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Abstract
A central problem of algebraic topology is to understand the homotopy groups πd(X)

of a topological space X . For the computational version of the problem, it iswell known
that there is no algorithm to decide whether the fundamental group π1(X) of a given
finite simplicial complex X is trivial. On the other hand, there are several algorithms
that, given a finite simplicial complex X that is simply connected (i.e., with π1(X)

trivial), compute the higher homotopy group πd(X) for any given d ≥ 2. However,
these algorithms come with a caveat: They compute the isomorphism type of πd(X),
d ≥ 2 as an abstract finitely generated abelian group given by generators and relations,
but they work with very implicit representations of the elements of πd(X). Converting
elements of this abstract group into explicit geometric maps from the d-dimensional
sphere Sd to X has been one of the main unsolved problems in the emerging field of
computational homotopy theory. Here we present an algorithm that, given a simply
connected space X , computes πd(X) and represents its elements as simplicial maps
from a suitable triangulation of the d-sphere Sd to X . For fixed d, the algorithm runs
in time exponential in size(X), the number of simplices of X . Moreover, we prove
that this is optimal: For every fixed d ≥ 2, we construct a family of simply connected
spaces X such that for any simplicial map representing a generator of πd(X), the size
of the triangulation of Sd on which the map is defined, is exponential in size(X).
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1 Introduction

One of the central concepts in topology are the homotopy groups πd(X) of a topo-
logical space X . Similar to the homology groups Hd(X), the homotopy groups πd(X)

provide a mathematically precise way of measuring the “d-dimensional holes” in X ,
but the latter are significantly more subtle and computationally much less tractable
than the former. Understanding homotopy groups has been one of the main challenges
propelling research in algebraic topology, with only partial results so far despite an
enormous effort (see, e.g., Ravenel 2004; Kochman 1990); the amazing complexity
of the problem is illustrated by the fact that even for the 2-dimensional sphere S2, the
higher homotopy groups πd(S2) are nontrivial for infinitely many d and known only
for a few dozen values of d.

For computational purposes, we consider spaces that have a combinatorial descrip-
tion as simplicial sets (or, alternatively, finite simplicial complexes) andmaps between
them as simplicial maps.

A fundamental computational result about homotopy groups is negative: There is
no algorithm to decide whether the fundamental group π1(X) of a finite simplicial
complex X is trivial, i.e., whether every continuous map from the circle S1 to X
can be continuously contracted to a point; this holds even if X is restricted to be
2-dimensional.1

On the other hand, given a space X that is simply connected (i.e., path connected
and with π1(X) trivial) there are algorithms that compute the higher homotopy group
πd(X), for every given d ≥ 2. The first such algorithm was given by Brown (1957),
and newer ones have been obtained as a part of general computational frameworks
in algebraic topology; in particular, an algorithm based on the methods of Sergeraert
(1994) and Rubio and Sergeraert (2002) was described by Real (1996).

More recently, Čadek et al. (2014b) proved that, for any fixed d, the homotopy group
πd(X) of a given 1-connected finite simplicial set can be computed in polynomial
time. On the negative side, computing πd(X) is #P-hard if d is part of the input (Anick
1989; Čadek et al. 2013b) (and, moreover, W[1]-hard with respect to the parameter
d Matoušek 2014), even if X is restricted to be 4-dimensional. These results form
part of a general effort to understand the computational complexity of topological
questions concerning the classification of maps up to homotopy (Čadek et al. 2013a, b,
2014a; Filakovský andVokřínek2013) and relatedquestions, such as the embeddability
problem for simplicial complexes (a higher-dimensional analogue of graph planarity)
(Matoušek et al. 2011, 2014; Čadek et al. 2017).

1.1 Our results: representing homotopy classes by explicit maps

By definition, elements of πd(X) are equivalence classes of continuous maps from
the d-dimensional sphere Sd to X , with maps being considered equivalent (or lying

1 This follows via a standard reduction from a result of Adyan (1955) and Rabin (1958) on the algorithmic
unsolvability of the triviality problem of a group given in terms of generators and relations; we refer to the
survey Soare (2004) for further background.
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in the same homotopy class) if they are homotopic, i.e. if they can be continuously
deformed into one another (see Sect. 3 for more details).

The algorithms of Brown (1957) or Čadek et al. (2014b) mentioned above compute
πd(X) as an abstract abelian group, in terms of generators and relations.2 However,
they work with very implicit representations of the elements of πd(X).

On the other hand, assuming that X is finite, 0-reduced and (d − 1) connected,
Berger (1991, 1995) presented an algorithm that computes generators of πd(X) as
explicit simplicial maps.

Combining this algorithmwith an algorithmic construction of theWhitehead tower,
we managed to drop the condition on the connectivity and obtained the main result
of this paper: an algorithm that, given an element α of πd(X), computes a suitable
triangulationΣd of the sphere Sd and an explicit simplicialmapΣd → X representing
the given homotopy class α.

Apart from the intrinsic importance of homotopy groups, we see this as a step
towards the more general goal of computing explicit maps with specific topological
properties; instances of this goal include computing explicit representatives of homo-
topy classes of maps betweenmore general spaces X and Y (a problem raised in Čadek
et al. 2014a) as well as computing an explicit embedding of a given simplicial complex
into R

d (as opposed to deciding embeddability). Moreover, these questions are also
closely related to quantitative questions in homotopy theory (Gromov 1999) and in
the theory of embeddings (Freedman and Krushkal 2014). See Sect. 1.2 for a more
detailed discussion of these questions.

Throughout this paper, we assume that the input X is simply connected, i.e., that it is
connected and has trivial fundamental group π1(X). For the purpose of the exposition,
we will assume that X is given as a 1-reduced simplicial set, encoded as a list of its
nondegenerate simplices and boundary operators given via finite tables. We remark
that the class of 1-reduced simplicial sets contains standard models of 1-connected
topological spaces, such as spheres or complex projective spaces. A more general
version of the theorem that also includes simply connected simplicial complexes is
discussed in Sect. 4.

Theorem A There exists an algorithm that, given d ≥ 2 and a finite 1-reduced sim-
plicial set X, computes a set of generators g1, . . . , gk of πd(X) as simplicial maps
Σd

j → X, for suitable triangulations Σd
j of S

d , j = 1, . . . , k.
For fixed d, the time complexity is exponential in the size (number of simplices) of

X; more precisely, it is O(2P(size(X))) where P = Pd is a polynomial depending only
on d.

Any element of πd(X) can be expressed as a sum of generators, and expressing
the sum of two explicit maps from spheres into X as another explicit map is a simple
operation. Hence, the algorithm in Theorem A can convert any element of πd(X) into
an explicit simplicial map.

Theorem A also has the following quantitative consequence: Fix some standard
triangulation Σ of the sphere Sd , e.g., as the boundary of a d + 1-simplex. By the
classical Simplicial Approximation Theorem (Hatcher 2001, 2.C), for any continuous

2 That is, they compute integers r , q1, . . . , qk such that πd (X) is isomorphic to Z
r ⊕ Zq1 ⊕ · · · ⊕ Zqk .
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map f : Sd → X , there is a subdivision Σ ′ of Σ and a simplicial map f ′ : Σ ′ → X
that is homotopic to f . Theorem A implies that if f represents a generator of πd(X),
then the size of Σ ′ can be bounded by an exponential function of the number of
simplices of X .

Furthermore, we can show that the exponential dependence on the number of sim-
plices in X is inevitable:

Theorem B Let d ≥ 2 be fixed. Then there is an infinite family of d-dimensional
0-reduced 1-connected simplicial sets X such that for any simplicial map Σ → X
representing a generator of πd(X), the triangulation Σ of Sd on which f is defined
has size at least 2Ω(size(X)). If d ≥ 3, we may even assume that X are 1-reduced.

Consequently, any algorithm for computing simplicial representatives of the gener-
ators of πd(X) for 1-reduced simplicial set X has time complexity at least 2Ω(size(X)).

In Sects. 4 and 5, we state and prove generalizations of Theorems A and B denoted as
Theorems A.1 and B.1 . They remove the assumption that X is 1-reduced and replace
it by a more flexible certificate of simply connectedness, allowing the input space X
to be a more flexible simplicial set or simplicial complex.

This reduction from simplicial sets to simplicial complexes is achieved using a tech-
nical result we formulate later in the text as Lemma 6. The main ideas of this Lemma
can be summarized as follows. For a finite simplicial complex Xsc endowedwith a cer-
tificate of 1-connectedness, we choose a spanning tree T and contract it into a point,
creating a 0-reduced simplicial set X = Xsc/T . The certificate of 1-connectedness
transfers to X and generalizes the 1-reduceness assumption in Theorem A. Once
we compute a homotopy representative Σ → X , we then convert it to an equiva-
lent map Sd(Σ) → Xsc where Sd is a suitable subdivision functor, see Sect. 8 for
details.

1.1.1 Source of the exponential

Let us briefly discuss the source of the exponential time complexity bound:Given the X
as an input in Theorem A, the algorithm computes a set of generators of πd(X). These
have an algebraic representation as elements of a simplicial group G. In particular,
a generator g ∈ G of πd has a form g = γ

α1
1 · · · γ αn

n , where the elements γi are some
agreed upon generators of G. The size of the exponents αi is considered in a standard
way (i.e. number of bits). All steps are polynomial up to this point.

The exponential blowup happens, when we assign a simplicial model of a sphere
to g = γ

α1
1 · · · γ αn

n . The resulting sphere will contain ∼ ∑n
i=1 |αi | number of distinct

d-simplices. This number can be large (even though its bit-size is polynomial). Hence,
just outputting all these simplices could have exponential-time complexity in the input.
In Theorem B, we show that this blowup really happens.

We remark that, in the boundary case of 1-reduced simplicial sets for d = 2 (outside
the scope of Theorem B), we don’t know whether the lower complexity bound is sub-
exponential or not. However, we can show that the algorithm from Theorem A is
optimal in that case as well, see a discussion in Sect. 5.

123



Computing simplicial representatives of homotopy group elements 181

1.2 Related and future work

1.2.1 Computational homotopy theory and applications

This paper falls into the broader area of computational topology, which has been a
rapidly developing area (see, for instance, the textbooks Edelsbrunner andHarer 2010;
Zomorodian 2005; Matveev 2007); more specifically, as mentioned above, this work
forms part of a general effort to understand the computational complexity of prob-
lems in homotopy theory, both because of the intrinsic importance of these problems
in topology and because of applications in other areas, e.g., to algorithmic questions
regarding embeddability of simplicial complexes (Matoušek et al. 2011; Čadek et al.
2017), to questions in topological combinatorics (see, e.g., Mabillard and Wagner
2016), or to the robust satisfiability of equations (Franek and Krčál 2015).

A central theme in topology is to understand the set [X ,Y ] of all homotopy classes
of maps from a space X to a space Y . In many cases of interest, this set carries addi-
tional structure, e.g., an abelian group structure, as in the case πd(X) = [Sd , X ] of
higher homotopy groups that are the focus of the present paper.

Homotopy-theoretic questions have been at the heart of the development of alge-
braic topology since the 1940’s. In the 1990s, three independent groups of researchers
proposed general frameworks to make various more advanced methods of algebraic
topology (such as spectral sequences) effective (algorithmic): Schön (1991), Smith
(1998), and Sergeraert, Rubio, Dousson, Romero, and coworkers (e.g., Sergeraert
1994; Rubio and Sergeraert 2002, 2005; Romero et al. 2006; also see Rubio and
Sergeraert 2012 for an exposition). These frameworks yielded general computability
results for homotopy-theoretic questions (including new algorithms for the computa-
tion of higher homotopy groups Real 1996), and in the case of Sergeraert et al., also a
practical implementation in form of the Kenzo software package (Heras et al. 2011).

Building on the framework of objects with effective homology by Sergeraert et
al., in recent years a variety of new results in computational homotopy theory were
obtained (Čadek et al. 2013b, 2014a, b, 2017; Krčál et al. 2013; Vokřínek 2017;
Filakovský and Vokřínek 2013; Romero and Sergeraert 2012, 2016), including,
in some cases, the first polynomial-time algorithms, by using a refined frame-
work of objects with polynomial-time homology (Krčál et al. 2013; Čadek et al.
2014b) that allows for a computational complexity analysis. For an introduction
to this area from a theoretical computer science perspective and an overview
of some of these results, see, e.g., Čadek et al. (2013a) and the references
therein.

1.2.2 Explicit maps

As mentioned above, the above algorithms often work with rather implicit represen-
tations of the homotopy classes in πd(X) (or, more generally, in [X ,Y ]) but does not
yields explicit maps representing these homotopy classes.
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For instance, the algorithm in Real (1996) computes πd(X) as the homology group
Hd(F) of an auxiliary space F = Fd(X) constructed from X in such a way that πd(X)

and Hd(F) are isomorphic as groups.3

More recently, Romero and Sergeraert (2016) devised an algorithm that, given a
1-reduced (and hence simply connected) simplicial set X and d ≥ 2, computes the
homotopy group πd(X) as the homotopy group πd(K ) of an auxiliary simplicial set K
(a so-called Kan completion of X ) with πd(X) ∼= πd(K ). Moreover, given an element
of this group, the algorithm can compute an explicit simplicial map Σd → K from a
suitable triangulation of Sd to K representing the given homotopy class. In this way,
homotopy classes are represented by explicit maps, but as maps to the auxiliary space
K , which is homotopy equivalent to but not homeomorphic to the given space X .

By contrast, our general goal is to is represent homotopy classes by maps into the
given space; in the present paper, we treat, as an important first instance, the case
πd(X) = [Sd , X ].

1.2.3 Open problems and future work

Our next goal is to extend the results here to the setting of Čadek et al. (2014a), i.e.,
to represent, more generally, homotopy classes in [X ,Y ] by explicit simplicial maps
from some suitable subdivision X ′ to Y (under suitable assumptions that allow us to
compute [X ,Y ]).4

In a subsequent step, we hope to generalize this further to the equivariant setting
[X ,Y ]G of Čadek et al. (2017), in which a finite group G of symmetries acts on
the spaces X ,Y and all maps and homotopies are required to be equivariant, i.e., to
preserve the symmetries.

As mentioned above, one motivation is the problem of algorithmically constructing
embeddings of simplicial complexes intoR

d . Indeed, in a suitable range of dimensions
(d ≥ 3(k+1)

2 ), the existence of an embedding of a finite k-dimensional simplicial
complex K into R

d is equivalent to the existence of an Z2-equivariant map from an
auxiliary complex K̃ (the deleted product) into the sphere Sd−1, by a classical theorem
of Haefliger (1962) and Weber (1967). The proof of the Haefliger–Weber Theorem is,
in principle, constructive, but in order to turn this construction into an algorithm to
compute an embedding, one needs an explicit equivariant map into the sphere Sd−1.

1.2.4 Quantitative homotopy theory

Another motivation for representing homotopy classes by simplicial maps and com-
plexity bounds for such algorithms is the connection to quantitative questions in
homotopy theory (Gromov 1999; Ferry and Weinberger 2013) and in the theory of
embeddings (Freedman and Krushkal 2014). Given a suitable measure of complexity

3 Similarly, the algorithm in Čadek et al. (2014b) constructs an auxiliary chain complex C such that πd (X)

is isomorphic to the homology group Hd+1(C) and computes the latter.
4 Similarly as before, the algorithm in Čadek et al. (2014a) computes [X , Y ] as the set [X , P] for some
auxiliary space P (a stage of a Postnikov system for Y ) and represents the elements of [X , Y ] ∼= [X , P] as
maps from X to P , but not as maps to Y .
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for the maps in question, typical questions are: What is the relation between the com-
plexity of a given null-homotopic map f : X → Y and the minimum complexity of a
nullhomotopy witnessing this? What is the minimum complexity of an embedding of
a simplicial complex K into R

d? In quantitative homotopy theory, complexity is often
quantified by assuming that the spaces are metric spaces and by considering Lipschitz
constants (which are closely related to the sizes of the simplicial representatives of
maps and homotopies Ferry andWeinberger 2013). For embeddings, the connection is
evenmore direct: a typicalmeasure is the smallest number of simplices in a subdivision
K ′ or K such that there exists a simplexwise linear-embedding K ′ ↪→ R

d .

1.3 Structure of the paper

The remainder of the paper is structured as follows: In Sect. 2, we give a high-level
description of the main ingredients of the algorithm from Theorem A. In Sect. 3, we
review a number of necessary technical definitions regarding simplicial sets and the
frameworks of effective and polynomial-time homology, in particular Kan’s simplicial
version of loop spaces and polynomial-time loop contractions for infinite simplicial
sets. In Sect. 4, we formally describe the algorithm from Theorem A and give a high
level proof based on a number of lemmas which are proved in in subsequent chapters.
Section 5 contains the proof of Theorem B. The rest of the paper contains several
technical parts needed for the proof of Theorem A: in Sect. 6, we describe Berger’s
effective Hurewicz inverse and analyze its running time (Theorem 1), in Sect. 7, we
prove that the stages of the Whitehead tower have polynomial-time contractible loops
(Lemma 4). Finally, in Sect. 8, we show how to reduce the case when the input is
a simplicial complex Xsc to the case of an associated simplicial set X and convert
a map Σ → X into a map from a subdivision Sd(Σ) into Xsc (Lemma 6).

2 Outline of the algorithm

In this section we present a high-level description of the main steps and ingredients
involved in the algorithm from Theorem A.

2.1 The algorithm in a nutshell

1. In the simplest case when the space X is (d − 1)-connected (i.e., πi (X) = 0 for
all i ≤ d − 1), the classical Hurewicz Theorem (Hatcher 2001, Sect. 4.2) yields
an isomorphism πd(X) ∼= Hd(X) between the dth homotopy group and the dth
homology group of X . Computing generators of the homology group is known to
be a computationally easy task (it amounts to solving a linear system of equations
over the integers). The key is then converting the homology generators into the
corresponding homotopy generators, i.e., to compute an inverse of the Hurewicz
isomorphism. This was described in the work of Berger (1991, 1995). We analyze
the complexity of Berger’s algorithm in detail and show that it runs in exponential
time in the size of X (assuming that the dimension d is fixed).
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2. For the general case, we construct an auxiliary simplicial set Fd together with
a simplicial map ψd : Fd → X that has the following properties:

– Fd is a simplicial set that is d − 1 connected, and
– ψd : Fd → X induces an isomorphism ψd∗ : πd(Fd) → πd(X).

Our construction of Fd is based on computing stages of the Whitehead tower5

of X (Hatcher 2001, p. 356); this is similar to Real’s algorithm, which computes
πd(X) as Hd(Fd) as an abstract abelian group.

The overall strategy is to use Berger’s algorithm on the space Fd and compute
generators of πd(Fd) as simplicial maps. Then we use the simplicial map ψd to
convert each generator of πd(Fd) into a map Σd → X , and these maps generate
πd(X). The main technical task for this step is to show that Berger’s algorithm
can be applied to Fd . For this, we need to construct a polynomial algorithm for
explicit contractions of loops in Fd (this space is 1-connected but not 1-reduced
in general).

2.2 Our contributions

Themain ingredients of the algorithm outlined above are the computability of stages of
the Whitehead tower (Real 1996) as simplicial sets with polynomial-time homology
and Berger’s algorithmization of the inverse Hurewicz isomorphism (Berger 1991,
1995).

The idea that these two tools can be combined to compute explicit representatives
of πd(X) is rather natural and is also mentioned, for the special case of 1-reduced
simplicial sets, in Romero and Sergeraert (2016, p. 3); however, there are a number
of technical challenges to overcome in order to carry out this program. On a technical
level, our main contributions are as follows:

– We give a complexity analysis of Berger’s algorithm to compute the inverse of the
Hurewicz isomorphism (Theorem 1).

– We show that the homology generators of theWhitehead stage Fd can be computed
in polynomial time (Lemma 3).

– Berger’s algorithm requires an explicit algorithm for loop contraction—a certifi-
cate of 1-connectedness of the space Fd . While Fd is not 1-reduced in general,
we describe an explicit algorithm for contracting its loop and show that Berger’s
algorithm can be applied.

We remark that the Whitehead tower stages are simplicial sets with infinitely many
simplices, and we need the machinery of objects with polynomial-time homology to
carry out the last two steps.

5 The Whitehead tower can is a “dual” construction to the Postnikov tower, beginning with the space X
and gradually eliminating the homotopy groups “’form the bottom”. For the readers familiar with Moore–
Postnikov towers (or relative Postnikov towers), the Whitehead tower is the Moore–Postnikov tower for
∗ → X , see e.g. Goerss and Jardine (1999), Def. IV, 2.9.
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3 Definitions and preliminaries

In this section, we give the necessary technical definitions that will be used throughout
this paper. In the first part, we recall the standard definitions for simplicial sets and
the toolbox of effective homology.

Afterwards, we present Kan’s definition of a loop space and further formalize our
definition of (polynomial-time) loop contractions.

3.1 Simplicial sets and polynomial-time effective homology

3.1.1 Simplicial sets and their computer representation

A simplicial set X is a graded set X indexed by the non-negative integers together with
a collection of mappings di : Xn → Xn−1 and si : Xn → Xn+1, 0 ≤ i ≤ n called the
face and degeneracy operators. They satisfy the following identities:

did j = d j−1di for i < j,
di si = di+1si = id for 0 ≤ i < n,

di s j = s j di−1 for i > j + 1,
di s j = s j−1di for i < j,
si s j = s j+1si for i ≤ j .

More details on simplicial sets and the motivation behind these formulas can be found
in May (1992) and Goerss and Jardine (1999).

Simplicial maps between simplicial sets are maps of graded sets which commute
with the face and degeneracy operators. The elements of Xn are called n-simplices.We
say that a simplex x ∈ Xn is (non-)degenerate if it can(not) be expressed as x = si y
for some y ∈ Xn−1. If a simplicial set X is also a graded (Abelian) group and face
and degeneracy operators are group homomorphisms, we say that X is a simplicial
(Abelian) group.

A simplicial set is called k-reduced for k ≥ 0 if it has a single i-simplex for each
i ≤ k.

For a simplicial set X , we define the chain complex C∗(X) to be a free Abelian
group generated by the elements of Xn with differential

∂(c) =
n∑

i=0

(−1)i di (c).

A simplicial set is locally effective if its simplices have a specified finite encoding
and algorithms are given that compute the face and degeneracy operators. A simplicial
map f between locally effective simplicial sets X and Y is locally effective if an
algorithm is given that for the encoding of any given x ∈ X computes the encoding
of f (x) ∈ Y .

Wedefine a simplicial set to befinite if it has finitelymanynon-degenerate simplices.
Such simplicial set can be algorithmically represented in the following way. The
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encoding of non-degenerate simplices can be given via a finite list and the encoding
of a degenerate simplex sik . . . si1 y for i1 < i2 < · · · < ik and a non-degenerate y can
be assumed to be a pair consisting of the sequence (i1, . . . , ik) and the encoding of y.
The face operators are fully described by their action on non-degenerate simplices and
can be given via finite tables. In this way, any simplicial set with finitely many non-
degenerate simplices is naturally locally effective. Any choice of an implementation
of the encoding and face operators is called a representation of the simplicial set. The
size of a representation is the overall memory space one needs to store the data which
represent the simplicial set.

3.1.2 Geometric realization

To each simplicial set X we assign a topological space |X | called its geometric real-
ization. The construction is similar to that of simplicial complexes. Let Δ j be the
geometric realization of a standard j-simplex for each j ≥ 0. For each k, we define
Di : Δk−1 ↪→ Δk to be the inclusion of a (k − 1)-simplex into the i’th face of a k-
simplex and Si : Δk → Δk−1 be the geometric realization of a simplicial map that
sends the vertices (0, 1, . . . , k) of Δk to the vertices (0, 1, . . . , i, i, i + 1, . . . , k − 1).
The geometric realization |X | is then defined to be a disjoint union of all simplices X
factored by the relation ∼

|X | :=
( ∞⊔

n=0

Xn × Δn

)

/ ∼

where∼ is the equivalence relation generated by the relations (x, Di (p)) ∼ (di (x), p)
for x ∈ Xn+1, p ∈ Δn and the relations (x, Si (p)) ∼ (si (x), p) for x ∈ Xn−1, p ∈ Δn .

Similarly, a simplicial map between simplicial complexes naturally induces a con-
tinuous map between their geometric realizations.

3.1.3 Simplicial complexes and simplicial sets

In any simplicial complex Xsc, we can choose an ordering of vertices and define
a simplicial sets Xss that consists of all non-decrasing sequences of points in Xsc: the
dimension of (V0, . . . , Vd) equals d. The face operator is di omits the i’th coordinate
and the degeneracy s j doubles the j’th coordinate. Moreover, choosing a maximal
tree T in the 1-skeleton of X enables us to construct a simplicial set X := Xss/T in
which all vertices and edges in the tree, as well as their degeneracies, are considered
to be a base-point (or its degeneracies). The geometric realizations of Xsc and X are
homotopy equivalent and X is 0-reduced, i.e. it has one vertex only.

3.1.4 Homotopy groups

Let (X , x0) be a pointed topological space. The k-th homotopy group πk(X , x0) of
(X , x0) is defined as the set of pointed homotopy6 classes of pointed continuous

6 A homotopy F : Sk × I → X is pointed if F(∗, t) = x0 for all t ∈ I .
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maps (Sk, ∗) → (X , x0), where ∗ ∈ Sk is a distinguished point. In particular, the 0-th
homotopy group has one element for each path connected component of X . For k = 1,
π1(X , x0) is the fundamental group of X , once we endow it with the group operation
that concatenates loops starting and ending in x0. The group operation onπk(X , x0) for

k > 1 assigns to [ f ], [g] the homotopy class of the composition Sk
π→ Sk ∨ Sk

f ∨g→ X
where π factors an equatorial (k − 1)-sphere containing x0 into a point. Homotopy
groups πk are commutative for k > 1.

If the choice of base-points is understood from the context or unimportant, we will
use the shorter notation πk(X). For a simplicial set X , we will use the notation πk(X)

for the k’th homotopy group of its geometric realization |X |.
An important tool for computing homotopy groups is theHurewicz theorem. It says

that whenever X is (d−1)-connected, then there is an isomorphismπd(X) → Hd(X).
Moreover, if the element ofπd(X) is represented by a simplicialmap f : Σd → X and∑

j k jσ j represents a homologygenerator of Hd(Σ
d), then theHurewicz isomorphism

maps [ f ] to the homology class of the formal sum
∑

j k j f (σ j ) of d-simplices in X .

3.1.5 Effective homology

We call a chain complexC∗ locally effective if the elements c ∈ C∗ have finite (agreed
upon) encoding and there are algorithms computing the addition, zero, inverse and
differential for the elements of C∗.

A locally effective chain complex C∗ is called effective if there is an algorithm that
for given n ∈ N generates a finite basis cα ∈ Cn and an algorithm that for every c ∈ C∗
outputs the unique decomposition of c into a linear combination of cα’s.

Let C∗ and D∗ be chain complexes. A reduction C∗ ⇒⇒ D∗ is a triple ( f , g, h) of
maps such that f : C∗ → D∗ and g : D∗ → C∗ are chain homomorphisms, h : C∗ →
C∗ has degree 1, f g = id and f g − id = h∂ + ∂h, and further hh = hg = f h = 0.

A locally effective chain complexC∗ has effective homology (C∗ is a chain complex
with effective homology) if there is a locally effective chain complex C̃∗, reductions
C∗ ⇐⇐ C̃∗ ⇒⇒ Cef∗ where Cef∗ is an effective chain complex, and all the reduction
maps are computable.

3.1.6 Eilenberg–MacLane spaces

Let d ≥ 1 and π be an Abelian group. An Eilenberg–MacLane space K (π, d) is
a topological space with the properties πd(K (π, d)) � π and π j (K (π, d)) = 0 for
0 < j �= d. It can be shown that such space K (π, d) exists and, under certain natural
restrictions, has a unique homotopy type. If π is finitely generated, then K (π, d) has
a locally effective simplicial model (Krčál et al. 2013).

3.1.7 Globally polynomial-time homology and related notions

In many auxiliary steps of the algorithm, we will construct various spaces and maps.
To analyze the overall time complexity, we need to parametrize all these objects by
the very initial input, which is in our case an encoding of a finite 1-reduced simplicial
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set (or, in Theorem A.1, a more general space endowed with certain explicit certificate
of 1-connectedness).

More generally, let I be a parameter set so that for each I ∈ I an integer size(I ) is
defined. We say that F is a parametrized simplicial set (group, chain group, …) if for
each I ∈ I, a locally effective simplicial set (group, chain group,…) F(I ) is given. The
simplicial set F is locally polynomial-time if there exists a locally effective model of
F(I ) such that for each k ∈ N and an encoding of a k-simplex x ∈ F(I ), the encoding
of di (x) and s j (x) can be computed in time polynomial in size(enc(x))+ size(I ). The
polynomial, however,maydependon k.Apolynomial-timemapbetweenparametrized
simplicial sets F and G is an algorithm that for each k ∈ N, I ∈ I and an encoding
of an k-simplex x in F(I ) computes the encoding of f (x) in time polynomial in
size(enc(x)) + size(I ): again, the polynomial may depend on k.

Similarly, a locally polynomial-time (parametrized) chain complex is an assignment
of a computer representation C∗(I ) of a chain complex with a distinguished basis in
each gradation, such that all these basis elements have some agreed-upon encoding.
A chain

∑
j k jσ j is assumed to be represented as a list of pairs (k j , enc(σ j )) j and has

size
∑

j (size(k j ) + size(enc(σ j ))), where we assume that the size of an integer k j
is its bit-size. Further, an algorithm is given that computes the differential of a chain
z ∈ Ck(I ) in time polynomial in size(z) + size(I ), the polynomial depending on k.
The notion of a polynomial-time chain map is straight-forward.

A globally polynomial-time chain complex is a locally polynomial-time chain
complex EC that in addition has all chain groups EC(I )k finitely generated and
an additional algorithm is given that for each k computes the encoding of the gen-
erators of EC(I )k in time polynomial in size(I ). Finally, we define a simplicial set
with globally polynomial-time homology to be a locally polynomial-time parametrized
simplicial set F together with reductions C∗(F) ⇐⇐ C̃ ⇒⇒ EC where C̃, EC are
locally polynomial-time chain complexes, EC is a globally polynomial-time chain
complex and the reduction data are all polynomial-time maps, as usual the polynomi-
als depending on the grading k.

The name “polynomial-time homology” is motivated by the following:

Lemma 1 Let F be a parametrized simplicial set with polynomial-time homology and
k ≥ 0 be fixed. Then all generators of Hk(F(I )) can be computed in time polynomial
in size(I ).

Proof For the globally polynomial-time chain complex EF and each fixed j , we can
compute the matrix of the differentials d j : EF(I ) j → EF(I ) j−1 with respect to the
distinguished bases in time polynomial in size(I ): we just evaluate dk on each element
of the distinguished basis of EF(I )k . Then the homology generators of Hk(EC) can
be computed using a Smith normal form algorithm applied to the matrices of dk and
dk+1, as is explained in standard textbooks (such as Munkres 1984). Polynomial-time
algorithms for the Smith normal form are nontrivial but known (Kannan and Bachem
1981).

Let x1, . . . , xm be the cycles generating Hk(EF(I )). We assume that reductions

C∗(F)
( f ,g,h)⇐⇐ F̃

( f ′,g′,h′)⇒⇒ EF
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are given and all the reduction maps are polynomial. Thus we can compute the chains

f g′(x1), f g′(x2), . . . , f g′(xm)

in polynomial time and it is a matter of elementary computation to verify that they
constitute a set of homology generators for Hk(F(I )). ��

3.2 Loop spaces and polynomial-time loop contraction

3.2.1 Principal bundles and loop group complexes

In the text we will frequently deal with principal twisted Cartesian products: these are
simplicial analogues of principal fiber bundles. The definitions in this section come
from Kan’s article (Kan 1958b).

We first define the Cartesian product X × Y of simplicial sets X ,Y : The set of
n-simplices (X × Y )n consists of tuples (x, y), where x ∈ Xn, x ∈ Yn . The face
and degeneracy operators on X × Y are given by di (x, y) = (di x, di y), si (x, y) =
(si x, si y).

Definition 1 (Principal Twisted Cartesian product) Let B be a simplicial set with a
basepoint b0 ∈ B0 and G be a simplicial group. We call a graded map (of degree −1)
τ : Bn+1 → Gn, n ≥ 0 a twisting operator if the following conditions are satisfied:

– dnτ(b) = τ(dn+1b)−1τ(dnb)
– diτ(b) = τ(dib) for 0 ≤ i < n
– siτ(b) = τ(si b), i < n, and
– τ(snb) = 1n for all b ∈ Bn where 1n is the unit element of Gn .

Let B, G, τ be as above. We will define a twisted Cartesian product B ×τ G to be
a simplicial set E with En = Bn ×Gn , and the face and degeneracy operators are also
as in the Cartesian product, i.e. di (b, g) = (dib, di g) , with the sole exception of dn ,
which is given by

dn(b, g) := (dnb, τ (b)dn(g)), (b, g) ∈ Bn × Gn .

It is not trivial to see why this should be the right way of representing fiber bundles
simplicially, but for us, it is only important that it works, and we will have explicit
formulas available for the twisting operator for all the specific applications.

We remark that in the literature one can findmultiple definitions of twisted operator
and twisted product (May 1992; Kan 1958b; Berger 1991) and that they, in essence
differ from each other based on the decision whether the twisting “compresses” the
first two or the last two face operators. Here, we follow the same notation as in Berger
(1991).

3.2.2 Dwyer–Kan loop group construction

A simplicial set X can be viewed as a discrete description of a topological space |X |.
It is natural to ask whether one can give a discrete description of a loop space of |X |.
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It turns out there are multiple models that can be used. Here, we describe the Dwyer–
Kan’s G-construction (Kan 1958b) and later in Sect. 6, we present another model
which is due to Berger (1991). Before the formal definition, we give some geometric
intuition

For any n ≥ 0 one can define a graph where Xn+1 is the set of edges and X0
is the set of vertices with source and target operators s, t : Xn+1 → X0, defined by
s(σ ) = (d0)n+1σ and t(σ ) = dn+1(d0)nσ . Further a relation 1 = snσ is added.

In short, any simplex σ ∈ Xn+1 is an (n-dimensional) edge which goes from its
second-to-last vertex to its last vertex and the simplex degenerate along this edge is
considered a trivial path.

The Dwyer–Kan loop groupoid GX is defined as a free simplicial groupoid (e.g.
paths) on the graph described above. In the case X is a 0-reduced simplicial set, the
paths all begin and end in the only vertex, making them loops and the space GX can
defined as follows:

Definition 2 Let X be a 0-reduced simplicial set. Then we define GX to be a (non-
commutative) simplicial group such that

– GXn has a generator σ for each (n + 1)-simplex σ ∈ X and a relation sn y = 1
for each simplex in the image of the last degeneracy sn .

– The face operators are given by diσ := diσ for i < n and dnσ := (dn+1σ)−1dnσ
– The degeneracy operators are siσ := siσ .

We use the multiplicative notation, with 1 being the neutral element. For the proof that
GX is indeed a discrete simplicial analog of the loop space of X , see Kan (1958b) and
May (1992).

For algorithmic puroposes, we assume that an elements
∏

j σ
k j
j of GX is repre-

sented as a list of pairs (σ j , k j ) and has size
∑

j size(σ j ) + size(k j ).

Definition 3 Let X be a 0-reduced simplicial set.We say that a map c0 : GX0 → GX1
is a contraction of loops in X if d0c0(x) = x and d1c0(x) = 1 for each x ∈ GX0.

In case where X has finitely many nondegenerate 1-simplices, we define the size
size(c0) to be the sum

∑

γ∈X1

size(c0(γ )).

3.2.3 Loop contraction for simplicial complexes

Let Xsc be a simplicial complex. Let T be a spanning tree in the 1-skeleton of Xsc

and R a chosen vertex. For each oriented edge e = (v1v2) we define a formal inverse
to be e−1 := (v2v1) and we also consider degenerate edges (v, v). A loop is defined
as a sequence e1, . . . , ek of oriented edges in Xsc such that

– The end vertex of ei equals the initial vertex of ei+1, and
– The initial vertex of e1 and the end vertex of ek equal R.
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A0

B1

A1

B2

A2

B3

A3

α

Fig. 1 The loop ranging over the boundary of this geometric shape equals α, after ignoring edges in the
maximal tree and canceling pairs (e, e−1). The interior of the triangles gives rise to a contraction

Every edge e that is not contained in T gives rise to a unique loop le. Further, every loop
in Xsc is either a concatenation of such le’s, or can be derived from such concatenation
by inserting and deleting consecutive pairs (e, e−1) and degenerate edges. Before we
formally define our combinatorial version of loop contraction, we need the following
definition.

Definition 4 Let S be a set, U ⊆ S, F(S) and F(U ) be free groups generated by S,
U , respectively.7 Let hU : F(S) → F(S) be a homomorphism that sends each u ∈ U
to 1 and each s ∈ S\U to itself. We say that an element x of F(S) equals y modulo
U if hU (x) = y.

An example of an element that is trivial modulo U is the word s u s−1, where s ∈ S
and u ∈ U .

Definition 5 Let S be the set of all oriented edges and oriented degenerate edges in
Xsc and assume that a spanning tree T is chosen. Let U be the set of all oriented
edges in T , including all degenerate edges. A contraction of an edge α is a sequence
of vertices A0, A1, . . . , As and B1, . . . , Bs such that

– for each i , {Ai , Ai+1, Bi+1} is a simplex of Xsc, and
– the element of F(S)

(A0B1)(B1A1)(A1B2)(B2A2) . . . (Bs As)(As As−1)(As−1As−2) . . . (A1A0) (1)

equals α modulo U .

A loop contraction in a simplicial complex is the choice of a contraction of α for
each edge α ∈ Xsc\T .

The size of the contraction of α is defined to be the number of vertices in (1) and the
size size(c) of the loop contraction on Xsc is the sum of the sizes over all α ∈ Xsc\T .

The geometry behind this definition is displayed in Fig. 1. The sequence of Ai ’s and
Bj ’s gives rise to a map from the sequence of (full) triangles into Xsc. The big loop
around the boundary is combinatorially described by (1).We can continuously contract

7 Formally, elements of F(S) are sequences of symbols sε for ε ∈ {1,−1} and s ∈ S with the relation
s1s−1 = 1, where 1 represents the empty sequence. The group operation is concatenation.
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all of its parts that are in the tree T to a chosen basepoint, as the tree is contractible.
Further, we can continuously contract all pairs of edges (e, e−1) and what remains
is the original edge α: with all the tree contracted to a point, it will be transformed
into a loop that geometrically corresponds to lα . The interior of the full triangles then
constitutes its “filler”, hence a certificate of the contractibility of lα .

A loop contraction in the sense of Definition 1 exists iff the space Xsc is simply
connected. One could choose different notions of loop contraction. For instance, we
could provide, for eachα, a simplicialmap froma triangulated 2-disc into Xsc such that
the oriented boundary of the disc would be mapped exactly to lα . The description from
Definition 5 could easily be converted into such map. We chose the current definition
because of its canonical and algebraic nature. The connection between Definitions 3
and 5 is the content of the following lemma.

Lemma 2 Let Xsc be a 1-connected simplicial complex with a chosen orientation of all
simplices, Xss the induced simplicial set, T a maximal tree in Xsc, and X := Xss/T
the corresponding 0-reduced simplicial set. Assume that a loop contraction in the
simplicial complex Xsc is given, such as described in Definition 5. Then we can
algorithmically compute c0(α) ∈ GX1 such that d0c0(α) = α and d1c0(α) = 1, for
every generator α of GX0. Moreover, the computation of c0(α) is linear in the size of
Xsc and the size of the simplicial complex contraction data.

Proof For each i , the triangle {Ai , Ai+1, Bi+1} from Definition 5 is in the simplicial
complex Xsc. There is a unique oriented 2-simplex in Xss of the form (V0, V1, V2)
(possibly degenerate) such that {V0, V1, V2} = {Ai , Ai+1, Bi+1}. Let us denote such
oriented simplex by σi , and its image in GX1 by σ i . We will define an element
gi ∈ GX1 such that it satisfies

d0gi � (Ai , Ai+1) and d1gi � (Ai , Bi+1) (Bi+1, Ai+1) (2)

where � is an equivalence relation that identifies any element (U , V ) ∈ GX1 with

(V ,U )
−1

(note that only one of the symbols (U , V ) and (V ,U ) is well defined in
Xss , resp. X .) Explicitly, we can define gi with these properties as follows:

– If σi = (Bi+1, Ai , Ai+1), then gi := σ i ,
– If σi = (Ai , Ai+1, Bi+1), then gi := s0(d2σi ) σ i s0d0(σ i )

−1

– If σi = (Ai+1, Bi+1, Ai ), then gi = s0d0σi−1 σi s0(d1σi )−1

– If σi = (Bi+1, Ai+1, Ai ), then gi := σi
−1

– If σi = (Ai+1, Ai , Bi+1), then gi := s0d0σi σi
−1 s0(d2σi )−1

– If σi = (Ai , Bi+1, Ai+1), then gi := s0(d1σi ) σi
−1s0d0σi .

Let g := g0 . . . , gs . The assumption (1) together with Eq. (2) immediately implies that
d1g(d0g)−1 = α. Thus we define c0(α) := s0d1(g) g−1. Algorithmically, to construct
g amounts to going over all the triples (Ai , Ai+1, Bi+1) from a given sequence of A′

i s
and Bj ’s, checking the orientation and computing gi for every i . ��
3.2.4 Polynomial-time loop contraction

Let F be a parametrized simplicial set such that each F(I ) is 0-reduced. Using con-
structions analogous to those defined above, GF is a parametrized locally-polynomial
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simplicial group whereas we assume a simple encoding of elements ofGFi as follows.
If x = ∏

j σ j
k j ∈ GF(I )k where σ j are (k + 1)-simplices in F(I ), not in the image

of sk , then we assume that x is stored in the memory as a list of pairs (k j , enc(σ j )) and
has size

∑
j (size(k j ) + size(σ j )) where some σi may be equal to σ j for i �= j . Face

and degeneracy operators are defined in Definition (2) and it is easy to see that for any
locally polynomial-time simplicial set F , GF is a locally polynomial-time simplicial
group.

Definition 6 Let F be a locally polynomial simplicial set. We say that F has polyno-
mially contractible loops if there exists an algorithm that for a 0-simplex x ∈ GF(I )
computes a 1-simplex c0(x) ∈ GF(I ) such that d0x = x , d1x = 1 ∈ GF(I )0, and
the running-time is polynomial in size(x) + size(I ).

4 Proof of Theorem 1

We will prove a stronger statement of Theorem A formulated as follows.

Theorem A.1 There exists an algorithm that, given d ≥ 2 andafinite0-reduced simpli-
cial set X (alternatively, a finite simplicial complex) with an explicit loop contraction
c0 (such as in Definitions 3 or 5) computes the generators g1, . . . , gk of πd(X) as
simplicial maps Σd

j → X, for suitable triangulations Σd
j of S

d , j = 1, . . . , k.
For fixed d, the time complexity is exponential in the size of X and the size of the

loop contraction c0; more precisely, it is O(2P(size(X)+size(c0))) where P = Pd is a
polynomial depending only on d.

This immediately implies TheoremA, as for a 1-reduced simplicial set, the contraction
c0 is trivial, given by c0(1) = 1.

The proof of Theorem A.1 is based on a combination of four statements presented
here as Lemma 3, Theorem 1, Lemma 4 and Lemma 6. Each of them is relatively
independent and their proofs are delegated to further sections.

First we present an algorithm that, given a 1-connected finite simplicial set X and
a positive integer d, outputs a simplicial set Fd and a simplicial map ψd such that

– the simplicial set Fd is d−1 connected, it has polynomial-time effective homology
and polynomially contractible loops.

– the simplicial map ψd : Fd → X is polynomial-time and induces an isomorphism
ψd∗ : πd(Fd) → πd(X).

4.1 Whitehead tower

We construct simplicial sets Fd as stages of a so-called Whitehead tower for the
simplicial set X . It is a sequence of simplicial sets and maps

· · · Fd
fd

Fd−1
fd−1 · · · f4

F3
f3

F2 = X .
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where fi induces an isomorphism π j (Fi+1) → π j (Fi ) for j > i and π j (Fi ) = 0 for
j < i . We define ψd = fd fd−1 . . . f3. One can see that Fd , ψd satisfy the desired
properties.

Lemma 3 Let d ≥ 2 be a fixed integer. Then there exists a polynomial-time algorithm
that, for a given 1-connected finite simplicial set X, constructs the stages F2, . . . , Fd
of the Whitehead tower of X.

The simplicial sets Fk(X), parametrized by 1-connected finite simplicial sets X,
have polynomial-time homology and themaps fk are polynomial-time simplicialmaps.

Proof The proof is by induction. The basic step is trivial as F2 = X . We describe how
to obtain Fk+1, fk+1 assuming that we have computed Fk , 2 ≤ k < d.

1. We compute simplicialmapϕk : Fk → K (πk(X), k) = K (πk(Fk), k) that induces
an isomorphism ϕk∗ : πk(Fk) → πk(K (πk(X), k)) ∼= πk(X). This is done using
the algorithm in Čadek et al. (2014b), as K (πk(X), k) is the first nontrivial stage
of the Postnikov tower for the simplicial set Fk .

For the simplicial set K (πk(X), k) and for such simplicial sets there is a classical
principal bundle (twisted Cartesian product) (see May 1992):

K (πk(X), k − 1)

E(πk(X), k − 1) = K (πk(X), k) ×τ K (πk(X), k − 1)

δ

K (πk(X), k)

2. We construct Fk+1 and fk+1 as a pullback of the twisted Cartesian product:

K (πk(X), k − 1)
∼=

K (πk(X), k − 1)

Fk+1 := Fk ×τ ′ K (πk(X), k − 1)

fk+1

K (πk(X), k) ×τ K (πk(X), k − 1)

δ

Fk
ϕk

K (πk(X), k).

It can be shown that the pullback, i.e. simplicial subset of pairs (x, y) ∈ Fk ×
E(πk(X), k − 1) such that δ(y) = ϕk(x), can be identified with the twisted prod-
uct as above (May 1992), where the twisting operator τ ′ is defined as τϕk .

To show correctness of the algorithm, we assume inductively, that Fk has
polynomial-time effective homology. According to Čadek et al. (2014b, Section 3.8),
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the simplicial sets K (πk(X), k − 1), E(πk(X), k−1), K (πk(X), k) have polynomial-
time effective homology and maps ϕk, δ are polynomial-time. Further, they are all
obtained by an algorithm that runs in polynomial time.

As Fk+1 is constructed as a twisted product of Fk with K (πk(X), k), Corollary 3.18
of Čadek et al. (2014b) implies that Fk+1 has polynomial-time effective homology and
fk+1 is a polynomial-time map.8

The sequence of simplicial sets Fk+1
fk+1

Fk
ϕk

K (πk(X), k) induces the
long exact sequence of homotopy groups

· · · πi (Fk+1)
fk+1∗

πi (Fk)
ϕk∗

πi (K (πk(X), k)) πi−1(Fk+1) · · ·

The reason why this is the case follows from a rather technical argument that iden-
tifies the simplicial set Fk+1 with a so called homotopy fiber of the map ϕk : Fk →
K (πk(X), k). In more detail, the category of simplicial sets is right proper (Goerss
and Jardine 1999, II.8.67) and map δ is a so-called Kan fibration (May 1992, §23).
This makes the pullback Fk+1 coincide with so-called homotopy pullback. Further,
the simplicial set E(πk(X), k − 1) is contractible, hence the homotopy pullback is a
homotopy fiber. The induced exact sequence is due to Quillen (1967, chapter I.3).

The inductive assumption, together with the fact that ϕk induces an isomorphism
ϕk∗ : πk(Fk) → πk(K (πk(X), k)) imply that fk induces an isomorphismπ j (Fk+1) →
π j (Fk) for j > k and π j (Fk+1) = 0 for j ≤ k. ��
The lemma implies that the simplicial sets Fk have polynomial-time effective homol-
ogy and maps ψk = fk fk−1 . . . f3 are polynomial-time as they are defined as a
composition of polynomial-time maps fi .

The following theorem is a key ingredient of our algorithm.

Theorem 1 (Effective Hurewicz Inverse) Let d > 1 be fixed and F be an (d − 1)-
connected 0-reduced simplicial set parametrized by a set I, with polynomial-time
homology and polynomially contractible loops.

Then there exists an algorithm that, for a given d-cycle z ∈ Zd(F(I )), outputs
a simplicial model Σd of the d-sphere and a simplicial map Σd → F(I ) whose
homotopy class is the Hurewicz inverse of [z] ∈ Hd(F(I )).

Moreover, the time complexity is bounded by an exponential of a polynomial func-
tion in size(I ) + size(z).

The construction of an effective Hurewicz inverse is the main result of Berger
(1991) and further details are provided in Sect. 6. It exploits a combinatorial version
of Hurewicz theorem given by Kan (1958a) where πd(F) is described in terms of
πd−1(̃GF) where G̃F is a non-commutative simplicial group that models the loop
space of F . Kan showed that the Hurewicz isomorphism can be identified with a

8 We remark that the paper Čadek et al. (2014b) uses a different formalization of twitsed cartesian product
than the one employed by us. However, the paper Filakovský (2012), on which the Corollary 3.18 of Čadek
et al. (2014b) is based, can be reformulated in context of the definition used here. We do not provide full
details, only remark that one has to make a choice of Eilenberg–Zilber reduction data that corresponds to
the definition of twisted cartesian product.
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map Hd−1(̃GF) → Hd−1( ÃF) induced by Abelianization. Berger then describes the
inverse of the Hurewicz homomorphism as a composition of the maps 1, 2, 3 in the
diagram

πd(F) Hd(F)
h−1

1

Hd−1(̃GF)

3

Hd−1( ÃF).
2

Arrow 1 is induced by a chain homotopy equivalence and arrow 3 by Berger’s explicit
geometric model of the loop space. To algorithmize arrow 2, we need an algebraic
machinery that includes an explicit contraction of k-loops in G̃F for all k < d − 1.
Those are based partially on linear computations in theAbelian group ÃF and partially
on explicit inductive formulas dealing with commutators. The lowest-dimensional
contraction operation, however, cannot be algorithmized, without some external input.
The possibility of providing it is the content of the following claim:

Lemma 4 Let d ≥ 2 be a fixed integer and I be the set of all 1-connected 0-reduced
finite simplicial setswith an explicit loop contraction c0. Then the simplicial set Fd from
Lemma 3, parametrized byI has polynomial-time contractible loops (seeDefinition6).

The proof is constructive, based on explicit formulas in our model of Fd . The details
are in Sect. 7.

We remark that the output of the algorithm in Lemma 4 i.e. the loop contraction
of Fd is polynomial time with respect to the input—a 0-reduced and 1-connected
simplicial set with a specific loop contraction c0 on this simplicial set.

The core of the algorithmwewill describe works with simplicial sets and simplicial
maps between them. If our input is a simplicial complex, we need tools to convert them
into maps between simplicial complexes. The next two lemmas address this.

Lemma 5 Let Y beafinite simplicial set. Then there exists a polynomial-timealgorithm
that computes a simplicial complex Y sc with a given orientation of each simplex, and
a map γ : Y sc → Y (still understood to be a map between simplicial sets) such that
the geometric realization of γ is homotopic to a homeomorphism.

This construction is originally due to Barratt (1956), and described in detail in Čadek
et al. (2013b, Appendix B).9 Explicitly, the simplicial complex Y sc is defined to be
Y sc := B∗(Sd(Y )), where Sd is the barycentric subdivision functor and B∗ a functor
introduced in Jardine (2004): Y sc can be constructed recursively by adding a vertex
vσ for each nondegenerate simplex σ ∈ Sd(Y ) and replacing σ by the cone with apex
vσ over B∗(∂σ ). The subdivision Sd(Y ) is a regular simplicial set and B∗(Sd(Y ))

coincides with the flag simplicial complex of the poset of nondegenerate simplices

9 A version of this lemma is given as Barratt (1956, Theorem 2) or Čadek et al. (2013b, Proposition 3.5).
However, we also need the fact that |Y sc| is homeomorphic to |Y |, which is not explicitly mentioned in the
references, but follows easily from the construction.
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of Sd(Y ). It follows that the geometric realizations |Y sc| is homeomorphic10 to |Y |.
Simplices of Y sc are naturally oriented and the explicit description of γ is given
in Čadek et al. (2013b, p. 61) and the references therein.

In our main algorithm, Y = Σd will be a triangulation of the d-sphere and X
a simplicial set derived from a simplicial complex Xsc by contracting its spanning tree
into a point. The following lemma shows that we can convert a map Σ sc → X into
a map (Σ sc)′ → Xsc between simplicial complexes.

Lemma 6 Let d > 0 be fixed. Assume that Xsc is a given simplicial complex with a
chosen ordering of vertices and a maximal spanning tree T ; we denote the underlying
simplicial set by Xss . Let p : Xss → X := Xss/T be the projection to the associated
0-reduced simplicial set. Let Σ be a given d-dimensional simplicial complex with
a chosen orientation of each simplex,Σ ss the induced simplicial set, and f : Σ ss → X
a simplicial map.

Then there exists a subdivision Sd(Σ) and a simplicial map f ′ : Sd(Σ) → Xsc

between simplicial complexes11 such that

|Σ | = |Sd(Σ)| | f ′|→ |Xsc| |p|→ |X |

is homotopic to |Σ ss | | f |→ |X |. Moreover, f ′ can be computed in polynomial time,
assuming an encoding of the input f ,Σ, Xsc, X and T .

Thus if Σ is a sphere and f corresponds to a homotopy generator, f ′ is the cor-
responding homotopy generator represented as a simplicial map between simplicial
complexes. We remark that the algorithm we describe works even if d is a part of
the input, but the time complexity would be exponential in general, as the number of
vertices in our subdivision Sd(Σ) would grow exponentially with d.

The proof of Lemma 6 is given in Sect. 8.

Proof of TheoremA.1 First assume that afinite simplicial complex Xsc is given together
with a loop contraction. Then the algorithm goes as follows.

1. We choose an ordering of vertices and convert Xsc into a simplicial set. Choosing
a spanning tree and contracting it to a point creates a 0-reduced simplicial set X
homotopy equivalent to Xsc. By Lemma 2, we can convert the input data into a list
c0(α) for all generators α of GX0 in polynomial time.

2. We construct the simplicial set Fd fromLemma3 as simplicial setwith polynomial-
time effective homology. Hence by Lemma 1 we can compute the generators of
Hd(Fd) in time polynomial in size(X). Due to Lemma 4 and Theorem 1, we can
convert these homology generators to homotopy generators Σd

j → Fd in time
exponential in P(size(X) + size(c0)) where P is a polynomial.

10 The subdivision Sd(Y ) has geometric realization homeomorphic to |Y | by Fritsch and Piccinini (1990,
Thm 4.6.4). The realization of Sd(X) is a regular CW complex and B∗(Sd(Y )) coincides with the first
derived subdivision of this regular CW complex, as defined in Geoghegan (2007, p. 137). The geometric
realization of the resulting simplicial complex is still homeomorphic to |Y | and |Sd(Y )| by Geoghegan
(2007, Prop. 5.3.8).
11 The constructed map f does not necessarily preserves orientations: it only maps simplices to simplices.
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3. Wecompose the representatives ofπd (Fd)withψd to obtain representativesΣd
j →

X of the generators of πd(X), another polynomial-time operation. This way, we
compute explicit homotopy generators as maps into the simplicial set X .

4. We use Lemma 5 to compute simplicial complexes Σ sc
j and maps Σ sc

j → Σd

homotopic to homeomorphisms. The compositions Σ sc
j → Σd

j → X still repre-
sent a set of homotopy generators. Finally, by Lemma 6, we can compute, for each
j , a subdivision of the sphere Σ sc

j and a simplicial map from this subdivision into
the simplicial complex Xsc, in time polynomial in the size of the representatives
Σ sc

j → X .

In case when the input is a 0-reduced simplicial set X with a loop contraction c0, only
steps 2 and 3 are performed. In either case, the overall exponential complexity bound
comes from Berger’s Effective Hurewicz inverse theorem. ��

5 Proof of Theorem B

Similarly as in the proof of Theorem A, we prove a slightly more general version of
Theorem B that also includes finite simplicial complexes.

Theorem B.1 Let d ≥ 2 be fixed. Then

1. there is an infinite family of d-dimensional 1-connected finite simplicial complexes
X such that for any simplicial map Σ → X representing a generator of πd(X),
the triangulation Σ of Sd on which f is defined has size at least 2Ω(size(X)).

2. there is an infinite family of d-dimensional (d−1)-connected and (d−2)-reduced
simplicial sets X such that for any simplicial map Σ → X representing a gener-
ator of πd(X), the triangulation Σ of Sd on which f is defined has size at least
2Ω(size(X)).

Consequently, any algorithm for computing simplicial representatives of the genera-
tors of πd(X) has time complexity at least 2Ω(size(X)).

The second item immediately implies Theorem B.
In the first item, we don’t assume any certificate for 1-connectedness. However,

we suspect that any algorithm that computes representatives of πd(X) for simplicial
complexes X must necessarily use some explicit certificate of simple connectivity, but
so far we have not been able to verify this.

Lemma 7 Let d ≥ 2.

1. There exists a sequence {Xk}k≥1 of d-dimensional (d − 1)-connected simpli-
cial complexes, such that Hd(Xk) � Z for all k and for any choice of a cycle
zk ∈ Zd(Xk) generating the homology group, the largest coefficient in zk grows
exponentially in size(Xk).

2. There exists a sequence {Xk}k≥1 of d-dimensional (d−1)-connected and (d−2)-
reduced simplicial sets, such that Hd(Xk) � Z for all k and for any choice of
cycles zk ∈ Zd(Xk) generating the homology, the largest coefficient in zk grows
exponentially12 in size(Xk).

12 With a slight abuse of language, we assume that each Xk not only a simplicial set but also its algorithmic
representation with a specified size such as explained in Sect. 3.
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Proof of Theorem 2 based on Lemma 7 Let {Xk}k≥1 be the sequence of simplicial sets
or simplicial complexes from Lemma 7. Since they are (d − 1)-connected, by the
theorem of Hurewicz, πd(Xk) � Hd(Xk) � Z. For each k, let Σk be a simplicial
set or simplicial complex with |Σk | = Sd , and fk : Σk → Xk a simplicial map
representing a generator of πd(Xk). The generator of Hd(Σd) contains each non-
degenerate d-simplex with a coefficient ±1 (this follows from the fact that Σk is a
triangulation of the d-sphere and the d-homology of the d-sphere is generated by
its fundamental class). The Hurewicz isomorphism πd(Xk) → Hd(Xk) maps such a
representative to the formal sum of simplices

fk �→
∑

σ is a d−simplex in (Σk )

± fk(σ ) ∈ Cd(Xk) ,

which represents a generator of Hd(Xk). It follows from Lemma 7 that the number of
d-simplices in Σk grows exponentially in size(Xk). Moreover, the complexity of any
algorithm that computes fk : Σk → Xk is at least the size of Σk , which completes
the proof. ��

It remains to define the sequence from Lemma 7:

Proof of Lemma 7. 1.We begin by constructing for every d ≥ 2, a sequence of {Xk}k≥1
of (d − 1)-connected simplicial complexes, such that Hd(Xk) � Z for all k, and for
any choice of a cycle zk ∈ Zd(Xk) generating the homology group, the largest coef-
ficient in zk grows exponentially in size(Xk).

We start with d = 2. The idea is to glue Xk out of k copies of a triangulated mapping
cylinders of a degree 2 map S1 → S1, i.e. k Möbius bands, and then fill in the two
open ends with one triangle each (A and B in Fig. 2). The case k = 1 is shown in
Fig. 2. For k ≥ 2, we take k copies of the triangulated Möbius band and identify the
middle circle of each one to the boundary of the next one.
We observe that, up to homotopy equivalence, Xk consists of a 2-disc with another
2-disc which is attached to it via the boundary map S1 → S1 of degree 2k . Therefore,
Xk is simply connected and has H2(Xk) � Z and any homology generator will contain
the 2-simplex A with coefficient ±1 and B with coefficient ±2k .
Similarly for d > 2, the simplicial complex Xk is obtained by glueing k copies of a
triangulated mapping cylinder of a degree 2 map Sd−1 → Sd−1, and the two open
ends are filled in with two triangulated d-balls.
2. For every k ≥ 1 we define the simplicial sets Xk to have one vertex ∗, no non-
degenerate simplices up to dimension d − 2, k non-degenerate (d − 1)-simplices
σ1, . . . , σk that are all spherical (that is, for all i, j , diσ j = ∗ is the degeneracy of the
only vertex of Xk), and k + 1 d-simplices A,C1,C2, . . . ,Ck−1, B such that

– d0A = σ1, d j A = ∗ for j > 0,
– d0Ci = σi , d1Ci = σi+1, d2Ci = σi and d jCi = ∗ for j > 2, and
– d0B = σk , d j B = ∗ for j > 0.

Xk does not have any non-degenerate simplices of dimension larger than d. The rela-
tions of a simplicial set are satisfied, because did j is trivial in all cases.
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Fig. 2 The Möbius band is the mapping cylinder of a degree 2 map S1 → S1. The triangulation has four
layers because starting from the boundary, which is a triangle, we first need to pass to a hexagon in order
to cover the middle triangle twice, obtaining the desired degree 2 map. Connecting k copies of the Möbius
band creates a mapping cylinder of a degree 2k map, using only linearly (in k) many simplices. Gluing
the full triangles A and B to the ends of this mapping cylinder finishes the construction of Xk . The red
coefficients exhibit a generator ξ of H2(X1) = Z2(X1) � Z given as a formal sum of 2-simplices

The boundary operator in the associated normalised chain complex C∗(Xi ) acts on
basis elements as

– ∂A = σ1
– ∂Ci = 2σi − σi+1, and
– ∂B = σk .

To see that Xk is (d − 1)-connected for d > 2, it is enough to prove that Hd−1(Xk)

is trivial (by 1-reduceness and Hurewicz theorem). This is true, because σ1 is the
boundary of A and for i > 1, σi is the boundary of the chain

2i−1A − 2i−2C1 − · · · − 2Ci−2 − Ci−1.

In the case d = 2, Xk is not 1-reduced, but we can show 1-connectedness similarly as
in the proof of the first part: up to homotopy, Xk consists of two discs with boundaries
together via a map of degree 2k−1.
There are no non-degenerate (d + 1)-simplices, so Hd(Xk) � Zd(Xk) and a simple
computation shows that every cycle is a multiple of

2k−1A − 2k−2C1 − 2k−3C2 − · · · − Ck−1 − B.

The computer representation of Xk has size that grows linearly with k, but the coeffi-
cients of homology generators grow exponentially with k, so they grow exponentially
with size(Xk). ��
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5.1 Discussion on optimality

If d = 2 and X is a 1-reduced simplicial set, then generators of H2(X) can be computed
via the Smith normal form of the differential ∂3 : C3(X) → C2(X). Using canonical
bases, the matrix of ∂3 = d0 − d1 + d2 − d3 satisfies that the sum of absolute values
over each column is at most 4. We were not able to find any infinite family of such
matrices so that the smallest coefficient in any set of homology generating cycles
grows exponentially with the size of X (that is, the size of the matrix). However, if
a set of homology-generating cycles with subexponential coefficients always exists
and can be found algorithmically in polynomial time, our main algorithm given as
Theorem A is optimal in this case as well. This is because the exponential complexity
of the algorithm only appears in the geometric realization of an element of GXsph

1
with large (exponential) exponents (see “Arrow 3” in Sect. 6), and the only source of
such exponents is the homology H1(AX) � H2(X).

6 Effective Hurewicz inverse

Here, wewill prove Theorem1 by directly describing the algorithmproposed inBerger
(1991) and analysing its running time.

Definition 7 Let G be a simplicial group. Then the Moore complex G̃ is a (possibly
non-abelian) chain complex defined by G̃i := Gi ∩ (

⋂
j>0 ker d j ) endowed with the

differential d0 : G̃i → G̃i−1.

It can be shown that d0d0 = 1 in G̃ and that Im(d0) is a normal subgroup of ker d0 so
that the homology H∗(G̃) is well defined.

Definition 8 Let F be a 0-reduced simplicial set, GF the associated simplicial group
fromDefinition 2, and G̃F its Moore complex. We define AF to be the Abelianization
of GF and ÃF to be the Moore complex of AF . The simplicial group AF is also
endowed with a chain group structure via ∂ = ∑

j (−1) j d j . If σ ∈ Fk , we will denote
by σ the corresponding simplex in GFi−1, resp. AFi−1.

Note that, following Definition 2, the “last” differential dkσ in AFk equals dkσ −
dk+1σ . Clearly, the Abelianization map p : GF → GF/[GF,GF] = AF takes G̃F
into ÃF .

Kan (1958a) showed that for d > 1 and a (d − 1)-connected simplicial set F ,
the Hurewicz isomorphism can be identified with the map Hd−1(̃GF) → Hd−1( ÃF)

induced by Abelianization, whereas these groups are naturally isomorphic to πd(F)

and Hd(F), respectively. Our strategy is to construct maps representing the isomor-
phisms 1, 2, 3 in the commutative diagram
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πd(F) Hd(F)
h−1

1

Hd−1(̃GF)

3

Hd−1( ÃF).
2

(3)

Here h stands for the Hurewicz isomorphism, 1 is induced by a homotopy equivalence
of chain complexes, 2 is the inverse of Hd−1(p) where p is the Abelianization, and 3
represents an isomorphism between the (d − 1)’th homology of G̃F (that models the
loop space of F) andπd(F). The algorithms that compute 1, 2, 3 act on representatives,
that is, 1 and 2map cycles to cycles and 3 converts a cycle to a simplicial mapΣd → F
where |Σd | = Sd . In what follows, we will explicitly describe maps 1, 2, 3 and show
that the underlying algorithms are polynomial for arrows 1, 2 and exponential for
arrow 3.

6.1 Arrow 1

Let F be a 0-reduced simplicial set, C∗(F) be the (unreduced) chain complex of F
and AF∗−1 the shifted chain complex of AF defined by (AF∗−1)i := AFi−1. As a
chain complex, AF∗−1 is a subcomplex of C∗(F) generated by all simplices that are
not in the image of the last degeneracy. Let ÃF∗−1 be the Moore complex of AF∗−1.

We will describe a chain homotopy ( f , g, h) : C∗(F) → ÃF∗−1. Arrow 1 then
coincides, on the level of chains, with f . We only need f for the actual algorithm;
however, we prefer to state a more general Lemma claiming that g, h are polynomial
time maps as well.

Lemma 8 There exists a polynomial-time strong chaindeformation retraction ( f ,g,h) :
C∗(F) → ÃF∗−1. That is, f : C∗(F) → ÃF∗−1, g : ÃF∗−1 → C∗(F) are
polynomial-time chain-maps and h : C∗(F) → C∗+1(F) is a polynomial map such
that f g = id and g f − id = h∂ + ∂h.

Proof First we will describe the deformation retraction in terms of formulas and then
comment on polynomiality.
Part 1: Formulas for the deformation retraction. We begin with a chain deformation
retraction fromC∗(F) to AF∗−1 represented by f0 : C∗(F) → AF∗−1, g0 : AF∗−1 →
C∗(F) and h0 : C∗(F) → C∗+1(F).

The chain complex AF∗−1 consists of Abelian groups AFk−1 freely generated by
k-simplices in F that are not in the image of the last degeneracy sk−1. On generators,
we define

f0(σ ) :=
{
0 whenever σ is a k-simplex in Im(sk−1)

σ otherwise.
(4)

The remaining maps are defined by g0(σ ) := σ − sk−1dkσ and h0(σ ) := (−1)kskσ .
It is a matter of straight-forward computations to check that f0 and g0 are chain maps,
f0g0 = id and g0 f0 − id = h0∂ + ∂h0.
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Further, we define another chain deformation retraction from AF to ÃF . For each
p ≥ 0, let Ap be a chain subcomplex of AF defined by

(Ap)k := {x ∈ AFk : di x = 0 for i > max{k − p, 0} }

that is, the kernel of the p last face operators, not including d0 (di refers here to
the face operators in AF). Then Ap+1 is a chain subcomplex of Ap and we define
the maps f p+1 : (Ap)k → (Ap+1)k by f p+1(x) = x − sk−p−1dk−px whenever
k − p > 0, and f p+1(x) = x otherwise; gp+1 : Ap+1 → Ap will be an inclusion,
and h p+1 : (Ap)k → (Ap)k+1 via h p+1(x) = (−1)k−psk−px if k − p > 0 and 0
otherwise. A simple calculation shows that f p+1, gp+1 are chain maps, f p+1gp+1 =
id, gp+1 f p+1 − id = h p+1∂ + ∂h p+1.

By definition, the Moore complex ÃF = ∩p>0Ap. The strong chain deformation
retraction ( f , g, h) from C∗(F) to ÃF∗−1 is then defined by the compositions

f := . . . fk+1 fk . . . f1 f0
g := g0g1 . . . gkgk+1 . . .

and the sum

h = h0 + g1h1 f1 + (g1g2)h2( f2 f1) + · · ·

which are all well-defined, because when applying them to an element x , only finitely
many of f j , g j differ from the identity map and only finitely many h j are nonzero.

Part 2: Polynomiality. We need to show that if the degree k is fixed, then we can
evaluate f , g, h on Ck(F) resp. ÃFk−1 in time polynomial in the input size. The map
f0 is defined via the if-else condition (4). To decide whether a simplex σ ∈ F(I ) is
in the image of sk−1 amounts to deciding σ = sk−1dkσ which can be done in time
polynomial in size(I ) + size(σ ), the polynomial depending on k. It follows that f0 is
a locally polynomial map. All the remaining maps fi , gi and hi are defined via simple
formulas and are obviously locally polynomial-time maps.

For fixed k, the definition of f , g, h includes only fi , gi , hi for i < k. It follows that
f , g are composed of k polynomial-time maps and h is a sum of k polynomial-time
maps. ��

6.2 Arrow 2

This part is taken almost completely from Berger (1991), we only slightly adjusted
the notation to our settings, formalized some details that in Berger (1991) are treated
as obvious, and comment on polynomiality.

To summarize themain ideas,wewill define an algorithm for computing contraction
operators GFj → GFj+1 that geometrically represent contraction of spheres in the
loop space of F . The first such contraction c0 : GF0 → GF1 actually corresponds
to the contraction of loops in F and cannot be derived algorithmically in general.
That’s the reason why we insist on having some kind of information about the loop
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contraction c0. Higher contractions, however, can be derived via formulas, assuming
the input is (d − 1)-connected (we don’t have a good intuition for this fact, but the
Hurewicz isomorphism is probably the key; it is easy to construct these contractions
on the Abelian part and the hard work is to pull them back to the non-commutative
G̃F). Formulas for the contractions ck are the core of Arrow 2.

G̃Fk+1
p

d0

ÃFk+1

d A
0

G̃Fk

ck

p
ÃFk .

cAk

(5)

Given an algorithm for the contractions, Arrow 2 is then defined as follows. For a
cycle z ∈ ÃFk+1, we compute an arbitrary p-preimage y, p(y) = z, and then adjust
it to y (ckd0y)−1 which already is a cycle in G̃Fk+1.

We remark that without having something like the contraction data ck , it is hard to
find any non-trivial spherical elements of G̃F∗.

Lemma 9 (Boundary certificate) Let d > 1 be fixed and let F be a (d − 1)-connected
simplicial set with polynomial-time homology. There is an algorithm that, for j < d−1
and a cycle z ∈ Z j (̃AF), computes an element cA(z) ∈ ÃF j+1 such that d0cA(z) = z.
The running time is polynomial in size(z) + size(I ).

Proof First note that the (d−1)-connectedness of F implies that Hj+1(F) � Hj ( ÃF)

are trivial for j < d − 1, so each cycle in these dimensions is a boundary.
By assumption, F has a polynomial-time homology, which means that there exists

a globally polynomial-time chain complex E∗F , a locally polynomial-time chain
complex Y and polynomial-time reductions from Y to C∗(F) and E∗F

E∗F
P⇐⇐ Y

P⇒⇒ C∗(F).

Let ( f ′, g′, h′) be chain homotopy equivalence of Y and ÃF∗−1 defined as the com-
position of Y ⇒⇒ C∗(F) and the chain homotopy equivalence of C∗(F) and ÃF∗−1
described in Lemma 8. Further, let f ′′, g′′, h′′ be the maps defining the reduction
Y ⇒⇒ E∗F : all of these maps are polynomial-time.

Let j < d−1 and z ∈ Z j ( ÃF), z = ∑
j k j y j . Then the element f ′′g′(z) is a cycle

in E j+1F and can be computed in time polynomial in size(z) + size(I ). In particular,
the size of f ′′g′(z) is bounded by such polynomial. The number of generators of
E j+2F and E j+1F is polynomial in size(I ) and we can compute, in time polynomial
in size(I ), the boundarymatrix of ∂ : E j+2F → E j+1F with respect to the generators.

Next we want to find an element t ∈ E j+2F such that ∂t = f ′′g′(z). Using
generating sets for E j+2F , E j+1F , this reduces to a linear system of Diophantine
equations and can be solved in time polynomial in the size of the ∂-matrix and the
right hand side f ′′g′(z) (Kannan and Bachem 1981).
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Finally, we claim that cA(z) := f ′g′′(t)− f ′h′′g′(z) is the desired element mapped
to z by the differential in ÃF . This follows from a direct computation

∂cA(z) := ∂ f ′g′′(t) − ∂ f ′h′′g′(z)
= f ′g′′(∂t) − ∂ f ′h′′g′(z)
= f ′g′′ f ′′g′(z) − ∂ f ′h′′g′(z)
= f ′(h′′∂ + ∂h′′ + id)g′(z) − ∂ f ′h′′g′(z)
= f ′h′′g′∂z + ∂ f ′h′′g′(z) + f ′g′(z) − ∂ f ′h′′g′(z)
= 0 + f ′g′(z) = z

The computation of t as well as all involved maps are polynomial-time, hence the
computation of cA(z) is polynomial too. ��

The next lemma will be needed as an auxiliary tool later.

Lemma 10 Let S be a countable set with a given encoding, G be the free (non-abelian)

group generated by S, and define size(
∏

j s
k j
j ) := ∑

j (size(s j )+ size(k j )). Let G ′ :=
[G,G] be its commutator subgroup.

Then there exists a polynomial-time algorithm that for an element g = ∏
j s

k j
j in

G ′ ⊆ G, computes elements ai , bi ∈ G such that g = ∏
j [a j , b j ].

In other words, we can decompose commutator elements into simple commutators in
polynomial-time at most.

Proof Let us choose a linear ordering on S and let g = ∏
j s

k j
j be in G ′: that is, for

each j , the exponents {k j ′ : s j ′ = s j } sum up to zero. We will present a bubble-sort
type algorithm for sorting elements in g. Going from the left to right, we will always

swap s
k j
j and sk+1

j+1 whenever s j+1 < s j . Such swap always creates a commutator, but
that will immediately be moved to the initial segment of commutators.

More precisely, assume that Init is the initial segment, x = s
k j
j and y = s

k j+1
j+1

should be swapped, Rest represent the segment behind y, and Commutators is a final
segment of commutators. The swapping will consists of these steps:

Init x y Rest Commutators

�→ Init y x [x−1, y−1] Rest Commutators

�→ Init y x Rest
([x−1, y−1] [[y−1, x−1],Rest−1] Commutators

)

where the parenthesis enclose a new segment of commutators. Before the parenthesis,
x and y are swapped. Each such swap requires enhancing the commutator section by
two new commutators of size at most size(g), hence each such swap has complexity
linear in size(g).

Let us call everything before the commutator section a “regular section”. Going
from left to right and performing these swaps will ensure that the largest element will
be at the end of the regular section. But no later then that, the largest element ylargest
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disappears from the regular section completely, because all of its exponents add up to
0. Again, starting from the left and performing another round of swaps will ensure that
the second-largest elements disappear from the regular section; repeating this, all the
regular section will eventually disappear which will happen in at most size(g)2 swaps
in total. Each swap has complexity linear in size(g) and the overall time complexity
is not worse than cubic. ��
Lemma 11 Assume that F is a parametrized simplicial set with polynomially con-
tractible loops. Let k > 0, γ ∈ GFk be spherical, i.e. diγ = 1, 0 ≤ i ≤ k, and
α ∈ GFk is arbitrary. There is a polynomial-time algorithm that computes δ ∈ GF ′

k+1
such that d0δ = [α, γ ] and diδ = 1 for all i > 0.

In other words, a simple commutator of a spherical element with another element can
always be “contracted” in GF ′ in polynomial time. Our proof roughly follows the
construction in Kan (1958a, Sect. 8).

Proof For x ∈ GF0, we will denote by c0x the element of G̃F1 such that d0c0x =
x : this can be computed in polynomial-time by the assumption on polynomial loop
contractions. For the simplex α ∈ GFk , we define (k + 1)-simplices β0, . . . , βk by
βk := sk0c0d

k
0α and inductively β j−1 := (s j d jβ j ) · (s jα−1) · (s j−1α) for j < k.

Then the following relations hold:13

– d0β0 = α.
– d jβ j = d jβ j−1, 1 ≤ j ≤ k
– dk+1βk = 1.

The second and third equations are a matter of direct computation, while the first fol-
lows from themore general relation d j+1

0 β j = d j
0α which can be proved by induction.

If k is fixed, then all β0, . . . , βk can be computed in polynomial time.
The desired element δ is then the alternating product

δ := [β0, s0γ ] [β1, s1γ ]−1 . . . [βk, skγ ]±1. ��

Lemma 12 Under the assumptions of Theorem 1, there exist homomorphisms c j :
GF j → GF j+1 for 0 ≤ j < d − 1 such that

1. d0c j = id,
2. di c j = c j−1di−1, 0 < i ≤ j + 1, and
3. c j si = si+1c j−1 for 0 < j < d − 1 and 0 ≤ i < j ,
4. d1c0(x) = 1 for all x ∈ GF0.

If d is fixed and x ∈ GFj , j < d −1, then c j (x) can be computed in polynomial time.

Proof The homomorphism c0 can be constructed directly from the assumption on
polynomial contractibility of loops. We have a canonical basis of GF0 consisting of
all non-degenerate 1-simplices of F . For σ ∈ F1, we denote by σ the corresponding

13 Kan uses a slightly different convention in Kan (1958a) but the resulting properties are the same. The
sequence β0, . . . , βk can be interpreted as a discrete path from α to the identity element.

123



Computing simplicial representatives of homotopy group elements 207

generator of GF0. The we define c0(
∏

σ
k j
j ) to be

∏
b
k j
j where b j is the element of

GF1 such that d0b j = σ j and d1b j = 1.
In what follows, assume that 1 ≤ k < d − 1 and ci have been defined for all i < k.

We will define ck in the following steps.
Step 1. Contractible elements.
Let x ∈ GFk . We will say that x is contractible and y ∈ GFk+1 is a contraction of

x if d0y = x and di y = ck−1di−1x for all i > 0.
The general strategy for defining ck will be to find a contraction h for each basis

element ((k+1)-simplex) g ∈ GFk and define ck(g) := h. This will enforce properties
1 and 2. Moreover, in case when g is degenerate, the contraction will be chosen in
such a way that property 3 holds too; otherwise it holds vacuously. Property 4 only
deals with c0 and is satisfied by the definition of loop contraction (a polynomial-time
c0 is given as an input in Theorem 1).

Step 2. Contraction of degenerate elements.
Let g = si y be a basis element of GFk , y ∈ GFk−1. Then g can be uniquely

expressed as s j z where j is the maximal i such that g ∈ Im(si ). We then define
ck(g) := s j+1ck−1(z). Note that

d0ck(g) = d0s j+1ck−1(z) = s j d0ck−1(z) = s j z = g,

so property 1 is satisfied. To verify property 2, first assume that i ∈ { j + 1, j + 2}.
Then we have

di ck(g) = di s j+1ck−1(z) = ck−1(z) = ck−1di−1s j z = ck−1di−1g.

This fully covers the case k = 1, because then the only possibility is j = 0 and
i ∈ {1, 2}. Further, let k > 1. If i ≤ j , then we have

di ckg = di cks j z = di s j+1ck−1(z) = s j di ck−1(z) = s j ck−2di−1z

= ck−1s j−1di−1z = ck−1di−1s j z = ck−1di−1g

and if i > j + 2, then the computation is completely analogous, using the relation
di s j+1 = s j+1di−1 instead.

So far, we have shown that ck(g) := s j+1ck−1g is a contraction of g. It remains to
show property 3. That is, we have to show that if g = s j z can also be expressed as
si y, then ck(si y) = si+1ck−1y.

The degenerate element g has a unique expression g = siu . . . si1si0v where i0 <

i1 < · · · < iu = j and is expressible as si x iff i = i j for some j = 0, 1, . . . , u.
Choosing such i < j , we can rewrite g as g = s j siv for some v and then g = si s j−1v,
so that y = s j−1v and z = siv. Then we again use induction to show

ck(si y) = s j+1ck−1(z) = s j+1ck−1siv = s j+1si+1ck−2v

= si+1s j ck−2v = si+1ck−1s j−1v = si+1ck−1y

as required.
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Step 3. Decomposition into spherical and conical parts.
We will call an element x̂ ∈ GFk to be conical if it is a product of elements that

are either degenerate or in the image of ck−1. Let x ∈ GFk be arbitrary. We define
xk := x and inductively xi−1 := xi (si−1di xi )−1. In this way we obtain x0, . . . , xn
such that xi is in the kernel of d j for j > i and x = x0y where y is a product of
degenerate simplices. Further, let xs := x0(ck−1d0x0)−1. A simple computation shows
that xs is spherical, that is, di xs = 1 for all i . We obtain an equation x = xs x̂ where
x̂ = (ck−1(d0x0)y; this is a decomposition of x into a spherical part xs and a conical
element x̂ .

We will define ck on non-degenerate basis elements g = σ by first decomposing
g = gS ĝ into a spherical and conical part, finding contractions h1 of gS and h2 of
ĝ, and defining ck(g) := h1h2. Then ck(g) is a contraction of g and hence satisfies
properties 1 and 2: property 3 is vacuously true once g is non-degenerate.

Step 4. Contraction of the conical part.
Let x̂ := ck−1(d0x0) y be the conical part defined in the previous step. By construc-

tion, x0 ∈ G̃Fk and y is a product of degenerate elements si1u1 . . . sil ul . We define
the contraction of ck−1(d0x0) to be

c̃k(ck−1(d0x0)) := s0ck−1(d0x0).

Note that this satisfies property 1 as d0c̃kck−1(d0x0) = ck−1(d0x0). For property 2,
we first verify

d1c̃kck−1(d0x0) = d1s0ck−1(d0x0) = ck−1(d0x0) = ck−1d0ck−1(d0x0).

Not let i ≥ 2. If k = 1, then the remaining face operator is d2 and we have

d2c̃1c0(d0x0) = d2s0c0(d0x0) = s0d1c0(d0x0) = 1 = c0d1c0(d0x0)

using axiom 4 for c0. Finally, if i ≥ 2 and k ≥ 2, we have

di c̃kck−1(d0x0) = di s0ck−1(d0x0) = s0di−1ck−1(d0x0) = s0ck−1di−2d0x0
= s0ck−1d0di−1x0 = s0ck−1d01 = 1 = ck−1ck−2d0di−1x0
= ck−1ck−2di−2d0x0 = ck−1di−1ck−1(d0x0),

where we exploited the fact that x0 ∈ G̃Fk and hence dux0 = 1 for u ≥ 2.
The contraction of degenerate elements y has already been defined in Step 2, so we

can define a contraction of ck−1(d0x0)y to be s0ck−1(d0x0) ck(y).
Step 5. Contraction of commutators.
Let g′ ∈ GF ′

k be an element of the commutator subgroup. By Lemma 10, we
can algorithmically decompose g′ into a product of simple commutators, so to find a
contraction of g′, it is sufficient to find a contraction of each simple commutator [x, y]
in this decomposition.

Let x = x S x̂ and y = yS ŷ be the decompositions into spherical and conical parts
described in Step 3. Using the notation ba := bab−1, we can decompose [x, y] as
follows (Berger 1991, p. 60):
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[x, y] = ([x, y][ŷ, x]) ([x, ŷ][ŷ, x̂]) [x̂, ŷ] = [xy x−1,xy (y−1 ŷ)] [x ŷ,x (x−1 x̂)] [x̂, ŷ]. (6)

Both x−1 x̂ and y−1 ŷ are spherical simplices and so are their conjugations. It follows
that Eq. (6) can be rewritten to [x, y] = [α1, γ1] [α2, γ2] [x̂, ŷ] where γ1 and γ2
are spherical. All of these decompositions are done by elementary formulas and are
polynomial-time in the size of x and y.

By Lemma 11 we can find an elements λi ∈ G̃Fk+1 such that d0λi = [αi , γi ],
i = 1, 2, in polynomial time. Further, both x̃ and ỹ are conical and they are in the form
x̃ = c0(d0x0)xdeg where x0 ∈ G̃Fk and xdeg is degenerate; similar decomposition
holds for y. In Step 4 we showed how to compute elements cx and cy such that cx ,
cy is a contraction of x̂ , ŷ, respectively. Then [cx , cy] is a contraction of [x̂, ŷ] and
λ1λ2[cx , cy] is a contraction of [x, y].

Step 6. Contraction of spherical elements.
The last missing step is to compute a contraction of the spherical element gS where

gS is the spherical part of a basis element g ∈ GFk .

Let us denote by p the projection GF
p→ AF . The projection z := p(gS) is in the

kernel of all face operators and hence a cycle in ÃFk . By Lemma 9, we can compute
t := cAk (z) ∈ ÃFk+1 such that d0t = z, in polynomial time. Let h ∈ GFk+1 be
any p-preimage14 of t . Let hk := h and inductively define h j−1 := h j (s j−1d j h j )

−1

for j < k. Then h0 is in the kernel of all faces except d0, that is, h0 ∈ G̃Fk+1. It
follows that p(h0) ∈ ÃFk+1 is in the kernel of all faces except d0. We claim that
p(h0) = t .This can be shown as follows: assume that p(h j ) = t , then p(h j−1) =
p(h j ) + p(s j−1d j h

−1
j ) = t + s j−1d j t = t + 0 = t .

We have the following commutative diagram:

h0 t

G̃F
′
k+1

d0

G̃Fk+1
p

d0

ÃFk+1

d0

G̃F
′
k G̃Fk

p
ÃFk

gS z

Both gS and d0h0 are mapped by p to the same element z: it follows that gS(d0h0)−1

is mapped by p to zero and hence is an element of the commutator subgroup. Let h̃
be the contraction of gS(d0h0)−1, computed in Step 5, and finally let h := h̃h0. Then
h is an element of G̃Fk+1 and a direct computation shows that d0h = gS as desired.

This completes the construction of ck : for each non-degenerate basis element g of
GFk , ck(g) is defined to be the product of the contraction of gS and the contraction15

of ĝ.

14 For t = ∑
j k jσ j , we may choose h = ∏

j σ
k j
j (choosing any order of the simplices).

15 The connectivity assumption on F was exploited in the existence of the contraction cAj on the Abelian
part.
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All the subroutines described in the above steps are polynomial-time. Thus we
showed that if there exists a polynomial-time algorithm for ck−1, then there also exists
a polynomial-time algorithm for ck . The existence of a polynomial-time c0 follows
from the assumption on polynomial loop contractibility and d is fixed, thus there exists
a polynomial-time algorithm that for x ∈ GFj computes c j (x) for each j < d − 1. ��
Lemma 13 (Construction of arrow 2) Under the assumption of Theorem 1, let z ∈
Zd−1(̃AF) be a cycle. Then there exists a polynomial-time algorithm that computes
a cycle x ∈ Zd−1(̃GF) such that the Abelianization of x is z.

The assignment z �→ x is hence an effective inverse of the isomorphism

Hd−1(̃GF) → Hd−1( ÃF)

on the level of representatives.

Proof Let cd−2 be the contraction from Lemma 12 and z ∈ Zd−1( ÃF) be a cycle.
First choose y ∈ GFd−1 such that p(y) = z. Creating the sequence yn := y, y j−1 :=
y j s j−1d j y

−1
j for decreasing j , yields an element y0 ∈ G̃Fd−1 that is still mapped

to z by p, similarly as in Step 4 of Lemma 12. The equation pd0(y0) = d0 p(y0) =
d0z = 0 shows that d0y0 is in the commutator subgroup G̃F

′
d−2. We define x :=

y0cd−2(d0y0)−1: this is already a cycle in G̃Fd−1 and p(x) = p(y0) = z. ��

6.3 Arrow 3

A cycle g ∈ G̃Fd−1 ⊆ GFd−1 represents a generator of the homotopy group
Hd−1(̃GF) ∼= πd(F). Given such g, our goal is to construct a simplicial set Σd

with |Σd | = Sd and a simplicial map γg : Σd → F with [γg] ∼= [g].
Consider first the following naive idea of the construction: Suppose that g =

x1 · · · xn , where xi ∈ Fd , 1 ≤ i ≤ n. For simplicity, assume that xi ’s are all
nondegenerate simplices. We then take n disjoint simplices y1, . . . yn and define
f : ⊔n

i=1 yi → F sending yi to xi . From the fact that d j (x1 · · · xn) = 1, we now
define relations on the faces of yi ’s (say we conclude that d j (xi ) = d j (xi+1)

−1, then
we add relation d j (yi ) ∼ d j (yi+1)). Putting all such relations together we define a
simplicial set Y = ⊔n

i=1 yi/ ∼ and a simplicial map f ′ : Y → F where f factors
through f ′, see Fig. 3 for an example.

We have nearly achieved what we aimed for - one can show that |Y | is homotopy
equivalent to the wedge sum of d - dimensional spheres and [ f ′] ∼= g. However, in
general |Y | is not homeomorphic to Sd . One way to overcome the problem is to make
the space Y “thicker” and making sure that identifying simplices never results in a
wedge of spheres.

To this end, we utilize the following construction which is one of the main results
fromBerger (1995). Here, we describe themain points of the constructionwhile details
are given in later sections.

On an algebraic level, we define another simplicial model of a loopspace of
F—a simplicial group ΩF . Further, there is a homomorphism of simplicial groups
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y1 y2 y3 y4

d−1
2 d1

d0

Fig. 3 Let g ∈ GF1 with g = x1x2x3x4, where d0(x1) = d0(x2)
−1, d0(x3) = d0(x4)

−1, d2(x1) =
d1(x2), d2(x2) = d1(x1), d1(x3) = d2(x3) and d1(x4) = d2(x4). Simplicial set Y is then obtained by
identifying faces of triangles y1, y2, y3, y4 as pictured here. One can see |Y | = S2 ∨ S2

t : GF → ΩF that induces an isomorphism on the level of homotopy groups. This is
described in Berger (1995, Proposition 3.3).

The homomorphism t is given later by formula (8) and the simplicial set ΩF is
described in the next section. Here, we remark that the size of t(g) is exponential in
size of g.

Finally, Lemma 14 describes an algorithm that for a spherical element γ ∈ ΩFd−1
constructs a simplicialmap γsph : Σd(γ ) → F such thatπd−1(ΩF) � [γ ] � [γsph] ∈
πd(F) - essentially using the naive idea described above.We describe the construction
in detail in the next section.

The size of γsph is polynomial in size(γ ). Hence, given a spherical g ∈ G̃Fd−1,
the algorithm produces t(g)sph : Σd(t(g)) → F that is exponential with respect to
size(g).

6.4 Berger’s model of the loop space

Definition 9 (Oriented multigraph on Xn) Let X be a 0-reduced simplicial set. We
define a directed multigraph MXn = (Vn, En), where the set of vertices Vn = Xn and
the set of edges En is given by

En = {[x, i]ε | x ∈ Xn+1, 0 ≤ i ≤ n, ε ∈ {1,−1}}.

We define maps source , target : En → Vn by setting source [x, i] = di+1x ,
target [x, i] = di x and source [x, i]−1 = target [x, i] and target [x, i]−1 =
source [x, i].

An edge [x, i]ε ∈ En is called compressible if x = si x ′ for some x ′ ∈ Xn .

Definition 10 (Paths) Let X ∈ sSet. A sequence of edges in MXn

γ = [x1, i1]ε1[x2, i2]ε2 · · · [xk, ik]εk (7)

is called an n-path if target [x j , i j ]ε j = source [x j+1, i j+1]ε j+1 , 1 ≤ j < k.
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Moreover, for every x ∈ Vn = Xn we define a path of length zero 1x with the
property source 1x = x = target 1x and relations a1x = a whenever target a = x
and 1xb = b whenever source b = x .

The set of paths on MXn is denoted by I Xn . Let γ ∈ I Xn by as in (7). We
define source γ = source [x1, i1]ε1 and target γ = target [xk, ik]εk . The inverse of
γ , denoted γ −1, is defined as

γ −1 = [xk, ik]−εk · · · [x1, i1]−ε1 .

if γ = 1x , then γ −1 = γ . Note that each path is either equal to 1x for some x or can
be represented in a form such as (7), without any units.

For algorithmic purposes, we assume that a path γ = [x1, i1]ε1[x2, i2]ε2 · · · [xk, ik]εk
is represented as a list of triples (x j , i j , ε j ) and has size

size(γ ) :=
∑

j

size(x j ) + size(i j ) + size(ε j ),

which is bounded by a linear function in
∑

j size(x j ).
Given an edge [x, i]ε ∈ MXn , we define operators

d0, . . . dn : En → I Xn−1 and s0, . . . , sn : En → I Xn+1

called face and degeneracy operators, respectively. These are given as follows

d j [x, i]ε =
⎧
⎨

⎩

[d j x, i − 1]ε, j < i;
1di di+1x , i = j;
[d j+1x, i]ε, j > i .

s j [x, i]ε =
⎧
⎨

⎩

[s j x, i + 1]ε, j < i;
[si x, i + 1][si+1x, i])ε, i = j;
[s j+1x, i]ε, j > i .

One can now extend the definition of face and degeneracy operators to paths, i.e.
we define operators d0, . . . dn : I Xn → I Xn−1 and s0, . . . , sn : I Xn → I Xn+1

d jγ =
{
d j ([x1, i1]ε1 )d j ([x2, i2]ε2 ) · · · d j ([xk , ik ]εk ) if γ = [x1, i1]ε1 [x2, i2]ε2 · · · [xk , ik ]εk ,
1d j x if γ = 1x , x ∈ Xn .

s jγ =
{
s j ([x1, i1]ε1 )s j ([x2, i2]ε2 ) · · · s j ([xk , ik ]εk ) if γ = [x1, i1]ε1 [x2, i2]ε2 · · · [xk , ik ]εk
1s j x if γ = 1x , x ∈ Xn .

With the operators defined above, one can see that I X is in fact a simplicial set.
For any γ, γ ′ ∈ I X such that target γ = source γ ′, we define a composition γ ·γ ′

in an obvious way.
If the simplicial set X is 0-reduced,wedenote the unique basepoint∗ ∈ X0.Abusing

the notation, we denote the iterated degeneracy of the basepoint s0 · · · s0∗︸ ︷︷ ︸
k-times

∈ Xk by ∗
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as well. With that in mind, we define simplicial subsets PX , ΩX of I X as follows:

PX = {γ ∈ I X | target γ = ∗} ΩX = {γ ∈ I X | source γ = ∗ = target γ }.

We remark that simplicial sets PX ,ΩX intuitively capture the idea of path space and
loop space in a simplicial setting.

Definition 11 A path γ = [x1, i1]ε1[x2, i2]ε2 · · · [xk, ik]εk ∈ I X is called reduced if
for every 1 ≤ j < k the following condition holds:

(x j = x j+1 & i j = i j+1) ⇒ ε j = ε j+1.

e.g. an edge in the path γ is never followed by its inverse.
An edge [x, i]ε ∈ En is called compressible if x = si x ′ for some x ′ ∈ Xn . A path

is compressed if it does not contain any compressible edge.

We define relation ∼R on I X (or rather on each I Xn) as a relation generated by

[x, i]ε[x, i]−ε ∼R 1source ([x,i]ε ), n ∈ N0, [x, i]ε ∈ En .

Similarly, we define ∼C on I X as a relation generated by

[x, i]ε ∼C 1source ([x,i]ε ), if [x, i]ε ∈ En is compressible.

We finally define I X = (I X/ ∼C )/ ∼R . Similarly, one defines PX ,ΩX .
For γ, γ ′ ∈ I Xn , we write γ ∼ γ ′ if they represent the same element in I Xn . The

symbol γ , denotes the (unique) compressed and reduced path such that γ ∼ γ . One
can see I X (PX ,ΩX ) as the set of reduced and compressed paths in I X(PX ,ΩX).

In a natural way, we can extend the definition of face and degeneracy operators
di , si on sets I X(PX ,ΩX ) by setting diγ = diγ and siγ = siγ . One can check that
this turns I X , PX and ΩX into simplicial sets.

Similarly, we define operation · : ΩXn × ΩXn → ΩXn by γ · γ ′ �→ γ γ ′, i.e.
we first compose the loops and then assign the appropriate compressed and reduced
representative. With the operation defined as above, ΩX is a simplicial group.

6.5 Homomorphism t : GX → ΩX

We first describe how to any given x ∈ Xn assign a path γx ∈ PXn with the property
source γx = x and target γx = ∗:

For x ∈ Xn , n > 0, the 0-reducedness of X gives us di1di2 · · · din x = ∗, here
i j ∈ {0, . . . , j}, 0 < j ≤ n. In particular, d0d1 · · · dn−1x = ∗. Using this, we define

γx = [snx, n − 1][snsn−1dn−1x, n − 2] · · · [snsn−1 · · · s1d1d2 · · · dn−1x, 0].

Ignoring the degeneracies, one can see the sequence of edges as a path

x → dn−1x → dn−2dn−1x → · · · → d0d1 · · · dn−1x .
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We define the homomorphism t on the generators of GXn , i.e. on the elements x ,
where x ∈ Xn+1 as follows:

t(x) = γ −1
dn+1x

[x, n]γdnx . (8)

This is an element of ΩXn .
The algorithm representing the map t has exponential time complexity due to the

fact that an element σ k with size size(σ ) + size(k) is mapped to

γ −1
dn+1x

[x, n]γdnx . . . γ −1
dn+1x

[x, n]γdnx
︸ ︷︷ ︸

k times

which in general can have size proportional to k. Assuming an encoding of integers
such that size(k) � ln(k), this amounts to an exponential increase.

6.6 Universal preimage of a path

Intuitively, one can think of the simplicial set I X of paths as of a discretized version
of space of continuous maps |X |[0,1]. In particular, γ ∈ I Xd−1 is a walk through a
sequence of d-simplices in X that connect source γ with target γ . However, in the
continuous case an elementμ ∈ |X |[0,1] corresponds to a continuousmapμ : [0, 1] →
|X |. We want to push the parallels further, namely, given any nontrivial16 γ ∈ I Xd−1,
we aim to define a simplicial set Dom(γ ) and a simplicial map γmap : Dom(γ ) → X
with the following properties:

1. |Dom(γ )| = Dd .
2. γmap maps Dom(γ ) to the set of simplices contained in the path γ .

We will utilize the following construction given in Berger (1995).

Definition 12 Let γ ∈ I Xd−1 . We defineDom(γ ) and γmap as follows. Suppose, that
γ = [y1, i1]ε1[y2, i2]ε2 · · · [yk, ik]εk . For every edge [y j , i j ]ε j , let α j be the simplicial
map Δd → y j sending the nondegenerate d simplex in Δd to y j .

We define Dom(γ ) as a quotient of the disjoint union of k copies of Δd :

Dom(γ ) =
k⊔

i=1

Δd/ ∼

where each copy of Δd corresponds to a domain of a unique α j and the relation is
given by

(α j )
−1target ([y j , i j ]ε j ) ∼ (α j+1)

−1source ([y j+1, i j+1]ε j+1).

16 By nontrivial we mean that γ �= 1x for any x ∈ Xd−1.
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The map γmap is induced by the collection of maps α1, . . . , αk :

⊔k
i=1 Δd

α1,...,αk

Dom(γ )
γmap

X .

We recall that simplicial set I X was defined as the set of “reduced and compressed”
paths in I X . Similarly, one introduces a reduced and compressed versions of the
construction Dom. As a final step we then get

Lemma 14 (Section 2.4 in Berger 1995) Let γ ∈ ΩXd−1 such that diγ = 1 ∈ ΩX
for all i . Then the map γmap : Dom(γ ) → X factorizes through a simplicial set model
of the sphere Σd(γ ) as follows:

Dom(γ )

γmap

Σd(γ )
γsph

X .

Further, πd−1(ΩX) � [γ ] � [γsph] ∈ πd(X).

We will not give the proof of correctness of Lemma 14 (it can be found in Berger
1995). Instead, in the next section, we only describe the algorithmic construction of
γsph : Σd(γ ) → X and give a running time estimate.

6.7 Algorithm from Lemma 14

The algorithm accepts an element γ ∈ ΩXd−1 such that diγ = 1 ∈ ΩX for all i ,
a spherical element. We divide the algorithm into four steps that correspond to the
four step factorization in the following diagram:

Dom(γ )

γmapDom(γ )

γc

Dom(γ )
γcr

X

Σd(γ )

γsph
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Dom(γ ): We interpret γ as an element in I X and construct γmap : Dom(γ ) → X .
This is clearly linear in the size of γ .

Dom(γ ): The algorithm checks, whether an edge [y, j]ε in di1di2 . . . di�γ , where
0 ≤ i1 < i2 < · · · < i� < (d − � − 2) is compressible, i.e.
y = s j d j y. If this is the case, add a corresponding relation on the preim-
ages: α−1(y) ∼ s j d jα

−1(y). Factoring out the relations, we get a map
γc : Dom(γ ) → X .

Although the number of faces we have to go through is exponential in d,
this is not a problem, since d is deemed as a constant in the algorithm and
so is 2d . Hence the number of operations is again linear in the size of γ .

Dom(γ ): Let k < d. We know that dkγ = 1∗, so after removing all compress-
ible elements from the path dkγ , it will contain a sequence of pairs
([yi , ji ]εi , [yi , ji ]−εi ) such that, after removing all [yu, ju]±1 for all u < v,
then [yv, jv]εv and [yv, jv]−εv are next to each other.17 Each such pair
([yi , ji ]εi , [yi , ji ]−εi ) corresponds to a pair of indices (li ,mi ) correspond-
ing to the positions of those edges in dkγ . These sequences are not unique,
but can be easily found in time linear in length(γ ). Then we glue α−1

li
(yi )

with α−1
mi

(yi ) for all i . Performing such identifications for all k defines the

new simplicial set Dom(γ ).
Σd(γ ): It remains to identify α−1(source γ ) and α−1(target γ ) with the appropri-

ate degeneracy of the (unique) basepoint. The resulting space |Σd(γ )| is
a d-sphere.

7 Polynomial-time loop contraction in Fd

In this section, we show that simplicial sets Fi , 2 ≤ i ≤ d constructed algorithmically
in Sect. 4 have polynomial-time contractible loops, thus proving Lemma 4.

Assuming that X is a 0-reduced, 1-connected simplicial set with a given algorithm
that computes the contraction on loops c0 : (GX)0 → (GX)1, the contraction c0 on
F2 is automatically defined, as F2 = X .

Themajority of the effort in the rest of this section is concentrated on the description
of the contraction c0 on F3, as show that the contraction Fi , i > 3 canbe easily obtained
from the contraction on F3.

We remark that the loop contractions, i.e. maps c0 : G0(Fi ) → G1(Fi )with d0c0 =
id and d1c0 = 1, are not unique. We only describe one of possible choices and provide
an analysis on the overall length of the formulas/running time of the algorithm.

7.1 Notation

We will further use the following shorthand notation: For a 0-reduced simplicial set
X we will denote the iterated degeneracy s0 · · · s0∗ of its unique basepoint ∗ by ∗ and

17 For example, [a, 1][b, 2][b, 2]−1[a, 1]−1 can be split into a sequence ([b, 2], [b, 2]−1),

([a, 1], [a, 1]−1).
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we set πi = πi (X). For any Eilenberg–Maclane space K (πi , i − 1), i ≥ 2, we denote
its basepoint and its degeneracies by 0. From the context, it will always be clear which
simplicial set we refer to.

7.2 Loop contraction on Fi, i > 3

Suppose we have defined the contraction on the generators of G0(F3). i.e. for any
(x, k) ∈ (X ×τ ′ K (π2, 1))1 we have

c0((x, k)) = (x1, k1)
ε1 · · · (xn, kn)εn (x j , k j ) ∈ (F3)2, ε j ∈ Z, 1 ≤ j ≤ n

such that d0c0((x, k)) = (x, k) and d1c0((x, k)) = 1. In detail, we get the following:

(x, k) = d0c0((x, k)) = (d0x1, d0k1)
ε1 · · · (d0xn, d0kn)εn (9)

1 = d1c0((x, k)) = (
(d2x1, τ ′(x1)d2k1)

−1 · (d1x1, d1k1)
)ε1 · · ·

(
(d2xn, τ ′(xn)d2kn)

−1 · (d1xn, d1kn)
)εn (10)

We now aim to give a reduction on the generators of G0(Fi ), i > 3. Simplicial set Fi
is an iterated twisted product of the form

(
((X ×τ ′ K (π2, 1)) ×τ ′ K (π3, 2)) ×τ ′ · · · ×τ ′ K (πi−2, i − 3)

) ×τ ′ K (πi−1, i − 2)

As simplicial sets K (πi−1, i − 2) are 1-reduced for i > 3, we can identify elements
of (Fi )1 with vectors (x, k, 0, . . . , 0), where k ∈ K (π2, 1)1, x ∈ X1. We further
shorthand the series of i − 3 zeros in the vector with 0. Hence generators G0(Fi )
are of the form (x, k, 0). The 1-reducedness also implies that τ ′(α) = 0 whenever
α ∈ (Fi )2, i > 2.

Finally, we set

c0((x, k, 0)) = (x1, k1, 0)
ε1 · · · (xn, kn, 0)εn

(x j , k j , 0) ∈ (Fi )2, ε j ∈ Z, 1 ≤ j ≤ n

The (almost) freeness of G0(Fi ), the fact that K (πi−1, i − 2) are 1-reduced for
i > 3 and Eqs. (9), (10) give that d0c0((x, k, 0)) = (x, k, 0) and d1c0((x, k, 0)) = 1.

Before the definition of contraction on simplicial set F3, we recall some basic facts
about the simplicial model of Eilenberg–MacLane spaces we are using.

7.3 Eilenberg–MacLane spaces

As noted in Sect. 3, given a group π and an integer i ≥ 0 an Eilenberg–MacLane
space K (π, i) is a space satisfying

π j (K (π, i)) =
{

π for j = i,
0 else.
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In the rest of this section, by K (π, i) we will always mean the simplicial model which
is defined in May (1992, p. 101)

K (π, i)q = Zi (Δq;π),

where Δq ∈ sSet is the standard q-simplex and Zi denotes the cocycles. This means
that each q-simplex is regarded as a labeling of the i-dimensional faces of Δq by
elements of π such that they add up to 0 ∈ π on the boundary of every (i +1)-simplex
in Δq , hence elements of K (π, q)q are in bijection with elements of π . The boundary
and degeneracy operators in K (π, k) are given as follows: For any σ ∈ K (π, i)q ,
d j (σ ) ∈ K (π, k)q−1 is given by a restriction of σ ∈ K (π, i) to the j-th face of
Δq . To define the degeneracy we first introduce mapping η j : {0, 1, . . . , q + 1} →
{0, 1, . . . , q} given by

η j (�) =
{

� for � ≤ j,
� − 1 for � > j .

Everymapping η j defines a mapC∗(η j ) : C∗(Δq) → C∗(Δq+1).The degeneracy s jσ
is now defined to be C∗(η j )(σ ) (see May 1992, §23).

It follows from ourmodel of Eilenberg–MacLane space, that elements of K (π2, 1)2
can be identified with labelings of 1-faces of a 2-simplex by elements of π2 that sum
up to zero.

As π2 is an Abelian group, we use the additive notation for π2. We identify the
elements of K (π2, 1)2 with triples (k0, k1, k2), ki ∈ π2, 0 ≤ i ≤ 2, such that k0 −
k1 + k2 = 0 ∈ π2.

7.4 Loop contraction on F3

Let X be a 0-reduced, 1-connected simplicial set with a given algorithm that computes
the contraction on loops c0 : (GX)0 → (GX)1.

In the rest of the section, we will assume x ∈ X1. Then by our assumptions c0x =
y1ε1 · · · ynεn , where yi ∈ X2, εi ∈ Z, 1 ≤ i ≤ n. Let ki = τ ′(yi ).

We first show that in order to give a contraction on elements of the form
(x, 0) and (x, k), it suffices to have the contraction on elements of the form
(∗, k):

7.5 Contraction on element (x, 0)

Let (x, 0) ∈ G0(F3). We define

c0(x, 0) =
n∏

i=1

(
c0(∗, ki )

−1
(s1d2yi , (ki , ki , 0)) · (yi , 0)

)εi .
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7.6 Contraction on element (x, k)

Suppose (x, k) ∈ (GF3)0. The formula for the contraction is given using the formulae
on contraction on (x, 0) and (∗, k) as follows

c0(x, k) = (s0x, (k, 0,−k)) · s0(x, 0)−1 · s0(∗,−k) · c0((∗,−k))−1 · c0((x, 0))

7.7 Contraction on element (∗, k)

We formalize the existence of the contraction as follows:

Lemma 15 Let k ∈ π2(X). Then there is an algorithm that computes an element
z ∈ (GF3)1 such that d0z = (∗, k) and d1z = 1.

The proof is postponed until later and uses a variety of technical results. The main
idea is to take a generator of π2(X) represented by a spherical element γ ∈ π1(GX)

with [γ ] = k, and use it to find a filler of (∗, k).
Consider first the following, simplified, situation: Suppose that there is y ∈ (X)2

with d0(y) = 1 and d1(y) = d2y
−1

d1y = 1. Let k = [y] ∈ π2(X), then τ ′(y) = k.
Observe that

d0(y, (0, 0, 0)) = (d0y, 0) = (∗, 0) = 1

d1(y, (0, 0, 0)) = (d2y, k)
−1 · (d1y, 0).

Purely from the point of view of information at our disposal, we are close to finding
c0(∗, k). What we need to do is to employ some algebraic machinations that would

“uncouple” the pair (d2y, k)
−1

into, say (d2y, 0)
−1

and (∗, k)
−1

, “merge” (d2y, 0)
−1

with (d1y, 0) (thus eliminating it) and , finally, “switch” the “d0” and “d1”. These
informally described operations are made precise in Lemma 17.

In general case, for an arbitrary k ∈ π2 one cannot expect that there exists y with
the properties as above, however, the following is true:

Lemma 16 Let k ∈ π2, then there exists γ = y1ε1 · · · ynεn ∈ G̃X1 where yi ∈ X2 and
τ ′yi = ki ∈ π2(X), such that d0γ = 1 = d1γ and

∑n
i=1 εi · ki = k.

Proof Given an element k ∈ π2 ∼= H2(X), one can compute a cycle γ ′ ∈ Z2(X) such
that

[γ ′] = k ∈ π2(X) ∼= H2(X) ∼= H2(K (π2, 2)) ∼= π2(K (π2, 2)),

where the middle isomorphism is induced by ϕ2 and the other isomorphisms follow
from the Hurewicz theorem.

We recall that the loop contraction c0 on the space X is given as a part of the input.
According to Lemma 13, one can compute the inverse of the Hurewicz isomorphism

H1(̃GX) → H1( ÃX) ∼= H2(X)
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on the level of representatives.
Therefore, if we consider γ ′ ∈ ÃX1, we can algorithmically compute a spherical

element γ = y1ε1 · · · ynεn ∈ G̃X1 and it is easy to see that it has the desired properties.
��

We can now use Lemma 16 and some minor technical tricks to prove Lemma 15.

Proof of Lemma 15. Let k ∈ π2, then, by Lemma 16, we compute γ = y1ε1 · · · ynεn ∈
G̃X1 with yi ∈ X2 and τ ′yi = ki ∈ π2(X), such that d0γ = 1 = d1γ and

∑n
i=1 εi ·

ki = k.
We define z′ ∈ (GF3)1 by

z′ =
(

n∏

i=1

(s0d0yi , (ki , 0,−ki ))
εi

)

·
(

n∏

i=1

(yi , (ki , 0,−ki ))
εi

)−1

.

Observe that d0(z′) = 1 and

d1z
′ = (

(∗,−k1)
−1 · (d0y1, 0)

)ε1 · · · ((∗,−kn)
−1 · (d0yn, 0)

)εn .

We apply Lemma 18 on z′ and get an element z′′ ∈ (GF3)1 with the property d0z′′ = 1
and d1z′′ = (∗, k). We define z = s0(∗, k) · (z′′)−1. Thus d0z = (∗, k) and d1z = 1.��

7.8 Technical statements

Definition 13 Let Z = {z ∈ (GF3)1 | d0z = 1} and let W = {d1z | z ∈ Z} We
define an equivalence relation ∼ on the elements of W in the following way: We say
that w ∼ w′ if there exists z ∈ Z , α, β ∈ (GF3)1 such that d1z = w, αzβ ∈ Z and
d1(αzβ) = w′.

Lemma 17 Let w ∈ W such that

1. w = (x, k)
ε · α, where α ∈ (GF3)1 Then w = (x, k)

ε · α ∼ α · (x, k)ε = w′.
2. w = (∗, k)

ε · α, where α ∈ (GF3)0. Then w ∼ w′ = (∗,−k)
−ε · α.

3. w = (∗,−k)
−1

(x, 0) · α, where α ∈ (GF3)0. Then w ∼ w′ = (x, k) · α.

4. w = (x, 0)
−1

(x, k) · α, where α ∈ (GF3)0. Then w ∼ w′ = (∗, k) · α.

5. w = (∗,−l)
−1

(∗, k) · α, where α ∈ (GF3)0. Then w ∼ w′ = (∗, k + l) · α.

Proof In all cases, we assume z ∈ Z such that d1z = w and we give a formula for
z′ ∈ Z with d1z′ = w′:
1. z′ = s0(x .k)

−ε · z · s0(x, k)ε .
2. z′ = (∗, (k, 0,−k))

ε · (s0(∗, k))−ε · z.
3. z′ = (s0(x, k)) · (s0x, (k, 0,−k))

−1 · z.
4. z′ = (s0(∗, k))(s1x, (k, k, 0))

−1 · z.
5. z′ = (s0(∗, k + l))(∗, (k + l, k,−l))

−1 · z.
��
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Lemma 18 Let z ∈ (GF3)1, z ∈ Z with

d1z = w = (∗,−k1)
−1 · (x1, 0)

ε1 · · · (∗,−kn)
−1 · (xn, 0)

εn

where x1ε1 · · · xnεn = 1 in GX0, xi ∈ X, ki ∈ π2(X), εi ∈ {1,−1}, 1 ≤ i ≤ n. Then
w ∼ (

∑n
i=1 ki , ∗).

Proof We achieve the proof using a sequence of equivalences given in Lemma 17.
Without loss of generality we can assume that x1 = x−1

2 and ε1, ε2 = 1 (If this is not
the case, we can use rule (1) and/or relabel the elements). Using (1) gives us

w = (∗,−k1)
−1 · (x2, 0)

−1 · (∗,−k2)
−1 · (x2, 0) · · · (∗,−kn)

−1 · (xn, 0)
εn

∼ (∗,−k2)
−1 · (x2, 0) · · · (∗,−kn)

−1 · (xn, 0)
εn · (∗,−k1)

−1 · (x2, 0)
−1

.

Then successive use of (3), (1), (4), (1) and finally (5) gives us

w ∼ (x2, k2) · · · (∗,−kn)
−1 · (xn, 0)

εn · (∗,−k1)
−1 · (x2, 0)

−1
.

∼ (x2, 0)
−1 · (x2, k2) · · · (∗,−kn)

−1 · (xn, 0)
εn · (∗,−k1)

−1

∼ (∗, k2) · · · (∗,−kn)
−1 · (xn, 0)

εn · (∗,−k1)
−1

∼ (∗, k1 + k2) · (∗,−k3)
−1 · (x3, 0) · · · (∗,−kn)

−1 · (xn, 0)
εn

multiple use or rules (2) and (1) and gives us

w ∼(∗,−k1 − k2 − k3)
−1 · (x3, 0) · · · (∗,−kn)

−1 · (xn, 0)
εn

So far, we have produced some element z′ ∈ Z ⊆ (GF3)1 such that d0z′ = 1,

d1z
′ = (∗,−k1 − k2 − k3)

−1 · (x3, 0) · · · (∗,−kn)
−1 · (xn, 0)

εn

and further x3ε3 · · · xnεn = 1 in GX0.
It follows that the construction described above can be applied iteratively until all

elements (xi , 0) are removed and we obtain w ∼ (−∑n
i=1 ki , ∗)

−1 ∼ (
∑n

i=1 ki , ∗).
��

7.9 Computational complexity

We first observe that formulas for c0 on a general element (x, k) depend polynomially
on the size of c0(x) and the size of contractions on (∗, k). Hence it is enough to analyze
the complexity of the algorithm described in Proposition 15.

The computation of γ ′ is obtained by the polynomial-time Smith normal form
algorithm presented inKannan andBachem (1981) and the polynomial-time algorithm
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in Lemma 13. The size of z′ depends polynomially (in fact linearly) on size of γ ′. The
algorithm described in Lemma 18 runs in a linear time in the size of z′.

To sum up, the algorithm computes the formula for contraction on the elements of
GFi in time polynomial in the input (size X + size c0(GX)).

8 Reconstructing amap to the original simplicial complex

This section contains the proof of Lemma 6 formulated on page 20. To summarize
it, we will prove that whenever a simplicial set X was constructed from a simplicial
complex Xsc by contracting its spanning tree T into the basepoint andΣ is a simplicial
complex, then we can convert a simplicial mapΣ → X into a simplicial map between
simplicial complexes Sd(Σ) → Xsc where Sd(Σ) is a suitable subdivision of Σ .
We will describe an explicit construction and argue that the underlying algorithm is
polynomial.

8.1 Edgewise subdivision of simplicial complexes

In Edelsbrunner and Grayson (1999), the authors present, for k ∈ N, the edgewise sub-
division Esdk(Δm) of an m-simplex Δm that generalizes the two-dimensional sketch
displayed in Fig. 4. This subdivision has several nice properties: in particular, the num-
ber of simplices of Esdk(Δm) grows polynomially with k. Explicitly, the subdivision
can be represented as follows.

– The vertices of Esdk(Δm) are labeled by integer coordinates (a0, . . . , am) such
that a j ≥ 0 and

∑
j a j = k.

– Two vertices (a0, . . . am) and (b0, . . . , bm) are adjacent if there is a pair j < k
such that |b j − a j | = |bk − ak | = 1 and ai = bi for i �= j, k.

– Simplices of Esdk(Δm) are given by tuples of vertices such that each vertex of
a simplex is adjacent to each other vertex.

(4, 0, 0) (3, 1, 0) (2, 2, 0) (1, 3, 0) (0, 4, 0)

(3, 0, 1)

(2, 0, 2)

(1, 0, 3)

(0, 0, 4)

(0, 3, 1)

(0, 2, 2)

(0, 1, 3)

(2, 1, 1) (1, 2, 1)

(1, 1, 2)

Fig. 4 Edgewise subdivision of a 2-simplex for k = 4. In this case, there exists a copy of the 2-simplex
completely in the “interior”, defined by vertices (2, 1, 1), (1, 2, 1) and (1, 1, 2). All other vertices are at the
“boundary”: more formally, their coordinates contain a zero
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We define the distance of two vertices to be the minimal number of edges between
them.

An edgewise k-subdivision of Δm induces an edgewise k-subdivision of all faces,
hence we may naturally define an edgewise subdivision of any simplicial complex.

8.2 Constructing themap Esdk() → Xsc

Let R be a chosen root in the tree T . We denote the tree-distance of a vertex W from
R by distT (W ). Let

l := max{distT (V ) : V is a vertex of Xsc}

be the maximal tree-distance of some vertex from R. For each vertex V of Xsc, there
is a unique path in the spanning tree that goes from R into V . Further, we define the
maps M( j) : (Xsc)(0) → (Xsc)(0) from vertices of Xsc into vertices of Xsc such that

– M( j)(V ) := V if j ≥ distT (V ), and
– M( j)(V ) is the vertex on the unique tree-path from R to V that has tree-distance

j from R if j < distT (V ).

If, for example, R−U−V−W is a path in the tree, thenM(0)(W ) = R,M(1)(W ) = U
etc. Clearly,M(l) = M(l+1) = · · · is the identitymap, as l equals the longest possible
tree-distance of some vertex.

Assume that d is the dimension of Σ and k := l(d + 1) + 1. We will define
f ′ : Esdk(Σ) → Xsc simplexwise. Let τ ∈ Σ be an m-simplex and f (τ ) = σ̃ ∈ X
be its image in the simplicial set X . If σ is the degeneracy of the base-point ∗ ∈ X ,
then we define f ′(x) := R for all vertices x of Esdk(τ ): in other words, f ′ will be
constant on the subdivision of τ . Otherwise, σ̃ is not the degeneracy of a point and has
a unique lift σ ∈ Xss (recall that X := Xss/T ). Let (V0, . . . , Vm) be the vertices of σ

(order given by orientation): these vertices are not necessarily different, as σ may be
degenerate.

In the algorithm, we will need to know which faces of σ are in the tree T . We
formalize this as follows: let S ⊆ 2m be the family of all subsets of {0, 1, . . . ,m} such
that

– For each {i0, . . . , i j } ∈ S, {Vi0 , . . . , Vi j } is in the tree (that is, it is either an edge
or a single vertex),

– Each set in S is maximal wrt. inclusion.

Elements of S correspond to maximal faces of σ that are in the tree, in other words,
to faces of σ̃ that are degeneracies of the base-point.

Definition 14 Let Δm be an oriented m-simplex, represented as a sequence of ver-
tices (e0, . . . , em). For any face s ⊆ {e0, . . . , em}, we define the extended face E(s)
in Esdk(Δm) to be the set of vertices (x0, . . . , xm) in Esdk(Δm) that have nonzero
coordinates only on positions i such that ei ∈ S.

The geometric meaning of this is illustrated by Fig. 5.
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s1

s2

E(s1)

E(s2)

1 1 1

2

1

1

Fig. 5 Illustration of extended faces. Here S = {s1, s2} corresponds to the lower- and left-face of a 2-
simplex. The extended faces E(s1) and E(s2) are sets of vertices of Esdk (Δ

2) that are on the lower- and
left-boundary. The corresponding extended tree E(T ) is the union of all these vertices. The integers indicate
edge-distances distET of vertices in Esdk (Δ

2) from E(T )

Fig. 6 Labeling vertices of
Esdk (Δ

2) by Vargmax x

V0 V1

V2

V0

V0 V0

V0

V2 V2

V2

V1

V1

V1

V1

V0

Definition 15 Let S be defined as above. We define the extended tree E(T ) to be the
union of the extended faces E(s) in Esdk(Δm) for all s ∈ S. The edge-distance of
a vertex x in Esdk(Δm) from E(T ) will be denoted by distET (x).

In words, E(T ) it is the union of all vertices in parts of the boundary of Esdk(Δm)

that correspond to the faces of σ that are in the tree, see Fig. 5. The number distET (x)
is the distance to x from those boundary parts that correspond to faces of σ that are in
the tree.

To define a simplicialmap fromEsdk(τ ) to Xsc, we need to label vertices of Esdk(τ )

by vertices of Xsc such that the induced map takes simplices in Esdk(τ ) to simplices
in Xsc. Recall that V0, . . . , Vm are the vertices of σ . For x = (x0, . . . , xm), we denote
by argmax x the smallest index of a coordinate of x among those with maximal value
[for instance, argmax (4, 2, 1, 4, 0) = 0, as the first 4 is on position 0]. The geometric
meaning of Vargmax x is illustrated by Fig. 6.

Now we are ready to define the map f ′ : Esdk(τ ) → Xsc. It is defined on vertices
x with coordinates (x0, . . . , xm) by

f ′(x0, . . . , xm) := M(distET (x))(Vargmax x ). (11)
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R
V0

V2

V1

V0
V1

V2

V0 V0 V0 V0

V0

V0

V0

V0

V1

V1

V2

R R R R R R R R

R

R

R

R

R

R

R

V0
V0

V1

V1

V2

V2

V0

In the tree

In the tree

Tree in X

Fig. 7 Example of the labeling induced by formula (11). We assume that f (τ ) = σ̃ where σ is a simplex
of Xsc with three different vertices V0V1V2. In this example, the tree connects R − V0 − V1 as well as
R − V0 − V2 and the edge V1V2 is not in the tree. On the right, we give the induced labeling of vertices
of Esdk (τ ) which determines a simplicial map to Xsc . The bottom and left faces of σ are in the tree,
hence the bottom and left extended faces in Esdk (τ ) are all mapped into R. The right face of σ is the
edge V1V2 that is not in the tree: the corresponding right extended face in Esdk (τ ) is mapped to a loop
R − V0 − V1 − V2 − V0 − R, where V1V2 is the only part that is not in the tree. The bold edges are sent
to the edge V1V2. The most interior simplex in Esdk (τ ) is highlighted and is the only one mapped to σ

Geometrically, most vertices x will be simply mapped to Vj for which the j’th coor-
dinate of x is dominant. In particular, a unique m-simplex “most in the interior of
Esdk(τ )” with coordinates
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, . . . ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

j
j

. . .

j + 1
j + 1
. . .

j + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

j
j

. . .

j
j + 2
. . .

j + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

, . . . ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

j
j

. . .

j
j + 1
. . .

j + 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

(12)

for suitable j will be labeled by V0, V1, . . . , Vm ; in other words, it will be mapped to
σ .18

However, vertices x close to those boundary parts of Esdk(τ ) that correspond to
the tree-parts of σ , will be mapped closer to the root R and all the extended tree E(T )

will be mapped to R. One illustration is in Fig. 7.

8.3 Computational complexity

Assuming that we have a given encoding of Σ, f , X , Xsc and a choice of T and R,
defining a simplicial map f ′ : Esdk(Σ) → Xsc is equivalent to labeling vertices

18 If dim(τ ) = d is maximal, then j = l and this most-middle simplex has particularly nice coordinates
(l + 1, l, . . . , l), . . . , (l, . . . , l, l + 1).
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of Esdk(Σ) by vertices of Xsc. Clearly, the maximal tree-distance l of some vertex
depends only polynomially on the size of Xsc and can be computed in polynomial
time, as well as the maps M(0), . . . , M(l). Whenever j > l, we can use the formula
M( j) = id. Further, k = l(d+1)+1 is linear in l, assuming the dimension d is fixed. If
τ ∈ Σ is anm-simplex, then the number of vertices inEsdk(τ ) is polynomial19 in k, and
their coordinates can be computed in polynomial time. Finding the liftσ of f (τ ) = σ̃ is
at most a linear operation in size(Xsc)+ size(σ̃ ). Converting σ ∈ Xss into an ordered
sequence (V0, V1, . . . , Vm) amounts to computing its vertices d0d1 . . . d̂i . . . , dmσ ,
where di is omitted. Collecting information on faces of σ that are in the tree and the
set of vertices E(T ) is straight-forward: note that assuming fixed dimensions, there
are only constantly many faces of each simplex to be checked. If s = {i0, . . . , i j }
is a face, then the edge-distance of a vertex x from E(s) equals to

∑
u xiu . Applying

formula (11) to x requires to compute the edge-distance of x from E(T ): this equals
to the minimum of the edge-distances of x from E(s) for all faces s of σ that are in
the tree. Computing argmax x is a trivial operation. Finally, the number of simplices
τ of Σ is bounded by the size of Σ , so applying (11) to each vertex of Esdk(Σ) only
requires polynomially many steps in size(Σ, f , Xsc, T , X).

8.4 Correctness

What remains is to prove that formula (11) defines a well-defined simplicial map and
that |Esdk(Σ)| → |Xsc| → |X | is homotopic to |Σ | → |X |.
Lemma 19 The above algorithm determines a well-defined simplicial mapEsd(Σ) →
Xsc.

Proof First we claim that formula (11) defines a global labeling of vertices of Esdk(Σ)

by vertices of Xsc. For this we need to check that if τ ′ is a face of τ , then (11) maps
vertices of Esdk(τ ′) compatibly. This follows from the following facts, each of them
easily checkable:

– If τ ′ is spanned by vertices of τ corresponding to s ⊆ {0, . . . ,m}, then a vertex
x ′ := (x0, . . . , x j ) in Esdk(τ ′) has coordinates x in Esdk(τ ) equal to zero on
positions {0 . . . ,m}\s and to x0, . . . , x j on other positions, successively.

– If V ′
k := Vik for s = (i0, . . . , i j ) are the vertices of the corresponding face of σ ,

then

V ′
argmax x ′ = Vargmax x

– The extended tree E ′(T ) in Esdk(τ ′) equals the intersection of the extended tree
in Esdk(τ ) with E(τ ′)

– The distance distET (x ′) in Esdk(τ ′) equals distET (x) in Esdk(τ ).

Further, we need to show that this labeling defines a well-defined simplicial map,
that is, itmaps simplices to simplices.We claim that each simplex inEsdk(τ ) ismapped

19 Here the assumption on the fixed dimension d is crucial.
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either to some subset of {V0, . . . , Vm} or to some edge in the tree T , or to a single
vertex.

We will show the last claim by contradiction. Assume that some simplex is not
mapped to a subset of {V0, . . . , Vm}, and also it is not mapped to an edge of the tree
and notmapped to a single vertex. Then there exist two vertices x and y in this simplex
that are labeled by U and W in Xsc, such that either U or W is not in {V0, . . . , Vm},
UW is not in the tree, and U �= W .

The fact that at least one of {U ,W } does not belong to {V0 . . . , Vm}, implies that
distET (x) < l or distET (y) < l (as M( j) maps each Vargmax x to itself for j ≥ l).

Without loss of generality, assume that argmax x = 0 and argmax y = 1. Then
the coordinates of x and y are either

x = ( j + 1, j, x3, . . . , xm), y = ( j, j + 1, x3, . . . , xm)

such that xi ≤ j + 1 for all i ≥ 3, or

x = ( j, j, x3, . . . , xm), y = ( j − 1, j + 1, x3, . . . , xm)

for some j such that xi ≤ j for all i ≥ 3.
We claim that V0 �= V1 and that the edge V0V1 is not in the tree. This is because

there exists a tree-path from R viaU to V0 and also a tree-path from R viaW to V1 (and
U �= W ): both V0 = V1 as well as a tree-edge V0V1 would create a circle in the tree.
In coordinates, this means that vertices (∗, ∗, 0, 0, . . . , 0) are not contained in E(T ),
apart of (k, 0, 0, . . . , 0) and (0, k, 0, . . . , 0). So, any vertex in E(T ) has a zero on
either the zeroth or the first coordinate. This immediately implies that distET (x) ≥ j
and distET (y) ≥ j . Keeping in mind that coordinates of x (and y) has to sum up to
k = l(d + 1) + 1, the smallest possible value of j is j = l (if m = d is maximal),
in which case x = (l + 1, l, l, . . . , l) and y = (l, l + 1, . . . , l). This choice, however,
would contradict the fact that either distET (x) < l or distET (y) < l. Therefore
we have a strict inequality j > l. Finally, we derive a contradiction having either
distET (x) ≥ j > l > distET (x), or a similar inequality for y.

This completes the proof that each simplex is either mapped to a subset of
{V0, . . . , Vm} or to an edge in the tree or to a single vertex: the image is a simplex in
Xsc in either case. ��
Lemma 20 The geometric realizations of p f ′ : Esdk(Σ) → X and f : Σ → X are
homotopic.

Proof First we reduce the general case to the case when all maximal simplices in Σ

(wrt. inclusion) have the same dimension d. If this were not the case, we could enrich
any lower-dimensional maximal simplex τ = {x0, . . . , x j } ∈ Σ by new vertices
yτ
j+1, . . . , y

τ
d and produce a maximal d-simplex

τ̃ = {x0, . . . , x j , yτ
j+1, . . . , y

τ
d }.

Thus we produce a simplicial complex Σ̃ ⊇ Σ with the required property. When-
ever f (τ ) is mapped to σ̃ where σ = (V0, . . . , Vj ), we define f (τ̃ ) to be sd− j

j σ̃ ,
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a degenerate simplex with lift (V0, . . . , Vj , Vj , . . . , Vj ). The map f ′ : Σ̃ → Xsc is
constructed from f : Σ̃ → X as above and if we prove that | f | is homotopic to |p f ′|
as maps |Σ̃ | → |X |, it immediately follows that their restrictions are homotopic as
maps |Σ | → |X | as well.

Further, assume that all maximal simplices have dimension d. Let τ ∈ Σ be a d-
dimensional simplex and let τ int be the simplex in Esdk(τ ) spanned by the vertices

(l + 1, l, . . . , l), . . . , (l, . . . , l, l + 1),

that is, the simplex in the interior of τ that is mapped by p f ′ to σ̃ . Let Hτ (·, 1) :
|τ | → |τ | be a linear map that takes |τ | linearly to |τ int | via mapping the i’th vertex
to (l, . . . , l + 1, 1 . . . , l) where the l + 1 is on position i . Further, let Hτ be a linear
homotopy |τ | × [0, 1] → |τ | between the identity Hτ (·, 0) = id and Hτ (·, 1). The
composition |p f ′|Hτ then gives a homotopy |τ | × [0, 1] → |X | between the restric-
tions (|p f ′|)||τ | and (| f |)||τ |. For a general x ∈ |Σ |, there exists a maximal d-simplex
|τ | such that x ∈ |τ | and we define a homotopy

(x, t) �→ |p f ′|Hτ (x, t).

It remains to show that this map is independent on the choice of τ .
Let us denote the (ordered) vertices of τ by {v0, v1, . . . , vd} and let δ ⊆ τ be

one of its faces: further, let wi be the vertex of τ int with barycentric coordinates
(l, . . . , l, l + 1, l, . . . , l)/k in |τ | such that the l + 1 is in position i . The homotopy
Hτ sends points in |δ| onto the span of points wi for which vi ∈ δ. For y ∈ |δ|, the
j-th barycentric coordinate of Hτ (y, t) is equal to t (l/k) for each j /∈ δ. In particular,
the j-th coordinate of Hτ (y, t) is between 0 and l/k for j /∈ δ, and hence it is not the
“dominant” coordinate. It follows that each z := Hτ (x, t) is contained in the interior
of a unique simplex Δ of Esdk(τ ) such that vargmax x ∈ δ for all vertices x of Δ.

Let i0 < i1 · · · < ik be the indices with vi j ∈ δ, and j1 < · · · < jd−k be the
remaining indices. Let τ ′ = (v′

0, . . . , v
′
d) be another d-simplex containing δ as a face.

Assume, for simplicity, that the vertices of τ ′ are ordered so that vertices of δ have
orders i0, . . . , ik—such as it is in τ . Let σ, σ ′ be the lift of f (τ ), f (τ ′) respectively,
and Vi , V ′

i the i-th vertex of σ , σ ′ respectively.
We define a “mirror” map m : |τ | → |τ ′|, which to a point with barycentric coor-

dinates (x0, . . . , xd) with respect to τ assigns a point in |τ ′| with the same barycentric
coordinates with respect to τ ′. Clearly, Hτ ′(y, t) = m(Hτ (y, t)) for y ∈ |τ | and
whenever z is in the interior of a simplex Δ ∈ Esdk(τ ), then m(z) is in the interior
of m(Δ), where vertices of Δ and m(Δ) have the same barycentric coordinates with
respect to τ and τ ′, respectively. If, moreover,Δ is such that each of its vertices r have
coordinates ≤ l/k on positions j1, . . . , jd−k , then Vargmax r = V ′

argmaxm(r).

To summarize these properties, Hτ (y, t) and Hτ ′(y, t) satisfy that20

– they have the same coordinates wrt. τ , τ ′, respectively,

20 In general, vertices of δ may have different order in τ and τ ′ and the assumption on compatible ordering
was chosen only to increase readability. If i ′0 < · · · < i ′k are such that v′

i ′j
= vi j (orders of δ-vertices
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Fig. 8 The homotopy Hτ takes
y linearly into z and Hτ ′ takes y
into z′. Due to the symmetry
represented by the horizontal
line, |p f ′| maps Hτ (y, t) into
the same point of X as
|p f ′|Hτ ′ (y, t)

V0 V1

V2

V0 V0

V0

V0
V0

V0

V0

V1

W

yV1

V1

V1

V1

z

z′

– they are in the interior of simplices Δ ∈ Esdk(τ ), Δ′ ∈ Esdk(τ ′) whose vertices
have the same coordinates wrt. τ , τ ′, respectively,

– the argmax labeling induces the same labeling of vertices of Δ, Δ′ by vertices of
δ, respectively.

The map p f ′ takes each m-simplex Δ in Esdk(τ ) with vertices tu labeled by
Vargmax tu onto p(Vargmax t0 , . . . , Vargmax tm ) and it follows from the above proper-
ties that m(Δ) is mapped to the same simplex. We conclude that |p f ′|Hτ (y, t) =
|p f ′|Hτ ′(y, t) for each y ∈ |δ| and t ∈ [0, 1] (Fig. 8). ��
Acknowledgements Open access funding provided by Austrian Science Fund (FWF). We would like to
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Čadek, M., Krcál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Extending continuous maps: polynomiality

and undecidability. In: STOC, pp. 595–604 (2013a)
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