-architecture. Presence of such common mechanism may
imply coupling between �- and �-bursts, as further suggested by
concurrent change in both power-law and Weibull distribution
parameters with transition from dark to light periods (Fig. 3).
Thus, to further understand bursting dynamics in relation to

Figure 10. Hierarchical self-similar structure in quiet times between consecutive �-bursts indicates coupling between time of occurrence and burst duration. a, Schematic diagram of quiet times

t between consecutive �-bursts. A quiet time 
ti is the time elapsed from the end of burst �i to the beginning of the following burst �i�1. b, Top, Time series of �-burst durations for �600 min
recording of a control rat. Middle, A 40 min segment from the sequence shown at the top. Bottom, Sequence comprised only of the �-burst durations longer than D0 � 6 s that are present in the 600
min time series shown at the top. Selecting only bursts longer than D0 � 6 s, the temporal pattern at the scale of 600 min looks similar to the pattern at smaller scale of 60 min, indicating hierarchical
self-similar structure in the quiet times. c, Distribution of quiet times for different thresholds D0 on �-burst durations over a 24 h period in control rats (blue symbols). When rescaled by �
t� (main
panel), distributions obtained for different D0 collapse onto a unique function that is well described by a generalized Gamma distribution G
x; b, v, p� (solid green line), with b � 2.03, �� 0.30,
and p � 0.81. Applying the same procedure to a sequence of randomly reshuffled �-burst durations leads to distributions that collapse onto an exponential function (dashed lines). Inset,
Distributions of quiet times for different thresholds D0 before rescaling. d, Distributions of quiet times for different thresholds D0 on �-burst durations over a 24 h period in VLPO-lesioned rats.
Distributions collapse onto a unique function when rescaled by �
t� (main panel). Similar to control rats, this function is well described by a generalized Gamma function G
x; b, v, p� (solid
green line), with b �1.55, ��0.28, and p �0.70. Distribution of quiet times obtained from a sequence of randomly reshuffled �-burst durations collapse onto an exponential distribution (dashed
lines). Insets, Distributions of quiet times in VLPO-lesioned rats for different thresholds D0 before rescaling. Results are consistent when considering separately light and dark periods.
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neuronal integrity in the VLPO, we next investigate the coupling
between consecutive �- and �-burst durations, and the role of
such coupling in the emergent scaling behavior of duration dis-
tributions in control and VLPO-lesioned rats.

We first focus on the relationship between ranks of consecu-
tive �- and �-burst durations, d� and d�. We rank burst durations
in ascending order, with the shortest duration corresponding to
the smallest rank, and examine the scatter plots between the ranks
of consecutive d� and d� (Fig. 12a,b). We find that �-bursts of
high ranks (i.e., long durations) tend to be followed by �-bursts of
low ranks (i.e., short durations). This anti-correlated coupling is
consistently present in both control (Fig. 12a) and VLPO-
lesioned rats (Fig. 12b), and appears to be a basic characteristic of
dynamics as it is observed throughout the entire sleep–wake cycle
in both dark and light periods.

To quantify the coupling between consecutive �- and �-burst
durations we use Spearman’s correlation coefficient, which
assesses monotonic relationships between two variables (see Ma-
terials and Methods, Data analysis). The Spearman’s cross-
correlation is positive when observations of two variables have
similar ranks, and negative if they have opposite ranks. Our anal-
yses show that the Spearman’s coefficient calculated for consec-
utive �- and �-burst durations is always (24 h, dark/light period)
significantly negative (Fig. 12c), indicating anti-correlated cou-
pling. This is verified by a surrogate test where the sequence of
consecutive �- and �-burst durations is randomized (Fig. 12c; see
Materials and Methods, Data analysis). We find that the �–�
anti-correlated coupling is less pronounced for VLPO-lesioned
rats, and this is consistently observed in both light and dark pe-
riods. Comparing light versus dark period, our results show an
increase in the anti-correlated coupling during the light period
within each group (Fig. 12c).

The presence of anti-correlated coupling between consecutive �-
and �-bursts is further supported by the analysis of conditional
probabilities (Fig. 13). Specifically, we ask how the conditional prob-
ability distribution P
d�i�d�i�1 � d*� of �-burst durations d�i changes

depending on the length of preceding
�-burst duration d�i�1, i.e., we consider the
probability distribution of the subset of
�-bursts which follow �-burst durations
above a given length d*. We note that if d�i is
independent of the preceding �-burst, then
the conditional probability distribution is
equivalent to the unconditioned Weibull
distribution of �-burst durations (Fig. 3), i.e.,
P
d�i�d�i�1 � d*� � P
d�i�. On the other
hand, finding P
d�i�d�i�1 � d*� � P
d�i�
implies that the duration d�i depends on
the duration d�i�1 of the preceding
�-burst. By studying the behavior of
the conditional probability distribution
P
d�i�d�i�1 � d*) for several values of the
threshold d*, we find that the probability
for longer d�i systematically drops for in-
creasing d* values (faster declining tail of
the conditional distribution), while the
probability for shorter d�i significantly in-
creases (Fig. 13, insets). This dependence
is observed during light and dark periods
for both control and VLPO-lesioned groups,
and indicates an anti-correlated coupling be-
tween the durations of consecutive �- and
�-bursts.

Phenomenological model of coupling and criticality in �- and
�-bursts dynamics
We next test whether the established anti-correlated coupling
between consecutive �- and �-burst durations is essential for the
emergent duality of power-law and Weibull distribution. We de-
velop a phenomenological model (Fig. 14) based on anti-
correlated pairing of � and � durations randomly drawn from the
empirical distributions of the �- and �-burst durations estab-
lished in our study (Fig. 2). The model allows to control the
degree of anti-correlations between consecutive �- and �-burst
durations, and thus to examine whether and how anti-correlations af-
fect the emerging power-law and Weibull distributions of burst
durations, and the related scale-invariant temporal structure of
�- and �-bursts.

The basic steps to generate sequences of alternating �- and
�-burst durations with the desired degree of correlations are
schematically outlined in Figure 14 and explained in further de-
tail in Materials and Methods . Specifically: (1) we randomly
draw durations d� and d� from their respective power-law and
Weibull distributions obtained from our empirical data analyses
(Fig. 15a); (2) d� and d� are next separately sorted in ascending
order, from shortest to longest, and are assigned a unique rank
(Fig. 15b); (3) the durations d� and d� are then paired based on
their ranks with a certain degree of anti-correlation (defined by
and monotonically depending on a single parameter) to generate
an artificial time series of alternating �- and �-burst durations
(Fig. 15b); and (4) the obtained artificial time series is then bina-
rized in windows w corresponding to the window size used in our
EEG spectral power analysis of the original data (Fig. 1a), where � is
assigned for �-bursts and � for �-bursts. Finally, the binary series
is coarse-grained at larger time scale 
 (Fig. 14c).

We use this model to test our hypothesis that coupling be-
tween �- and �-bursts is essential for the emergent duality of
power-law and Weibull behavior across time scales. We test to
what extent �–� coupling strength plays role in the emergent

Figure 11. Long-range power-law correlations in sequences of consecutive �- and �-burst durations indicate a dynamical
system at criticality. Detrended fluctuation analysis for sequences of �- and �-burst durations in control and VLPO-lesioned rats.
Burst durations are calculated using a window w � 4 s and threshold Th � 1 on the ratio R�� (Fig. 1), and are analyzed separately
for 12 h dark/light periods. The rms fluctuation function F(n) is obtained averaging over all rats in the control (a) and VLPO-lesioned
group (b), respectively. Log–log plots of F(n) versus the time scale of analysis n, where n is the number of consecutive burst
durations, show power-law relations F
n� � n
d over a broad range of scales n. The scaling exponents are significantly larger
than 0.5, both in light and dark periods, indicating presence of positive (persistent) long-range correlations in �-bursts for both
control and VLPO-lesioned rats. Similar results are found in sequences of �-bursts for (c) control and (d) VLPO-lesioned rats.
Power-law exponents were obtained from the average rms fluctuation function F(n).
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scale-invariant organization of sleep micro-architecture. Our
simulations show that the generated distributions of �- and
�-burst durations depend on the degree of anti-correlation intro-
duced in the model. When the Spearman’s cross-correlation co-
efficient of burst durations generated by the model corresponds
to the empirical values found in real data, the distributions ob-
tained from the model approximate the empirical distributions
(Fig. 15), and scale-invariant temporal organization in burst
durations emerges over a range of coarse-graining scales 
. In
contrast, absence of anti-correlated coupling in our model (i.e.,
random pairing of � and � durations in the generated time series)
leads to exponential distribution for both �- and �-bursts, signif-
icantly different from real data (Fig. 15).

Discussion
We studied the dynamical features of wake- and sleep-dominant
brain rhythms across 48 h recordings of the sleep–wake cycle. To
uncover basic principles underlying sleep dynamics and emer-
gent sleep stage and arousals/wake transitions, we analyzed con-
trol rats and rats with lesions in the VLPO (Lu et al., 2000, 2002).
We found that transient bursts in � and � cortical rhythms
continuously occur during the sleep–wake cycle, and exhibit a
complex temporal organization which is characterized by a re-
markable duality of scale-invariant power-law distribution for
�-burst durations (active states) and Weibull distribution with a
exponential characteristic time scale for �-burst durations (quiet
states; Fig. 2). Further, we showed the presence of anti-correlated

coupling between �- and �-bursts dynamics (Fig. 12) and dem-
onstrated that this coupling is essential part of the mechanism
responsible for the emerging duality of power-law and Weibull
behavior across time scales (Figs. 14, 15). The presence of com-
plex temporal organization and coupling in cortical rhythms
is also manifested through the hierarchical structure in the
quiet time intervals separating consecutive active states (�-
bursts) above a given duration (Fig. 10), which we find to be
described by a unique scaling function (generalized Gamma
distribution). This self-similar structure links, across time
scales, the duration of a given �-burst with the time of its occur-
rence. Moreover, we found that sequences of consecutive �- or
�-burst durations are long-range power-law correlated, indicat-
ing a scale-invariant organization in the temporal order of burst
durations and a unique underlying process with persistent
“memory” spanning over a wide range of scales that statistically
couples the duration of a given burst with the durations of hun-
dreds of following bursts (Fig. 11).

Importantly, our empirical analyses showed that the reported
characteristics of �- and �-bursts dynamics do not depend on the
scale of observation or on the threshold used to identify �- from
�-bursts, and remain continuously present during dark and light
periods (Figs. 4 –9), under different dominant physiologic states
(sleep and wake), and both in control and VLPO-lesioned rats.
The presence of multiple scale-invariant characteristics related to
distributions, correlations, coupling, and timing of bursting events,

Figure 12. Coupling between �- and �-burst durations indicates a common mechanism regulating the activity of these rhythms across the sleep–wake cycle. Scatter plots and rank correlation
analysis demonstrate anti-correlated coupling between consecutive �- and �-burst durations. a, Scatter plot of � burst ranks versus � burst ranks in the dark period for control rats. Each dot
represents a pair formed by a �-burst and the following �-burst, with burst durations separately ranked among the �-bursts and the �-bursts (longest duration corresponding to highest rank).
b, Scatter plot of �-burst ranks versus �-burst ranks in the dark period for VLPO-lesioned rats. For each rat group, ranks are calculated separately for each rat and then plotted together. c, d, Average
Spearman’s cross-correlation coefficient for control and VLPO-lesioned rats in dark, light, and 24 h periods. Anti-correlations between consecutive �- and �-bursts are stronger during light than
during dark periods in each group. Comparing dark versus light periods, the Student’s t test gives p � 0.001 for control rats and p � 0.002 for VLPO-lesioned rats. Importantly, VLPO lesioned rats
generally exhibit weaker anti-correlations than the control group, in particular during dark periods, where anti-correlation decreases with 	35% compared with control rats [Control vs VLPO t test;
(c) 24 h, p � 0.159; dark, p � 0.008; light, p � 0.700; (d) 24 h, p � 0.069; dark, p � 0.013; light, p � 0.273]. All correlation coefficients calculated in both groups are significantly different from
the corresponding values obtained in the surrogates (red bars) after randomly reshuffling the original order of �- and �-bursts (t test, p � 0.001). All durations are calculated using a window w �
4 s and threshold Th � 1 on the ratio R�� (as in Fig. 1).
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is a strong evidence for criticality underlying sleep micro-archi-
tecture; a signature of collective behavior over a range of time
scales that emerges from neuronal interactions across brain areas.
Such critical dynamics characterized by intermittent transitions be-
tween active and quiescent states at the integrated cortical level sug-
gests the presence of a non-equilibrium mechanism that regulates
sleep micro-architecture on time scales from seconds to an hour.

Our observations provide new insights about the role of the
VLPO, and new methods to assess potential abnormal features in
the sleep–wake cycle based on the analysis of cortical dynamics.
Previous studies have demonstrated that lesions of the central
cluster of the VLPO lead to a large decrease in delta power and
NREM sleep time, and a fragmentation of the sleep–wake cycle
(Lu et al., 2000; Vetrivelan et al., 2012). The results reported here
indicate that, despite the decrease in delta power (Vetrivelan et
al., 2012), VLPO lesions do not alter the dynamics of �-bursts. On
the other hand, we found that lesions of VLPO neurons signifi-
cantly affect the temporal organization of �-bursts. In particular,
the power-law exponent characterizing �-bursts increases in rats
with VLPO lesions, indicating a decreased likelihood for long-
lasting bursts and a higher probability to observe shorter bursts.
This is an evidence of fragmentation of bursting activity in the
�-wave band that parallels the increased fragmentation of sleep in
VLPO-lesioned rats. Such deviations of the power-law exponent
from the values measured in control rats indicate alteration in the
optimal underlying mechanism for sleep regulation, and may be
used as a marker of sleep disorders. Importantly, such changes in
�-burst dynamics are indeed associated with a decreased anti-
correlation between durations of consecutive �- and �-bursts.

These findings, alongside with model simulations demonstrating
that �–� coupling is essential for the emerging scale-invariant
temporal organization in these cortical rhythms, indicate that
VLPO neurons may have dual role for both sleep and arousal/
brief wake activation.

The uncovered complex dynamics in � and � rhythms share
striking similarities with natural non-equilibrium phenomena
exhibiting self-organized criticality (Bak, 1996). In this context,
bursts (active states) do not have a characteristic duration, and
are separated by quiescent periods whose distribution depends
on the details of the system and generally exhibit an exponential
tail (Corral, 2004; Lombardi et al., 2014; Scarpetta and de Candia,
2014), and is an exponential for the paradigmatic sandpile model
of self-organized criticality (Boffetta et al., 1999). Thus, in non-
equilibrium systems exhibiting self-organized criticality, power-
law and exponential behavior for active and quiet states coexist,
and emerge out of the same regulatory mechanism. The duality of
power-law and Weibull distribution in the bursting dynamics of
� and � rhythms is closely reminiscent of this scenario, where
scale-free �-bursts in cortical activity can be seen as avalanches or
earthquakes (active states), whereas �-bursts can be interpreted
as the quiet periods between active states. Following this analogy,
we further demonstrated that the quiet times between consecu-
tive �-burst above a given duration are described by a unique
Gamma distribution, the scaling function that also characterizes
earthquake dynamics (Corral, 2004).

The interpretation of �-bursts as active states and �-bursts as
quiet states is consistent with the basic neurophysiological under-
standing of � rhythm as the cortical default mode; indeed, lesion

Figure 13. Distributions of conditional probabilities for �-burst durations show anti-correlated coupling between �- and �-bursts. a, Distribution of durations d�i
given that the duration of the

preceding �-burst is larger than a given threshold d* for control rats in 12 h light periods. b, Distribution of durations d�i
given that the duration of the preceding �-burst is larger than a given

threshold d* for VLPO-lesioned rats in 12 h light periods. c, Distribution of durations d�i
given that the duration of the preceding �-burst is larger than a threshold d* for control rats in 12 h dark

period. d, Distribution of durations d�i
given that the duration of the preceding � burst is larger than a threshold d* for VLPO-lesioned rats in 12 h dark periods. Durations are calculated using a

window w � 4 s and a threshold Th � 1 on the ratio R��. Insets show details of conditional probability distribution for short d�i
	 0.2 min. In all cases, the probability for longer d�i

systematically drops for increasing d* values (faster declining tail of the conditional distribution), whereas the probability for shorter d�i
significantly increases, as shown.
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and transection experiments have shown that interruption of
sensory inputs to the cortex results in a cortical EEG similar to
that in NREM sleep (von Economo, 1930; Bremer, 1935, 1937).
In contrast, oscillations in the � band are associated with REM
state, arousals, and wakefulness (Boyce et al., 2016; Scammell et
al., 2017). Because of the respective amount of wakefulness and
REM sleep in our data (Vetrivelan et al., 2012), most of the ana-
lyzed �-bursts are likely associated with arousals and wake. Fur-
ther, during wakefulness cortical � waves are desynchronized
with a wide range of burst durations, and correspondingly our
analyses show that collective cortical activity follows robust scal-
ing laws: power-law distribution for burst durations, long-range
power-law correlations in the sequence of burst durations, and a
scaling function describing quiet times between bursts.

All these features outline a general picture unifying previous
empirical observations of spontaneous neuronal network dy-
namics at different levels, from networks of dissociated cortical
neurons (Pasquale et al., 2008) and local field potentials in cortex
slice cultures (Beggs and Plenz, 2003) and awake monkeys (Pe-
termann et al., 2009), to the human brain (Linkenkaer-Hansen et
al., 2001; Tagliazucchi et al., 2012; Palva et al., 2013; Shriki et al.,
2013; Marinazzo et al., 2014), and the dynamics of sleep-stage

and arousal transitions across species (Lo et al., 2002, 2004, 2013;
Blumberg et al., 2005; Sorribes et al., 2013), where either distri-
butions or temporal correlations of active events have been stud-
ied and discussed in the context of self-organized criticality.
Crucially, here we demonstrated presence of the full spectrum of
scaling characteristics typical for systems self-organizing at criti-
cality. Furthermore, we linked our observations to the collective
behavior of a key sleep-promoting neuronal population leading
to emerging cortical rhythms in relation to physiological alterna-
tion of sleep and wake. We found that the power-law scaling
exponent of the distribution for �-burst durations in control rats

Figure 14. Schematic diagram of a phenomenological model to generate sequences of �-
and �-burst durations with varied degree of anti-correlated coupling. a, First, burst durations
d� and d� are randomly drawn from the empirically obtained distributions (power-law and
Weibull; Fig. 4) and separately ranked. Durations d � n � w are a multiple of the scale of
analysis (window size w � 2 s). b, Ranks of �- and �-burst durations are then paired to form an
anti-correlated sequence: if the rank(d�) of a �-burst is large, then the rank(d�) of the following
d�-burst is selected to be smaller, and vice versa. Repeating this process leads to a sequence of
generated d� and d� durations with a certain degree of anti-correlation. c, This newly generated
anti-correlated time series is binarized, i.e., �/� is assigned to each window w that belongs
either to a d� (red, �) or d� (blue, �) duration, respectively. The binary time series is then
coarse grained according to a majority rule applied over a window 
 � 5w. From the
resulting CGBS, consecutive � durations, d�

CG, and � durations, d�
CG, are extracted.

Figure 15. Anti-correlations between consecutive �- and �-bursts durations are essential
for emerging duality of power-law and Weibull dynamics. Probability distributions of �- and
�-burst durations from 24 h control and VLPO-lesioned rat data coarse-grained (CG) over a
window 
 � 10 s, are compared with the distributions obtained from the model-generated
coarse-grained binary time series of �- and �-bursts durations with anti-correlations and with-
out correlations (random pairing of �- and �-bursts; Fig. 14). a, Distributions P�(d) of �-burst
durations for: (1) 24 h control rats data (red diamonds), (2) model-generated time series of �-
and �-bursts durations with anti-correlations (green circles), and (3) model-generated time
series with random pairing of �- and �-bursts durations (magenta dashed line). Inset, Results
from same analysis on P�(d) for the group of VLPO-lesioned rats. b, Distribution P�(d) of �-burst
durations for: (1) 24 h control rats data (blue diamonds), (2) model-generated time series with
anti-correlations (green circles), and (3) model-generated time series with random pairing of
�- and �-bursts durations (magenta dashed line). Inset, Results from same analysis on P�(d) for
the group of VLPO-lesioned rats. In both a and b, durations are in units of 
, which is the
window size used to coarse grain the sequences of �- and �-bursts durations. The distributions
obtained from the model using anti-correlated d� and d� pairing (green circles) closely match
the duration distributions for the original data (diamonds), power-law for P�(d) and Weibull for
P�(d), for both control and VLPO-lesioned rats. In contrast, a random pairing of d� and d�

produces duration distributions following the Poisson functional form (magenta dashed lines)
that significantly deviates from the original data.

188 • J. Neurosci., January 2, 2020 • 40(1):171–190 Lombardi et al. • Critical Dynamics Drive Sleep-Stage Transitions



is 
 � 2.4, close to the power-law exponent for the distribution of
neuronal avalanches durations (Beggs and Plenz, 2003; Pasquale
et al., 2008), and to 
 � 2.2 reported for arousal/wake episodes in
coarse-grained sleep-stage recordings in humans (Lo et al., 2002)
and other species (Lo et al., 2004; Blumberg et al., 2005; Sorribes
et al., 2013; Dvir et al., 2018). Importantly, we observed that
lesions of VLPO lead to significantly higher values for the �-burst
power-law exponent, an effect that may be interpreted as a tran-
sition into a sub-critical behavior (a deviation from emergent
criticality due to alteration of the underlying control mecha-
nism)(Lombardi et al., 2012, 2017; Poil et al., 2012).

In summary, the reported duality of power-law and Weibull
distribution and the scaling features for a full spectrum of dy-
namic characteristics in the bursting activity of � and � rhythms
strongly support the hypothesis of an underlying critical dynam-
ics for sleep regulation. These evidences lay the foundation of a
new paradigm for the investigation of sleep dynamics and sleep-
stage transitions mechanisms, considering sleep micro-architecture
as result of a non-equilibrium process and self-organization among
neuronal assemblies to maintain a critical state (a behavior that is in
stark contrast to the homeostasis paradigm of sleep regulation at
large time scales). Within the criticality framework arousals/brief
wake and sleep-stage dynamics emerge out of a common regulatory
mechanism, where arousals play an essential part in maintaining a
non-equilibrium behavior at criticality, as suggested by our observa-
tions of coupling between consecutive �- and �-bursts durations.
Systems at criticality exhibit high susceptibility and sensitivity to
interactions, leading to cooperative behaviors over a range of
space/time scales, and thus maintaining a critical state is impor-
tant for system’s flexibility and for generating spontaneous tran-
sitions (Ansmann et al., 2016; Lehnertz et al., 2018). Such
transitions cannot occur intrinsically in a homeostatic (equilibrium)
system. In the context of sleep micro-architecture, the proposed
criticality-based paradigm may provide new insights on the origin
and mechanisms underlying the dynamics of sleep-stage and arousal
transitions, and offers a unifying picture of sleep and wake.
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