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Abstract

A central problem of algebraic topology is to understand the homotopy groups 7w ;(X)
of atopological space X . For the computational version of the problem, it is well known
that there is no algorithm to decide whether the fundamental group w1 (X) of a given
finite simplicial complex X is trivial. On the other hand, there are several algorithms
that, given a finite simplicial complex X that is simply connected (i.e., with m1(X)
trivial), compute the higher homotopy group 74 (X) for any given d > 2. However,
these algorithms come with a caveat: They compute the isomorphism type of 74 (X),
d > 2 asanabstract finitely generated abelian group given by generators and relations,
but they work with very implicit representations of the elements of 74 (X). Converting
elements of this abstract group into explicit geometric maps from the d-dimensional
sphere S to X has been one of the main unsolved problems in the emerging field of
computational homotopy theory. Here we present an algorithm that, given a simply
connected space X, computes 74 (X) and represents its elements as simplicial maps
from a suitable triangulation of the d-sphere S to X. For fixed d, the algorithm runs
in time exponential in size(X), the number of simplices of X. Moreover, we prove
that this is optimal: For every fixed d > 2, we construct a family of simply connected
spaces X such that for any simplicial map representing a generator of 7(X), the size
of the triangulation of S¢ on which the map is defined, is exponential in size(X).
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1 Introduction

One of the central concepts in topology are the homotopy groups ma(X) of a topo-
logical space X. Similar to the homology groups H,;(X), the homotopy groups 4 (X)
provide a mathematically precise way of measuring the “‘d-dimensional holes” in X,
but the latter are significantly more subtle and computationally much less tractable
than the former. Understanding homotopy groups has been one of the main challenges
propelling research in algebraic topology, with only partial results so far despite an
enormous effort (see, e.g., Ravenel 2004; Kochman 1990); the amazing complexity
of the problem is illustrated by the fact that even for the 2-dimensional sphere S, the
higher homotopy groups 74 (S?) are nontrivial for infinitely many d and known only
for a few dozen values of d.

For computational purposes, we consider spaces that have a combinatorial descrip-
tion as simplicial sets (or, alternatively, finite simplicial complexes) and maps between
them as simplicial maps.

A fundamental computational result about homotopy groups is negative: There is
no algorithm to decide whether the fundamental group w1(X) of a finite simplicial
complex X is trivial, i.e., whether every continuous map from the circle S' to X
can be continuously contracted to a point; this holds even if X is restricted to be
2-dimensional.'

On the other hand, given a space X that is simply connected (i.e., path connected
and with 71 (X) trivial) there are algorithms that compute the higher homotopy group
w4(X), for every given d > 2. The first such algorithm was given by Brown (1957),
and newer ones have been obtained as a part of general computational frameworks
in algebraic topology; in particular, an algorithm based on the methods of Sergeraert
(1994) and Rubio and Sergeraert (2002) was described by Real (1996).

More recently, Cadek et al. (2014b) proved that, for any fixed d, the homotopy group
m4(X) of a given 1-connected finite simplicial set can be computed in polynomial
time. On the negative side, computing 74 (X) is #P-hard if d is part of the input (Anick
1989; Cadek et al. 2013b) (and, moreover, W[1]-hard with respect to the parameter
d Matousek 2014), even if X is restricted to be 4-dimensional. These results form
part of a general effort to understand the computational complexity of topological
questions concerning the classification of maps up to homotopy (Cadek et al. 2013a, b,
2014a; Filakovsky and Vokiinek 2013) and related questions, such as the embeddability
problem for simplicial complexes (a higher-dimensional analogue of graph planarity)
(Matousek et al. 2011, 2014; Cadek et al. 2017).

1.1 Our results: representing homotopy classes by explicit maps

By definition, elements of 74 (X) are equivalence classes of continuous maps from
the d-dimensional sphere S¢ to X, with maps being considered equivalent (or lying

1 This follows via a standard reduction from a result of Adyan (1955) and Rabin (1958) on the algorithmic
unsolvability of the triviality problem of a group given in terms of generators and relations; we refer to the
survey Soare (2004) for further background.
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in the same homotopy class) if they are homotopic, i.e. if they can be continuously
deformed into one another (see Sect. 3 for more details).

The algorithms of Brown (1957) or Cadek et al. (2014b) mentioned above compute
74(X) as an abstract abelian group, in terms of generators and relations.> However,
they work with very implicit representations of the elements of 7;(X).

On the other hand, assuming that X is finite, O-reduced and (d — 1) connected,
Berger (1991, 1995) presented an algorithm that computes generators of m;(X) as
explicit simplicial maps.

Combining this algorithm with an algorithmic construction of the Whitehead tower,
we managed to drop the condition on the connectivity and obtained the main result
of this paper: an algorithm that, given an element « of 74(X), computes a suitable
triangulation X of the sphere S and an explicit simplicial map ¢ — X representing
the given homotopy class «.

Apart from the intrinsic importance of homotopy groups, we see this as a step
towards the more general goal of computing explicit maps with specific topological
properties; instances of this goal include computing explicit representatives of homo-
topy classes of maps between more general spaces X and Y (a problem raised in Cadek
etal. 2014a) as well as computing an explicit embedding of a given simplicial complex
into RY (as opposed to deciding embeddability). Moreover, these questions are also
closely related to quantitative questions in homotopy theory (Gromov 1999) and in
the theory of embeddings (Freedman and Krushkal 2014). See Sect. 1.2 for a more
detailed discussion of these questions.

Throughout this paper, we assume that the input X is simply connected, i.e., that it is
connected and has trivial fundamental group 771 (X). For the purpose of the exposition,
we will assume that X is given as a 1-reduced simplicial set, encoded as a list of its
nondegenerate simplices and boundary operators given via finite tables. We remark
that the class of 1-reduced simplicial sets contains standard models of 1-connected
topological spaces, such as spheres or complex projective spaces. A more general
version of the theorem that also includes simply connected simplicial complexes is
discussed in Sect. 4.

Theorem A There exists an algorithm that, given d > 2 and a finite 1-reduced sim-
plicial set X, computes a set of generators g1, ..., gk of wq(X) as simplicial maps
2.;1 — X, for suitable triangulations qui ode, j=1,...,k

For fixed d, the time complexity is exponential in the size (number of simplices) of
X; more precisely, it is O (2 $2X))) yyhere P = Py is a polynomial depending only
ond.

Any element of 7;(X) can be expressed as a sum of generators, and expressing
the sum of two explicit maps from spheres into X as another explicit map is a simple
operation. Hence, the algorithm in Theorem A can convert any element of 7;(X) into
an explicit simplicial map.

Theorem A also has the following quantitative consequence: Fix some standard
triangulation ¥ of the sphere S¢, e.g., as the boundary of a d + 1-simplex. By the
classical Simplicial Approximation Theorem (Hatcher 2001, 2.C), for any continuous

2 That is, they compute integers r, g1, . . ., gk such that 774 (X) is isomorphic to Z" ® Zg, @ - -- @ Zg; .
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map f: S — X, there is a subdivision ¥’ of ¥ and a simplicial map f': ¥’ — X
that is homotopic to f. Theorem A implies that if f represents a generator of 75 (X),
then the size of X’ can be bounded by an exponential function of the number of
simplices of X.

Furthermore, we can show that the exponential dependence on the number of sim-
plices in X is inevitable:

TheoremB Let d > 2 be fixed. Then there is an infinite family of d-dimensional
0-reduced 1-connected simplicial sets X such that for any simplicial map ¥ — X
representing a generator of w4(X), the triangulation X of ¢ on which f is defined
has size at least 252 612e(X)) Ifd > 3, we may even assume that X are 1-reduced.
Consequently, any algorithm for computing simplicial representatives of the gener-
ators of wy(X) for 1-reduced simplicial set X has time complexity at least 25 $12¢(X)),

In Sects. 4 and 5, we state and prove generalizations of Theorems A and B denoted as
Theorems A.1 and B.1 . They remove the assumption that X is 1-reduced and replace
it by a more flexible certificate of simply connectedness, allowing the input space X
to be a more flexible simplicial set or simplicial complex.

This reduction from simplicial sets to simplicial complexes is achieved using a tech-
nical result we formulate later in the text as Lemma 6. The main ideas of this Lemma
can be summarized as follows. For a finite simplicial complex X*¢ endowed with a cer-
tificate of 1-connectedness, we choose a spanning tree 7 and contract it into a point,
creating a O-reduced simplicial set X = X*¢/T. The certificate of 1-connectedness
transfers to X and generalizes the 1-reduceness assumption in Theorem A. Once
we compute a homotopy representative X — X, we then convert it to an equiva-
lent map Sd(X) — X°¢ where Sd is a suitable subdivision functor, see Sect. 8 for
details.

1.1.1 Source of the exponential

Letus briefly discuss the source of the exponential time complexity bound: Given the X
as an input in Theorem A, the algorithm computes a set of generators of 7;(X). These
have an algebraic representation as elements of a simplicial group G. In particular,
a generator g € G of my has aform g = yla '.. .y where the elements y; are some
agreed upon generators of G. The size of the exponents «; is considered in a standard
way (i.e. number of bits). All steps are polynomial up to this point.

The exponential blowup happens, when we assign a simplicial model of a sphere
tog =y, - ya". The resulting sphere will contain ~ )", |e; | number of distinct
d-simplices. This number can be large (even though its bit-size is polynomial). Hence,
just outputting all these simplices could have exponential-time complexity in the input.
In Theorem B, we show that this blowup really happens.

We remark that, in the boundary case of 1-reduced simplicial sets for d = 2 (outside
the scope of Theorem B), we don’t know whether the lower complexity bound is sub-
exponential or not. However, we can show that the algorithm from Theorem A is
optimal in that case as well, see a discussion in Sect. 5.
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1.2 Related and future work
1.2.1 Computational homotopy theory and applications

This paper falls into the broader area of computational topology, which has been a
rapidly developing area (see, for instance, the textbooks Edelsbrunner and Harer 2010;
Zomorodian 2005; Matveev 2007); more specifically, as mentioned above, this work
forms part of a general effort to understand the computational complexity of prob-
lems in homotopy theory, both because of the intrinsic importance of these problems
in topology and because of applications in other areas, e.g., to algorithmic questions
regarding embeddability of simplicial complexes (Matougek et al. 2011; Cadek et al.
2017), to questions in topological combinatorics (see, e.g., Mabillard and Wagner
2016), or to the robust satisfiability of equations (Franek and Krcal 2015).

A central theme in topology is to understand the set [ X, Y] of all homotopy classes
of maps from a space X to a space Y. In many cases of interest, this set carries addi-
tional structure, e.g., an abelian group structure, as in the case wy(X) = [Sd, X] of
higher homotopy groups that are the focus of the present paper.

Homotopy-theoretic questions have been at the heart of the development of alge-
braic topology since the 1940’s. In the 1990s, three independent groups of researchers
proposed general frameworks to make various more advanced methods of algebraic
topology (such as spectral sequences) effective (algorithmic): Schon (1991), Smith
(1998), and Sergeraert, Rubio, Dousson, Romero, and coworkers (e.g., Sergeraert
1994; Rubio and Sergeraert 2002, 2005; Romero et al. 2006; also see Rubio and
Sergeraert 2012 for an exposition). These frameworks yielded general computability
results for homotopy-theoretic questions (including new algorithms for the computa-
tion of higher homotopy groups Real 1996), and in the case of Sergeraert et al., also a
practical implementation in form of the Kenzo software package (Heras et al. 2011).

Building on the framework of objects with effective homology by Sergeraert et
al., in recent years a variety of new results in computational homotopy theory were
obtained (Cadek et al. 2013b, 2014a,b, 2017; Krcal et al. 2013; Vokiinek 2017;
Filakovsky and Vokiinek 2013; Romero and Sergeraert 2012, 2016), including,
in some cases, the first polynomial-time algorithms, by using a refined frame-
work of objects with polynomial-time homology (Kr&l et al. 2013; Cadek et al.
2014b) that allows for a computational complexity analysis. For an introduction
to this area from a theoretical computer science perspective and an overview
of some of these results, see, e.g., Cadek et al. (2013a) and the references
therein.

1.2.2 Explicit maps
As mentioned above, the above algorithms often work with rather implicit represen-

tations of the homotopy classes in 774 (X) (or, more generally, in [X, Y]) but does not
yields explicit maps representing these homotopy classes.
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For instance, the algorithm in Real (1996) computes 4 (X) as the homology group
H,(F) of an auxiliary space F = F4(X) constructed from X in such a way that 7z (X)
and Hy(F) are isomorphic as groups.>

More recently, Romero and Sergeraert (2016) devised an algorithm that, given a
1-reduced (and hence simply connected) simplicial set X and d > 2, computes the
homotopy group 4 (X) as the homotopy group 74 (K ) of an auxiliary simplicial set K
(a so-called Kan completion of X) with m4(X) = 7y (K). Moreover, given an element
of this group, the algorithm can compute an explicit simplicial map ¥¢ — K from a
suitable triangulation of S¢ to K representing the given homotopy class. In this way,
homotopy classes are represented by explicit maps, but as maps to the auxiliary space
K, which is homotopy equivalent to but not homeomorphic to the given space X.

By contrast, our general goal is to is represent homotopy classes by maps into the
given space; in the present paper, we treat, as an important first instance, the case
7a(X) = [S9, X].

1.2.3 Open problems and future work

Our next goal is to extend the results here to the setting of Cadek et al. (2014a), i.e.,
to represent, more generally, homotopy classes in [ X, Y] by explicit simplicial maps
from some suitable subdivision X’ to Y (under suitable assumptions that allow us to
compute [X, Y]).4

In a subsequent step, we hope to generalize this further to the equivariant setting
[X, Y] of Cadek et al. (2017), in which a finite group G of symmetries acts on
the spaces X, Y and all maps and homotopies are required to be equivariant, i.e., to
preserve the symmetries.

As mentioned above, one motivation is the problem of algorithmically constructing
embeddings of simplicial complexes into R?. Indeed, in a suitable range of dimensions
d > W), the existence of an embedding of a finite k-dimensional simplicial
complex K into RY is equivalent to the existence of an Z,-equivariant map from an
auxiliary complex K (the deleted product) into the sphere S, by a classical theorem
of Haefliger (1962) and Weber (1967). The proof of the Haefliger—Weber Theorem is,
in principle, constructive, but in order to turn this construction into an algorithm to
compute an embedding, one needs an explicit equivariant map into the sphere $¢~!.

1.2.4 Quantitative homotopy theory

Another motivation for representing homotopy classes by simplicial maps and com-
plexity bounds for such algorithms is the connection to quantitative questions in
homotopy theory (Gromov 1999; Ferry and Weinberger 2013) and in the theory of
embeddings (Freedman and Krushkal 2014). Given a suitable measure of complexity

3 Similarly, the algorithm in Cadek et al. (2014b) constructs an auxiliary chain complex C such that 774 (X)
is isomorphic to the homology group H;41(C) and computes the latter.

4 Similarly as before, the algorithm in Cadek et al. (2014a) computes [X, Y] as the set [X, P] for some
auxiliary space P (a stage of a Postnikov system for Y) and represents the elements of [X, Y] = [X, P] as
maps from X to P, but not as maps to Y.
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for the maps in question, typical questions are: What is the relation between the com-
plexity of a given null-homotopic map f : X — Y and the minimum complexity of a
nullhomotopy witnessing this? What is the minimum complexity of an embedding of
a simplicial complex K into R¢? In quantitative homotopy theory, complexity is often
quantified by assuming that the spaces are metric spaces and by considering Lipschitz
constants (which are closely related to the sizes of the simplicial representatives of
maps and homotopies Ferry and Weinberger 2013). For embeddings, the connection is
even more direct: a typical measure is the smallest number of simplices in a subdivision
K’ or K such that there exists a simplexwise linear-embedding K’ < R?.

1.3 Structure of the paper

The remainder of the paper is structured as follows: In Sect. 2, we give a high-level
description of the main ingredients of the algorithm from Theorem A. In Sect. 3, we
review a number of necessary technical definitions regarding simplicial sets and the
frameworks of effective and polynomial-time homology, in particular Kan’s simplicial
version of loop spaces and polynomial-time loop contractions for infinite simplicial
sets. In Sect. 4, we formally describe the algorithm from Theorem A and give a high
level proof based on a number of lemmas which are proved in in subsequent chapters.
Section 5 contains the proof of Theorem B. The rest of the paper contains several
technical parts needed for the proof of Theorem A: in Sect. 6, we describe Berger’s
effective Hurewicz inverse and analyze its running time (Theorem 1), in Sect. 7, we
prove that the stages of the Whitehead tower have polynomial-time contractible loops
(Lemma 4). Finally, in Sect. 8, we show how to reduce the case when the input is
a simplicial complex X*¢ to the case of an associated simplicial set X and convert
amap ¥ — X into a map from a subdivision Sd(X') into X*“ (Lemma 6).

2 Outline of the algorithm

In this section we present a high-level description of the main steps and ingredients
involved in the algorithm from Theorem A.

2.1 The algorithm in a nutshell

1. In the simplest case when the space X is (d — 1)-connected (i.e., 7; (X) = 0 for
alli < d — 1), the classical Hurewicz Theorem (Hatcher 2001, Sect. 4.2) yields
an isomorphism 77(X) = H;(X) between the dth homotopy group and the dth
homology group of X. Computing generators of the homology group is known to
be a computationally easy task (it amounts to solving a linear system of equations
over the integers). The key is then converting the homology generators into the
corresponding homotopy generators, i.e., to compute an inverse of the Hurewicz
isomorphism. This was described in the work of Berger (1991, 1995). We analyze
the complexity of Berger’s algorithm in detail and show that it runs in exponential
time in the size of X (assuming that the dimension d is fixed).
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2. For the general case, we construct an auxiliary simplicial set Fy together with
a simplicial map ¥4 : F; — X that has the following properties:

— Fy is a simplicial set that is d — 1 connected, and
— Y4 Fg — X induces an isomorphism v, : w4 (Fg) — mq(X).

Our construction of Fy is based on computing stages of the Whitehead tower’

of X (Hatcher 2001, p. 356); this is similar to Real’s algorithm, which computes
mq(X) as Hy(Fy) as an abstract abelian group.

The overall strategy is to use Berger’s algorithm on the space F; and compute
generators of 74(Fy) as simplicial maps. Then we use the simplicial map ¥4 to
convert each generator of 74(F,) into a map ¥¢ — X, and these maps generate
74(X). The main technical task for this step is to show that Berger’s algorithm
can be applied to F,. For this, we need to construct a polynomial algorithm for
explicit contractions of loops in Fy (this space is 1-connected but not 1-reduced
in general).

2.2 Our contributions

The main ingredients of the algorithm outlined above are the computability of stages of
the Whitehead tower (Real 1996) as simplicial sets with polynomial-time homology
and Berger’s algorithmization of the inverse Hurewicz isomorphism (Berger 1991,
1995).

The idea that these two tools can be combined to compute explicit representatives
of my(X) is rather natural and is also mentioned, for the special case of 1-reduced
simplicial sets, in Romero and Sergeraert (2016, p. 3); however, there are a number
of technical challenges to overcome in order to carry out this program. On a technical
level, our main contributions are as follows:

— We give a complexity analysis of Berger’s algorithm to compute the inverse of the
Hurewicz isomorphism (Theorem 1).

— We show that the homology generators of the Whitehead stage F,; can be computed
in polynomial time (Lemma 3).

— Berger’s algorithm requires an explicit algorithm for loop contraction—a certifi-
cate of 1-connectedness of the space F;. While Fy is not 1-reduced in general,
we describe an explicit algorithm for contracting its loop and show that Berger’s
algorithm can be applied.

We remark that the Whitehead tower stages are simplicial sets with infinitely many
simplices, and we need the machinery of objects with polynomial-time homology to
carry out the last two steps.

5 The Whitehead tower can is a “dual” construction to the Postnikov tower, beginning with the space X
and gradually eliminating the homotopy groups “’form the bottom”. For the readers familiar with Moore—
Postnikov towers (or relative Postnikov towers), the Whitehead tower is the Moore—Postnikov tower for
* — X, see e.g. Goerss and Jardine (1999), Def. 1V, 2.9.
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3 Definitions and preliminaries

In this section, we give the necessary technical definitions that will be used throughout
this paper. In the first part, we recall the standard definitions for simplicial sets and
the toolbox of effective homology.

Afterwards, we present Kan’s definition of a loop space and further formalize our
definition of (polynomial-time) loop contractions.

3.1 Simplicial sets and polynomial-time effective homology
3.1.1 Simplicial sets and their computer representation
A simplicial set X is a graded set X indexed by the non-negative integers together with

a collection of mappings d; : X, — X,—1 ands;: X;, > X,+1, 0 <i < n called the
face and degeneracy operators. They satisfy the following identities:

did; Zdj_ld,' fori < j,
dis; = P18 = id for0 <i <n,
disj = sjdi_1 fori > j+ 1,
disj =sj_1d; fori < j,
SiSj = Sj418i fori < j.

More details on simplicial sets and the motivation behind these formulas can be found
in May (1992) and Goerss and Jardine (1999).

Simplicial maps between simplicial sets are maps of graded sets which commute
with the face and degeneracy operators. The elements of X, are called n-simplices. We
say that a simplex x € X, is (non-)degenerate if it can(not) be expressed as x = s;y
for some y € X, _1. If a simplicial set X is also a graded (Abelian) group and face
and degeneracy operators are group homomorphisms, we say that X is a simplicial
(Abelian) group.

A simplicial set is called k-reduced for k > 0 if it has a single i-simplex for each
i <k

For a simplicial set X, we define the chain complex C.(X) to be a free Abelian
group generated by the elements of X, with differential

n

3(c) = ) (=D'di(0).

i=0

A simplicial set is locally effective if its simplices have a specified finite encoding
and algorithms are given that compute the face and degeneracy operators. A simplicial
map f between locally effective simplicial sets X and Y is locally effective if an
algorithm is given that for the encoding of any given x € X computes the encoding
of f(x) eY.

We define a simplicial set to be finite if it has finitely many non-degenerate simplices.
Such simplicial set can be algorithmically represented in the following way. The
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encoding of non-degenerate simplices can be given via a finite list and the encoding
of a degenerate simplex s;, ...s; y fori; <i» < --. < iy and a non-degenerate y can
be assumed to be a pair consisting of the sequence (i, . .., i) and the encoding of y.
The face operators are fully described by their action on non-degenerate simplices and
can be given via finite tables. In this way, any simplicial set with finitely many non-
degenerate simplices is naturally locally effective. Any choice of an implementation
of the encoding and face operators is called a representation of the simplicial set. The
size of a representation is the overall memory space one needs to store the data which
represent the simplicial set.

3.1.2 Geometric realization

To each simplicial set X we assign a topological space | X| called its geometric real-
ization. The construction is similar to that of simplicial complexes. Let A; be the
geometric realization of a standard j-simplex for each j > 0. For each k, we define
D; : Ax—1 < A to be the inclusion of a (k — 1)-simplex into the i’th face of a k-
simplex and S; : Ay — Aj_1 be the geometric realization of a simplicial map that
sends the vertices (0, 1, ..., k) of Ay to the vertices (0, 1, ...,i,i,i+1,...,k—1).
The geometric realization | X| is then defined to be a disjoint union of all simplices X
factored by the relation ~

1X| = <|_| X, xA,,)/~

n=0

where ~ is the equivalence relation generated by the relations (x, D;(p)) ~ (d;(x), p)
forx € X,,+1, p € A, andtherelations (x, S;(p)) ~ (si(x), p)forx € X,—1,p € A,.

Similarly, a simplicial map between simplicial complexes naturally induces a con-
tinuous map between their geometric realizations.

3.1.3 Simplicial complexes and simplicial sets

In any simplicial complex X*¢, we can choose an ordering of vertices and define
a simplicial sets X** that consists of all non-decrasing sequences of points in X*¢: the
dimension of (Vy, ..., V) equals d. The face operator is d; omits the i ’th coordinate
and the degeneracy s; doubles the j’th coordinate. Moreover, choosing a maximal
tree T in the 1-skeleton of X enables us to construct a simplicial set X := X**/T in
which all vertices and edges in the tree, as well as their degeneracies, are considered
to be a base-point (or its degeneracies). The geometric realizations of X*“ and X are
homotopy equivalent and X is O-reduced, i.e. it has one vertex only.

3.1.4 Homotopy groups

Let (X, xo) be a pointed topological space. The k-th homotopy group 7 (X, x9) of
(X, xo) is defined as the set of pointed homotopy® classes of pointed continuous

6 A homotopy F : Skx1— Xis pointed if F(x, 1) = xo forallz € I.
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maps (Sk , %) — (X, x9), where * € Skisa distinguished point. In particular, the O-th
homotopy group has one element for each path connected component of X. Fork = 1,
m1(X, xo) is the fundamental group of X, once we endow it with the group operation
that concatenates loops starting and ending in x¢. The group operation on 7y (X, x¢) for

k > 1 assigns to [ f1, [g] the homotopy class of the composition S L skv sk 'f—v>g X
where 7 factors an equatorial (k — 1)-sphere containing x( into a point. Homotopy
groups 71y are commutative for k > 1.

If the choice of base-points is understood from the context or unimportant, we will
use the shorter notation 7 (X). For a simplicial set X, we will use the notation x (X)
for the k’th homotopy group of its geometric realization | X|.

An important tool for computing homotopy groups is the Hurewicz theorem. It says
that whenever X is (d — 1)-connected, then there is an isomorphism 74 (X) — Hy(X).
Moreover, if the element of 777 (X ) is represented by a simplicial map f : ¥¢ — X and
> j k jo j represents ahomology generator of Hy (X ), then the Hurewicz isomorphism
maps [ f] to the homology class of the formal sum ) j kj f(oj) of d-simplices in X.

3.1.5 Effective homology

We call a chain complex C, locally effective if the elements ¢ € C, have finite (agreed
upon) encoding and there are algorithms computing the addition, zero, inverse and
differential for the elements of C,.

A locally effective chain complex C, is called effective if there is an algorithm that
for givenn € N generates a finite basis ¢, € C, and an algorithm that for every ¢ € C,
outputs the unique decomposition of ¢ into a linear combination of ¢4 ’s.

Let C, and D, be chain complexes. A reduction C, = D, is atriple (f, g, h) of
maps such that f : C, — Dy and g : Dy, — C, are chain homomorphisms, z : C,, —
C, has degree 1, fg =id and fg —id = hd + 0h, and further hh = hg = fh = 0.

A locally effective chain complex C, has effective homology (C is a chain complex
with effective homology) if there is a locally effective chain complex C,., reductions
C. «= Cy =» CS where C is an effective chain complex, and all the reduction
maps are computable.

3.1.6 Eilenberg—MacLane spaces

Let d > 1 and 7 be an Abelian group. An Eilenberg—MacLane space K (, d) is
a topological space with the properties 74 (K (77, d)) >~ 7 and 7; (K (7, d)) = 0 for
0 < j # d. It can be shown that such space K (i, d) exists and, under certain natural
restrictions, has a unique homotopy type. If 7 is finitely generated, then K (7, d) has
a locally effective simplicial model (Kr¢dl et al. 2013).

3.1.7 Globally polynomial-time homology and related notions
In many auxiliary steps of the algorithm, we will construct various spaces and maps.

To analyze the overall time complexity, we need to parametrize all these objects by
the very initial input, which is in our case an encoding of a finite 1-reduced simplicial

@ Springer



188 M. Filakovsky et al.

set (or, in Theorem A.1, a more general space endowed with certain explicit certificate
of 1-connectedness).

More generally, let Z be a parameter set so that for each I € 7 an integer size([) is
defined. We say that F is a parametrized simplicial set (group, chain group, ...) if for
each / € Z,alocally effective simplicial set (group, chain group, ...) F (/) is given. The
simplicial set F is locally polynomial-time if there exists a locally effective model of
F(I) such that for each k € N and an encoding of a k-simplex x € F (1), the encoding
of d; (x) and s (x) can be computed in time polynomial in size(enc(x)) +size(/). The
polynomial, however, may depend on k. A polynomial-time map between parametrized
simplicial sets F and G is an algorithm that for each k € N, / € 7 and an encoding
of an k-simplex x in F(I) computes the encoding of f(x) in time polynomial in
size(enc(x)) + size(/): again, the polynomial may depend on k.

Similarly, alocally polynomial-time (parametrized) chain complex is an assignment
of a computer representation C, (/) of a chain complex with a distinguished basis in
each gradation, such that all these basis elements have some agreed-upon encoding.
A chain ) ; kjo; is assumed to be represented as a list of pairs (k;, enc(o;)); and has
size ) i (size(k;) + size(enc(o;))), where we assume that the size of an integer k;
is its bit-size. Further, an algorithm is given that computes the differential of a chain
z € Cr(I) in time polynomial in size(z) + size(I), the polynomial depending on k.
The notion of a polynomial-time chain map is straight-forward.

A globally polynomial-time chain complex is a locally polynomial-time chain
complex EC that in addition has all chain groups EC(I); finitely generated and
an additional algorithm is given that for each k computes the encoding of the gen-
erators of EC(I), in time polynomial in size(7). Finally, we define a simplicial set
with globally polynomial-time homology to be a locally polynomial-time parametrized
simplicial set F together with reductions C,(F) «= C = EC where C, EC are
locally polynomial-time chain complexes, EC is a globally polynomial-time chain
complex and the reduction data are all polynomial-time maps, as usual the polynomi-
als depending on the grading k.

The name “polynomial-time homology” is motivated by the following:

Lemma 1 Let F be a parametrized simplicial set with polynomial-time homology and
k > 0 be fixed. Then all generators of Hy(F (1)) can be computed in time polynomial
in size(1).

Proof For the globally polynomial-time chain complex E F and each fixed j, we can
compute the matrix of the differentials d; : EF(I); — EF(I);—1 with respect to the
distinguished bases in time polynomial in size(/): we just evaluate dj on each element
of the distinguished basis of E F (). Then the homology generators of Hy(EC) can
be computed using a Smith normal form algorithm applied to the matrices of di and
di+1, as is explained in standard textbooks (such as Munkres 1984). Polynomial-time
algorithms for the Smith normal form are nontrivial but known (Kannan and Bachem
1981).
Let x1, ..., x;; be the cycles generating Hy (E F(I)). We assume that reductions

C.(F) Y& £ V&M g

@ Springer



Computing simplicial representatives of homotopy group elements 189

are given and all the reduction maps are polynomial. Thus we can compute the chains

f8'(xn), f8'(x2), ..., f&' (xm)

in polynomial time and it is a matter of elementary computation to verify that they
constitute a set of homology generators for Hy (F (1)). O

3.2 Loop spaces and polynomial-time loop contraction
3.2.1 Principal bundles and loop group complexes

In the text we will frequently deal with principal twisted Cartesian products: these are
simplicial analogues of principal fiber bundles. The definitions in this section come
from Kan’s article (Kan 1958b).

We first define the Cartesian product X x Y of simplicial sets X, Y: The set of
n-simplices (X x Y), consists of tuples (x, y), where x € X,,,x € Y,. The face
and degeneracy operators on X x Y are given by d;(x, y) = (dix, d;y), si(x,y) =
(six,siy).

Definition 1 (Principal Twisted Cartesian product) Let B be a simplicial set with a
basepoint by € By and G be a simplicial group. We call a graded map (of degree —1)
T: By+1 — Gp,n > 0 atwisting operator if the following conditions are satisfied:

= dyt(b) = T(dy41b) T (dyb)

—dit(b) =t(dib)for0 <i <n

— s5;t(b) = t(s;b),i < n,and

— t(syb) = 1, for all b € B,, where 1,, is the unit element of G,,.
Let B, G, t be as above. We will define a twisted Cartesian product B x, G to be
a simplicial set E with E,, = B,, x G,, and the face and degeneracy operators are also
as in the Cartesian product, i.e. d; (b, g) = (d; b, d; g) , with the sole exception of d,,,
which is given by

dn (b, g) = (dnb, T(D)dn(g)), (b, g8) € By X Gy.

It is not trivial to see why this should be the right way of representing fiber bundles
simplicially, but for us, it is only important that it works, and we will have explicit
formulas available for the twisting operator for all the specific applications.

We remark that in the literature one can find multiple definitions of twisted operator
and twisted product (May 1992; Kan 1958b; Berger 1991) and that they, in essence
differ from each other based on the decision whether the twisting “compresses” the
first two or the last two face operators. Here, we follow the same notation as in Berger
(1991).

3.2.2 Dwyer-Kan loop group construction

A simplicial set X can be viewed as a discrete description of a topological space | X|.
It is natural to ask whether one can give a discrete description of a loop space of | X|.
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It turns out there are multiple models that can be used. Here, we describe the Dwyer—
Kan’s G-construction (Kan 1958b) and later in Sect. 6, we present another model
which is due to Berger (1991). Before the formal definition, we give some geometric
intuition

For any n > 0 one can define a graph where X, is the set of edges and X
is the set of vertices with source and target operators s, t: X,+1 — Xo, defined by
s(0) = (dp)"*'o and 1 (o) = d,+1(do)" o . Further a relation 1 = s,0 is added.

In short, any simplex o € X, is an (n-dimensional) edge which goes from its
second-to-last vertex to its last vertex and the simplex degenerate along this edge is
considered a trivial path.

The Dwyer—Kan loop groupoid G X is defined as a free simplicial groupoid (e.g.
paths) on the graph described above. In the case X is a O-reduced simplicial set, the
paths all begin and end in the only vertex, making them loops and the space GX can
defined as follows:

Definition 2 Let X be a 0-reduced simplicial set. Then we define GX to be a (non-
commutative) simplicial group such that

— GX,, has a generator o for each (n + 1)-simplex 0 € X and a relation 5,y = 1
for each simplex in the image of the last degeneracy s,,.

— The face operators are given by d;jo = dio fori < nand d,5 = (d,,_Ha)_ldn_a

— The degeneracy operators are s;0 = 5;0.

We use the multiplicative notation, with 1 being the neutral element. For the proof that
G X isindeed a discrete simplicial analog of the loop space of X, see Kan (1958b) and
May (1992).

For algorithmic puroposes, we assume that an elements ]_[j El;j of GX is repre-
sented as a list of pairs (07}, k;) and has size Zj size(o ) + size(k;).

Definition 3 Let X be a 0-reduced simplicial set. We say thatamap cg : GX9 — GX
is a contraction of loops in X if dyco(x) = x and djco(x) = 1 for each x € G Xy.

In case where X has finitely many nondegenerate 1-simplices, we define the size
size(cp) to be the sum

> size(co(y)).

YEX|

3.2.3 Loop contraction for simplicial complexes

Let X*¢ be a simplicial complex. Let T be a spanning tree in the 1-skeleton of X*¢
and R a chosen vertex. For each oriented edge e = (vjvy) we define a formal inverse
to be e~ := (vov;) and we also consider degenerate edges (v, v). A loop is defined
as a sequence ey, ..., e; of oriented edges in X*¢ such that

— The end vertex of e¢; equals the initial vertex of e; 1, and
— The initial vertex of e; and the end vertex of e; equal R.
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Fig. 1 The loop ranging over the boundary of this geometric shape equals «, after ignoring edges in the
maximal tree and canceling pairs (e, e~1). The interior of the triangles gives rise to a contraction

Every edge e that is not contained in 7' gives rise to a unique loop /.. Further, every loop
in X¥¢ is either a concatenation of such /,.’s, or can be derived from such concatenation
by inserting and deleting consecutive pairs (e, e~!) and degenerate edges. Before we
formally define our combinatorial version of loop contraction, we need the following
definition.

Definition4 Let S be aset, U € S, F(S) and F(U) be free groups generated by S,
U, respectively.7 Lethy : F(S) — F(S) be a homomorphism that sends each u € U
to 1 and each s € S\U to itself. We say that an element x of F(S) equals y modulo
Uithykx) =y.

An example of an element that is trivial modulo U is the word s u s~ wheres € S
andu € U.

Definition 5 Let S be the set of all oriented edges and oriented degenerate edges in
X*¢ and assume that a spanning tree 7" is chosen. Let U be the set of all oriented
edges in 7', including all degenerate edges. A contraction of an edge « is a sequence
of vertices Ag, Ay, ..., Ag and By, ..., By such that

— foreachi, {A;, Ajt1, Bi+1} is a simplex of X*¢, and
— the element of F ()
(ApB1)(B1A1)(A1B2)(B2A2) ... (BsAg)(AsAs—1)(Ag—1A5-2) ... (A1 Ap) (1)

equals @ modulo U.

A loop contraction in a simplicial complex is the choice of a contraction of « for
each edge o € X*°\T.

The size of the contraction of « is defined to be the number of vertices in (1) and the
size size(c) of the loop contraction on X*¢ is the sum of the sizes over all « € X5°\T.

The geometry behind this definition is displayed in Fig. 1. The sequence of A;’s and
Bj’s gives rise to a map from the sequence of (full) triangles into X*“. The big loop
around the boundary is combinatorially described by (1). We can continuously contract

7 Formally, elements of F(S) are sequences of symbols s€ for € € {1, —1} and s € S with the relation

sls~1 =1, where 1 represents the empty sequence. The group operation is concatenation.
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all of its parts that are in the tree 7' to a chosen basepoint, as the tree is contractible.
Further, we can continuously contract all pairs of edges (e, e~!) and what remains
is the original edge «: with all the tree contracted to a point, it will be transformed
into a loop that geometrically corresponds to /. The interior of the full triangles then
constitutes its “filler”, hence a certificate of the contractibility of /.

A loop contraction in the sense of Definition 1 exists iff the space X*¢ is simply
connected. One could choose different notions of loop contraction. For instance, we
could provide, for each «, a simplicial map from a triangulated 2-disc into X*¢ such that
the oriented boundary of the disc would be mapped exactly to /. The description from
Definition 5 could easily be converted into such map. We chose the current definition
because of its canonical and algebraic nature. The connection between Definitions 3
and 5 is the content of the following lemma.

Lemma 2 Let X*¢ be a 1-connected simplicial complex with a chosen orientation of all
simplices, X** the induced simplicial set, T a maximal tree in X°¢, and X .= X*%/T
the corresponding 0-reduced simplicial set. Assume that a loop contraction in the
simplicial complex X°¢ is given, such as described in Definition 5. Then we can
algorithmically compute co(a) € G X such that dyco() = o and dico(a) = 1, for
every generator o of G X¢. Moreover, the computation of co(«) is linear in the size of
X*¢ and the size of the simplicial complex contraction data.

Proof For each i, the triangle {A;, A;+1, Bi+1} from Definition 5 is in the simplicial
complex X*¢. There is a unique oriented 2-simplex in X*¢ of the form (Vy, Vi, V)
(possibly degenerate) such that {Vy, Vi, Vao} = {A;, Ait+1, Bit+1}. Let us denote such
oriented simplex by o;, and its image in GX; by ;. We will define an element
gi € G X such that it satisfies

dogi >~ (Ai, Aiy1) and digi >~ (A, Biy1) (Bit1, Ait1) (2)

where 2~ is an equivalence relation that identifies any element (U, V) € GX; with

V,u )_1 (note that only one of the symbols (U, V) and (V, U) is well defined in
X% resp. X.) Explicitly, we can define g; with these properties as follows:

— Ifo; = (Bi+1, A, Ai+1), then g; :== 07,

— Ifo; = (A;, Ai+1, Bit+1), then g; 1= 50(d20;) T; SOMt’)_l

— If o; = (Aiy1. Biy1. Ai), then g; = sodoo; ' &7 so(dyo;) ™"

— If o; = (Biy1, Ais1, Ai), then g; :=5; ! L

— If o = (Ait1, Ai, Biy1), then g; := sodoo; 57" s0(d20i) ™"

— If 0; = (A, Biy1, Aiq1), then g; := s0(d107) 57 's0doo;.
Letg :=go..., gs. The assumption (1) together with Eq. (2) immediately implies that
dig(dpg)~" = &. Thus we define co(@) := sod1(g) g~ . Algorithmically, to construct
g amounts to going over all the triples (A;, A; 11, B;41) from a given sequence of A’s
and B;’s, checking the orientation and computing g; for every i. O

3.2.4 Polynomial-time loop contraction

Let F be a parametrized simplicial set such that each F(I) is O-reduced. Using con-
structions analogous to those defined above, G F is a parametrized locally-polynomial
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simplicial group whereas we assume a simple encoding of elements of G F; as follows.
If x = ]_[j a_jkf € GF(I); where o are (k + 1)-simplices in F'(/), not in the image
of s¢, then we assume that x is stored in the memory as a list of pairs (k;, enc(o;)) and
has size Zj(size(kj) + size(oj)) where some o; may be equal to o; fori # j. Face
and degeneracy operators are defined in Definition (2) and it is easy to see that for any
locally polynomial-time simplicial set F', G F is a locally polynomial-time simplicial

group.

Definition 6 Let F' be a locally polynomial simplicial set. We say that F has polyno-
mially contractible loops if there exists an algorithm that for a O-simplex x € GF (/)
computes a 1-simplex co(x) € GF(I) such that dox = x,dix =1 € GF(I)g, and
the running-time is polynomial in size(x) + size(/).

4 Proof of Theorem 1
We will prove a stronger statement of Theorem A formulated as follows.

Theorem A.1 There exists an algorithm that, givend > 2 and a finite O-reduced simpli-
cial set X (alternatively, a finite simplicial complex) with an explicit loop contraction
co (such as in Definitions 3 or 5) computes the generators gi, ..., gk of mq(X) as
simplicial maps X¢ — X, for suitable triangulations Z’;’ of S j=1,... k.

For fixed d, the time complexity is exponential in the size of X and the size of the
loop contraction co; more precisely, it is O (226X +size€))y ywhere P = Py is a
polynomial depending only on d.

This immediately implies Theorem A, as for a 1-reduced simplicial set, the contraction
co 1s trivial, given by co(1) = 1.

The proof of Theorem A.1 is based on a combination of four statements presented
here as Lemma 3, Theorem 1, Lemma 4 and Lemma 6. Each of them is relatively
independent and their proofs are delegated to further sections.

First we present an algorithm that, given a 1-connected finite simplicial set X and
a positive integer d, outputs a simplicial set F; and a simplicial map 4 such that

— the simplicial set F; is d — 1 connected, it has polynomial-time effective homology
and polynomially contractible loops.

— the simplicial map ¥4 : F; — X is polynomial-time and induces an isomorphism
Yax: wa(Fg) = ma(X).

4.1 Whitehead tower

We construct simplicial sets Fy as stages of a so-called Whitehead tower for the
simplicial set X. It is a sequence of simplicial sets and maps

7, Ja Fi_i Ja— Ja P 3 F = X.
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where f; induces an isomorphism 7 (F;11) — 7;(F;) for j > i and 7r;(F;) = O for
Jj < i. We define ¥y = fyfa—1...f3. One can see that Fy, ¥4 satisfy the desired
properties.

Lemma3 Letd > 2 be afixed integer. Then there exists a polynomial-time algorithm
that, for a given 1-connected finite simplicial set X, constructs the stages F,, ..., Fy
of the Whitehead tower of X.

The simplicial sets Fy(X), parametrized by 1-connected finite simplicial sets X,
have polynomial-time homology and the maps fi. are polynomial-time simplicial maps.

Proof The proof is by induction. The basic step is trivial as F» = X. We describe how
to obtain Fj41, fr+1 assuming that we have computed Fy,2 < k < d.

1. We compute simplicial map ¢y : Fy — K (i (X), k) = K (i (Fy), k) thatinduces
an isomorphism @y : 7wk (Fi) — ¢ (K (mx (X)), k)) = 7 (X). This is done using
the algorithm in Cadek et al. (2014b), as K (7x(X), k) is the first nontrivial stage
of the Postnikov tower for the simplicial set Fk.

For the simplicial set K (7t (X), k) and for such simplicial sets there is a classical
principal bundle (twisted Cartesian product) (see May 1992):

K (i (X), k— 1)

J

E(mi(X), k—1) = K(m(X), k) xz K(mp(X), k= 1)

s

K (i (X), k)

2. We construct Fy11 and f;4 as a pullback of the twisted Cartesian product:

14

K (me(X). k — 1) K(m(X).k — 1)
Fiy1 = F xo K(mp(X), k—1) y K(mp(X), k) x¢ K(mp(X), k—1)
Jet1 J ié
Fi o K (m(X). k).

It can be shown that the pullback, i.e. simplicial subset of pairs (x,y) € F; X
E(mr(X), k — 1) such that 6(y) = ¢i(x), can be identified with the twisted prod-
uct as above (May 1992), where the twisting operator t’ is defined as  gy.

To show correctness of the algorithm, we assume inductively, that Fj has
polynomial-time effective homology. According to Cadek et al. (2014b, Section 3.8),
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the simplicial sets K (¢ (X), k — 1), E(mx(X), k—1), K (7 (X), k) have polynomial-
time effective homology and maps ¢y, 6 are polynomial-time. Further, they are all
obtained by an algorithm that runs in polynomial time.

As Fy41 is constructed as a twisted product of Fj with K (7rx (X), k), Corollary 3.18
of Cadek et al. (2014b) implies that Fj_ | has polynomial-time effective homology and
fis1 is a polynomial-time map.®

The sequence of simplicial sets Fy fk%l F. L K (3. (X), k) induces the
long exact sequence of homotopy groups

Jr+1% *
s () S i (F) —25 (K (i (X), k) —— 71 (Freg) —— -

The reason why this is the case follows from a rather technical argument that iden-
tifies the simplicial set Fy41 with a so called homotopy fiber of the map ¢y : Fy —
K (71 (X), k). In more detail, the category of simplicial sets is right proper (Goerss
and Jardine 1999, 11.8.67) and map ¢ is a so-called Kan fibration (May 1992, §23).
This makes the pullback Fj. coincide with so-called homotopy pullback. Further,
the simplicial set E (. (X), k — 1) is contractible, hence the homotopy pullback is a
homotopy fiber. The induced exact sequence is due to Quillen (1967, chapter 1.3).
The inductive assumption, together with the fact that ¢; induces an isomorphism
Qis - Tk (Fi) — 7 (K (7 (X), k)) imply that fi induces anisomorphism 77 (Fi41) —
7w (Fy) for j > kand 7w (Fiq1) =0 for j < k. O

The lemma implies that the simplicial sets Fi have polynomial-time effective homol-
ogy and maps ¥ = fifk—1...f3 are polynomial-time as they are defined as a
composition of polynomial-time maps f;.

The following theorem is a key ingredient of our algorithm.

Theorem 1 (Effective Hurewicz Inverse) Let d > 1 be fixed and F be an (d — 1)-
connected 0-reduced simplicial set parametrized by a set I, with polynomial-time
homology and polynomially contractible loops.

Then there exists an algorithm that, for a given d-cycle z € Z4(F (1)), outputs
a simplicial model X% of the d-sphere and a simplicial map X¢ — F(I) whose
homotopy class is the Hurewicz inverse of [z] € Hg(F (I)).

Moreover, the time complexity is bounded by an exponential of a polynomial func-
tion in size(I) + size(z).

The construction of an effective Hurewicz inverse is the main result of Berger
(1991) and further details are provided in Sect. 6. It exploits a combinatorial version
of Hurew1cz theorem glven by Kan (1958a) where 7y (F) is described in terms of
TTg— 1(GF ) where 'GF is a non-commutative simplicial group that models the loop
space of F. Kan showed that the Hurewicz isomorphism can be identified with a

8 We remark that the paper Cadek et al. (2014b) uses a different formalization of twitsed cartesian product
than the one employed by us. However, the paper Filakovsky (2012), on which the Corollary 3.18 of Cadek
et al. (2014b) is based, can be reformulated in context of the definition used here. We do not provide full
details, only remark that one has to make a choice of Eilenberg—Zilber reduction data that corresponds to
the definition of twisted cartesian product.
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map Hy_ (GT’) — Hj (A\I/’ ) induced by Abelianization. Berger then describes the
inverse of the Hurewicz homomorphism as a composition of the maps 1, 2, 3 in the
diagram

ag(Fy< I Hy(F)
i I
Hy 1 (GF) G Hy_1(AF).

Arrow 1 is induced by a chain homotopy equivalence and arrow 3 by Berger’s explicit
geometric model of the loop space. To algorithmize arrow 2, we need an algebraic
machinery that includes an explicit contraction of k-loops in/affogll k<d-—1
Those are based partially on linear computations in the Abelian group A F' and partially
on explicit inductive formulas dealing with commutators. The lowest-dimensional
contraction operation, however, cannot be algorithmized, without some external input.
The possibility of providing it is the content of the following claim:

Lemma4 Letd > 2 be a fixed integer and I be the set of all 1-connected O-reduced
finite simplicial sets with an explicit loop contraction co. Then the simplicial set Fy from
Lemma 3, parametrized by T has polynomial-time contractible loops (see Definition 6).

The proof is constructive, based on explicit formulas in our model of F;. The details
are in Sect. 7.

We remark that the output of the algorithm in Lemma 4 i.e. the loop contraction
of F, is polynomial time with respect to the input—a O-reduced and 1-connected
simplicial set with a specific loop contraction cq on this simplicial set.

The core of the algorithm we will describe works with simplicial sets and simplicial
maps between them. If our input is a simplicial complex, we need tools to convert them
into maps between simplicial complexes. The next two lemmas address this.

Lemma5 LetY be afinite simplicial set. Then there exists a polynomial-time algorithm
that computes a simplicial complex Y*¢ with a given orientation of each simplex, and
amap y : Y€ — Y (still understood to be a map between simplicial sets) such that
the geometric realization of y is homotopic to a homeomorphism.

This construction is originally due to Barratt (1956), and described in detail in Cadek
et al. (2013b, Appendix B).? Explicitly, the simplicial complex Y*¢ is defined to be
Y% := B,.(Sd(Y)), where Sd is the barycentric subdivision functor and B, a functor
introduced in Jardine (2004): Y*¢ can be constructed recursively by adding a vertex
v, for each nondegenerate simplex o € Sd(Y) and replacing o by the cone with apex
Vs over B,(dc). The subdivision Sd(Y) is a regular simplicial set and B, (Sd(Y))
coincides with the flag simplicial complex of the poset of nondegenerate simplices

9 A version of this lemma is given as Barratt (1956, Theorem 2) or Cadek et al. (2013b, Proposition 3.5).
However, we also need the fact that |Y*¢| is homeomorphic to | Y|, which is not explicitly mentioned in the
references, but follows easily from the construction.
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of Sd(Y). It follows that the geometric realizations |Y*¢| is homeomorphic10 to |Y].
Simplices of Y*¢ are naturally oriented and the explicit description of y is given
in Cadek et al. (2013Db, p. 61) and the references therein.

In our main algorithm, ¥ = X< will be a triangulation of the d-sphere and X
a simplicial set derived from a simplicial complex X*¢ by contracting its spanning tree
into a point. The following lemma shows that we can convert a map X*¢ — X into
amap (X% — X*¢ between simplicial complexes.

Lemma6 Let d > 0 be fixed. Assume that X*¢ is a given simplicial complex with a
chosen ordering of vertices and a maximal spanning tree T ; we denote the underlying
simplicial set by X*%. Let p : X** — X := X**/T be the projection to the associated
0-reduced simplicial set. Let X be a given d-dimensional simplicial complex with
a chosen orientation of each simplex, X*° the induced simplicial set, and f : X% — X
a simplicial map.

Then there exists a subdivision SA(X) and a simplicial map ' : Sd(X) — X*¢
between simplicial complexes!! such that

Lfl

12 = 18d(z) L xoe 4

= |X]

. . sy 11 . Lo
is homotopic to | X5%| —f> |X|. Moreover, f' can be computed in polynomial time,

assuming an encoding of the input f, X, X*¢, X and T.

Thus if X is a sphere and f corresponds to a homotopy generator, f” is the cor-
responding homotopy generator represented as a simplicial map between simplicial
complexes. We remark that the algorithm we describe works even if d is a part of
the input, but the time complexity would be exponential in general, as the number of
vertices in our subdivision Sd(X') would grow exponentially with d.

The proof of Lemma 6 is given in Sect. 8.

Proof of Theorem A.1 Firstassume that a finite simplicial complex X*¢ is given together
with a loop contraction. Then the algorithm goes as follows.

1. We choose an ordering of vertices and convert X*¢ into a simplicial set. Choosing
a spanning tree and contracting it to a point creates a O-reduced simplicial set X
homotopy equivalent to X*“. By Lemma 2, we can convert the input data into a list
co(w) for all generators « of G X in polynomial time.

2. We construct the simplicial set F; from Lemma 3 as simplicial set with polynomial-
time effective homology. Hence by Lemma 1 we can compute the generators of
H,;(F4) in time polynomial in size(X). Due to Lemma 4 and Theorem 1, we can
convert these homology generators to homotopy generators Z‘}i — Fj; in time
exponential in P (size(X) + size(cp)) where P is a polynomial.

10 The subdivision Sd(Y) has geometric realization homeomorphic to |Y| by Fritsch and Piccinini (1990,
Thm 4.6.4). The realization of Sd(X) is a regular CW complex and B, (Sd(Y)) coincides with the first
derived subdivision of this regular CW complex, as defined in Geoghegan (2007, p. 137). The geometric
realization of the resulting simplicial complex is still homeomorphic to |Y| and |Sd(Y)| by Geoghegan
(2007, Prop. 5.3.8).

1 The constructed map f does not necessarily preserves orientations: it only maps simplices to simplices.
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3. We compose the representatives of 74 (Fy) with 4 to obtain representatives 27 —
X of the generators of 74 (X), another polynomial-time operation. This way, we
compute explicit homotopy generators as maps into the simplicial set X.

4. We use Lemma 5 to compute simplicial complexes X ;c and maps Z“J‘.C — x4

homotopic to homeomorphisms. The compositions Z‘;.C — Z‘}j — X still repre-
sent a set of homotopy generators. Finally, by Lemma 6, we can compute, for each
J, asubdivision of the sphere Z‘jc and a simplicial map from this subdivision into
the simplicial complex X*¢, in time polynomial in the size of the representatives
) ;C — X.
In case when the input is a O-reduced simplicial set X with a loop contraction cp, only
steps 2 and 3 are performed. In either case, the overall exponential complexity bound
comes from Berger’s Effective Hurewicz inverse theorem. O

5 Proof of Theorem B

Similarly as in the proof of Theorem A, we prove a slightly more general version of
Theorem B that also includes finite simplicial complexes.

Theorem B.1 Let d > 2 be fixed. Then

1. there is an infinite family of d-dimensional 1-connected finite simplicial complexes
X such that for any simplicial map X — X representing a generator of mw (X),
the triangulation ¥ of ¢ on which f is defined has size at least 2 12¢(X)),

2. there is an infinite family of d-dimensional (d — 1)-connected and (d — 2)-reduced
simplicial sets X such that for any simplicial map ¥ — X representing a gener-
ator of wy(X), the triangulation X of S¢ on which f is defined has size at least
zﬂ(size(X)).

Consequently, any algorithm for computing simplicial representatives of the genera-
tors of mq(X) has time complexity at least 25 12e(X))

The second item immediately implies Theorem B.

In the first item, we don’t assume any certificate for 1-connectedness. However,
we suspect that any algorithm that computes representatives of ;(X) for simplicial
complexes X must necessarily use some explicit certificate of simple connectivity, but
so far we have not been able to verify this.

Lemma?7 Letd > 2.

1. There exists a sequence {Xy}k>1 of d-dimensional (d — 1)-connected simpli-
cial complexes, such that Hy(Xy) =~ Z for all k and for any choice of a cycle
2k € Zy4(Xy) generating the homology group, the largest coefficient in z grows
exponentially in size(Xy).

2. There exists a sequence { X }k>1 of d-dimensional (d — 1)-connected and (d — 2)-
reduced simplicial sets, such that Hy(Xy) =~ Z for all k and for any choice of
cycles zx € Z4(Xy) generating the homology, the largest coefficient in zj. grows
exponentially'? in size(Xy).

12 Witha slight abuse of language, we assume that each X not only a simplicial set but also its algorithmic
representation with a specified size such as explained in Sect. 3.
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Proof of Theorem 2 based on Lemma 7 Let {X;}i>1 be the sequence of simplicial sets
or simplicial complexes from Lemma 7. Since they are (d — 1)-connected, by the
theorem of Hurewicz, wy(Xy) =~ Hy(Xr) =~ Z. For each k, let X} be a simplicial
set or simplicial complex with | 2| = §%, and fi : Xy — X; a simplicial map
representing a generator of 7w4(Xy). The generator of H;(X;) contains each non-
degenerate d-simplex with a coefficient &1 (this follows from the fact that X} is a
triangulation of the d-sphere and the d-homology of the d-sphere is generated by
its fundamental class). The Hurewicz isomorphism 74 (X;) — Hy (X)) maps such a
representative to the formal sum of simplices

Jie > > + fi(0) € Ca(Xi),

o is a d—simplex in (X)

which represents a generator of H;(Xy). It follows from Lemma 7 that the number of
d-simplices in X, grows exponentially in size(Xj). Moreover, the complexity of any
algorithm that computes f; : Xy — X is at least the size of X}, which completes
the proof. O

It remains to define the sequence from Lemma 7:

Proof of Lemma 7. 1. We begin by constructing forevery d > 2, asequence of { Xy }i>1
of (d — 1)-connected simplicial complexes, such that H;(Xy) ~ Z for all k, and for
any choice of a cycle z; € Z;(Xy) generating the homology group, the largest coef-
ficient in z; grows exponentially in size(Xy).

We start with d = 2. The idea is to glue X out of k copies of a triangulated mapping
cylinders of a degree 2 map S I §! je. k Mobius bands, and then fill in the two
open ends with one triangle each (A and B in Fig. 2). The case k = 1 is shown in
Fig. 2. For k > 2, we take k copies of the triangulated Mobius band and identify the
middle circle of each one to the boundary of the next one.

We observe that, up to homotopy equivalence, X, consists of a 2-disc with another
2-disc which is attached to it via the boundary map S' — S! of degree 2¥. Therefore,
X is simply connected and has H» (X ) =~ Z and any homology generator will contain
the 2-simplex A with coefficient -1 and B with coefficient 2%

Similarly for d > 2, the simplicial complex Xy is obtained by glueing k copies of a
triangulated mapping cylinder of a degree 2 map S¢~! — $9~! and the two open
ends are filled in with two triangulated d-balls.

2. For every k > 1 we define the simplicial sets X to have one vertex *, no non-
degenerate simplices up to dimension d — 2, k non-degenerate (d — 1)-simplices
o1, ..., o that are all spherical (that is, for all i, j, d;o; = * is the degeneracy of the
only vertex of Xj), and k + 1 d-simplices A, C1, Ca, ..., Cx—1, B such that

- doA =o01,djA =xfor j >0,
- doC; =0, d1C; = 0j41,drC; =0; and d;C; = * for j > 2, and
— doB =o0,djB =+ for j > 0.

X does not have any non-degenerate simplices of dimension larger than d. The rela-
tions of a simplicial set are satisfied, because d;d; is trivial in all cases.
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Fig. 2 The Mdbius band is the mapping cylinder of a degree 2 map st — sl The triangulation has four
layers because starting from the boundary, which is a triangle, we first need to pass to a hexagon in order
to cover the middle triangle twice, obtaining the desired degree 2 map. Connecting k copies of the Mobius
band creates a mapping cylinder of a degree 2k map, using only linearly (in k) many simplices. Gluing
the full triangles A and B to the ends of this mapping cylinder finishes the construction of Xj. The red
coefficients exhibit a generator & of Hy(X|) = Z(X1) =~ Z given as a formal sum of 2-simplices

The boundary operator in the associated normalised chain complex C.(X;) acts on
basis elements as

- JA = 0]
- 3Ci = 20’,‘ — Oj+1, and
— 0B = oy.

To see that X is (d — 1)-connected for d > 2, it is enough to prove that Hy_1(Xy)
is trivial (by 1-reduceness and Hurewicz theorem). This is true, because o] is the
boundary of A and for i > 1, o; is the boundary of the chain

21714 —2i72C, — .. = 2Ci5 — Ciy.

In the case d = 2, X} is not 1-reduced, but we can show 1-connectedness similarly as
in the proof of the first part: up to homotopy, X consists of two discs with boundaries
together via a map of degree 2K~ 1.

There are no non-degenerate (d + 1)-simplices, so Hy(Xy) =~ Z;(X) and a simple
computation shows that every cycle is a multiple of

kA —2k=2¢) —2¢ 3¢y — .. — o1 — B.
The computer representation of X has size that grows linearly with &, but the coeffi-

cients of homology generators grow exponentially with k, so they grow exponentially
with size(Xg). O
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5.1 Discussion on optimality

Ifd = 2 and X is a 1-reduced simplicial set, then generators of H>(X) can be computed
via the Smith normal form of the differential d3 : C3(X) — C»(X). Using canonical
bases, the matrix of 93 = dy — di + d» — d3 satisfies that the sum of absolute values
over each column is at most 4. We were not able to find any infinite family of such
matrices so that the smallest coefficient in any set of homology generating cycles
grows exponentially with the size of X (that is, the size of the matrix). However, if
a set of homology-generating cycles with subexponential coefficients always exists
and can be found algorithmically in polynomial time, our main algorithm given as
Theorem A is optimal in this case as well. This is because the exponential complexity
of the algorithm only appears in the geometric realization of an element of G X sph
with large (exponential) exponents (see “Arrow 3” in Sect. 6), and the only source of
such exponents is the homology Hj(AX) >~ H>(X).

6 Effective Hurewicz inverse

Here, we will prove Theorem 1 by directly describing the algorithm proposed in Berger
(1991) and analysing its running time.

Definition 7 Let G be a simplicial group. Then the Moore complex Gisa (possibly
non-abelian) chain complex defined by G; == G; N ([ >0 ker d;) endowed with the

differential d : G — Gl 1

It can be shown that docéo = 1in G and that Im(dp) is a normal subgroup of ker dy so
that the homology H.(G) is well defined.

Definition 8 Let F be a O-reduced simplicial set, G F the associated simplicial group
from Definition 2, and G F its Moore complex. We define A F' to be the Abelianization
of GF and AF to be the Moore complex of AF. The simplicial group AF is also
endowed with a chain group structure viad = ) (= 1)/d ;. If o € Fy, we will denote
by o the corresponding simplex in G F;_1, resp. AF;_.

Note that, following Definition 2, the “last” differential dyo in AF) equals dro —
di4+10. Clearly, the Abelianizationmap p : GF — GF/[GF,GF] = AF takes GF
into AF.

Kan (1958a) showed that for d > 1 and a (d — 1)-connected 51mphclal set F,
the Hurewicz isomorphism can be identified with the map H;_ 1(G F)— H;_ 1(A F)
induced by Abelianization, whereas these groups are naturally isomorphic to 74 (F)
and H;(F), respectively. Our strategy is to construct maps representing the isomor-
phisms 1, 2, 3 in the commutative diagram
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gg(F)< " Ha(F) 3)
J ll
Hy_1(GF) s Hy_1(AF).

Here & stands for the Hurewicz isomorphism, 1 is induced by a homotopy equivalence
of chain complexes, 2 is the inverse of H;_1(p) where p is the Abelianization, and 3
represents an isomorphism between the (d — 1)’th homology of GF (that models the
loop space of F') and 4 (F'). The algorithms that compute 1, 2, 3 act on representatives,
thatis, 1 and 2 map cycles to cycles and 3 converts a cycle to a simplicial map £¢ — F
where | 2?| = §¢. In what follows, we will explicitly describe maps 1, 2, 3 and show
that the underlying algorithms are polynomial for arrows 1,2 and exponential for
arrow 3.

6.1 Arrow 1

Let F be a O-reduced simplicial set, C,(F) be the (unreduced) chain complex of F
and AF,_ the shifted chain complex of AF defined by (AF,_1); = AF;_1. Asa
chain complex, AF,_; is a subcomplex of Cy(F) generated by all simplices that are
not in the image of the last degeneracy. Let A F,_1 be the Moore complex of AF,_1.

We will describe a chain homotopy (f, g, h) : C.(F) — ﬁ*,l. Arrow 1 then
coincides, on the level of chains, with f. We only need f for the actual algorithm;
however, we prefer to state a more general Lemma claiming that g, & are polynomial
time maps as well.

Lemma 8 There exists a polynomial-time strong chain deformation retraction (f,g,h):

—~—

Ci(F) — /A\F/*—l- That is, f : C.(F) — AF._1, g :/Xb{*_l — Cu(F) are
polynomial-time chain-maps and h : Cx(F) — Cyq1(F) is a polynomial map such
that fg =id and gf —id = hd + 0h.

Proof First we will describe the deformation retraction in terms of formulas and then
comment on polynomiality.
Part 1: Formulas for the deformation retraction. We begin with a chain deformation
retraction from C (F) to AF,_j represented by fo : Cx(F) — AFx_1,80: AF«—1 —
Cy(F)and hg : Cx(F) = Cyuq1(F).

The chain complex A F,_1 consists of Abelian groups A Fi_ freely generated by
k-simplices in F that are not in the image of the last degeneracy sx_1. On generators,
we define

0 whenever o is a k-simplex in Im(sx—1)

folo) = {_ “

o otherwise.
The remaining maps are defined by go(0) := 0 — sx—1dxo and ho(o) = (—l)kska.
It is a matter of straight-forward computations to check that fy and gp are chain maps,

fogo = id and gg fo — id = hod + dhy.
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Further, we define another chain deformation retraction from A F' to AF. For each
p >0, let AP be a chain subcomplex of A F defined by

(AP) ={x € AF; :dix =0 for i > max{k — p,0}}

that is, the kernel of the p last face operators, not including dy (d; refers here to
the face operators in AF). Then AP*! is a chain subcomplex of A” and we define
the maps fp+1 : (AP)x — (APTh) by fpi1(x) = x — sk—p_1dk—px whenever
k—p > 0,and f,+1(x) = x otherwise; gp41 : APT! . AP will be an inclusion,
and hpiy : (AP)p — (AP)pqr viahpyi(x) = (—1)k_psk_px ifk—p > 0and 0
otherwise. A simple calculation shows that f},11, gp+1 are chain maps, fp+18p+1 =
id, gp+1fp+1 —id=hp10+0hptr.

By definition, the Moore complex AF = N,-0A”. The strong chain deformation
retraction (f, g, h) from Cy(F) to AF,_; is then defined by the compositions

f= o frxrtSi--- J1So
8 = 8081 ---8k8k+1---

and the sum

h=ho+gih1 fi +(gi182)h2(fafi) +---

which are all well-defined, because when applying them to an element x, only finitely
many of f;, g; differ from the identity map and only finitely many 4 ; are nonzero.

Part 2: Polynomiality. We need to show that if the degree k is fixed, then we can
evaluate f, g, h on Cy(F) resp. AF—_1 in time polynomial in the input size. The map
fo is defined via the if-else condition (4). To decide whether a simplex o € F (/) is
in the image of s;_; amounts to deciding 0 = s;_1dro which can be done in time
polynomial in size(/) + size(o'), the polynomial depending on k. It follows that fj is
a locally polynomial map. All the remaining maps f;, g; and h; are defined via simple
formulas and are obviously locally polynomial-time maps.

For fixed &, the definition of f, g, & includes only f;, g;, h; fori < k. It follows that
f, g are composed of k polynomial-time maps and /4 is a sum of k polynomial-time
maps. O

6.2 Arrow 2

This part is taken almost completely from Berger (1991), we only slightly adjusted
the notation to our settings, formalized some details that in Berger (1991) are treated
as obvious, and comment on polynomiality.

To summarize the main ideas, we will define an algorithm for computing contraction
operators GF; — G F;4 that geometrically represent contraction of spheres in the
loop space of F. The first such contraction c¢p : GFyp — GF] actually corresponds
to the contraction of loops in F and cannot be derived algorithmically in general.
That’s the reason why we insist on having some kind of information about the loop
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contraction cg. Higher contractions, however, can be derived via formulas, assuming
the input is (d — 1)-connected (we don’t have a good intuition for this fact, but the
Hurewicz isomorphism is probably the key; it is easy to construct these contractions
on the Abelian part and the hard work is to pull them back to the non-commutative
617). Formulas for the contractions ¢ are the core of Arrow 2.

— P —~
GFiy1 ———— AFkq (&)

ol

GF ————— AFy.

Given alljlgorithm for the contractions, Arrow 2 is then defined as follows. For a
cycle z € AF 41, we compute an arbitrary p-preimage y, p(y) = z, and then adjust
itto y (cxdoy) ™! which already is a cycle in/G\Fk+1.

We remark that without having something like the contraction data ¢, it is hard to
find any non-trivial spherical elements of/G-F*.

Lemma 9 (Boundary certificate) Let d > 1 be fixed and let F be a (d — 1)-connected
simplicial set with polynomial-time homology. There is an algorithm that, for j < d—1
andacyclez € Z; (A/\I'{), computes an element cAz) e /A_\I'{j_,_l such that doc? (z) = z.
The running time is polynomial in size(z) + size(I).

Proof First note that the (d — 1)-connectedness of F implies that H; 1 (F) ~ H; (;\\I:" )
are trivial for j < d — 1, so each cycle in these dimensions is a boundary.

By assumption, F has a polynomial-time homology, which means that there exists
a globally polynomial-time chain complex E.F, a locally polynomial-time chain
complex Y and polynomial-time reductions from Y to C(F) and E.F

E.F <& Y 25 C.(F).

Let (f/, g', h’) be chain homotopy equivalence of ¥ and AF,_| defined as the com-
position of Y == C,(F) and the chain homotopy equivalence of C,(F) and AF ,_
described in Lemma 8. Further, let f”, g”, h” be the maps defining the reduction
Y =5 E,F: all of these maps are polynomial-time.

Letj <d—landz € Zj(AF),z = }_;k;y;. Then the element f"g'(z) is acycle
in E; 1 F and can be computed in time polynomial in size(z) + size(/). In particular,
the size of f”g’(z) is bounded by such polynomial. The number of generators of
Ej>F and E 1 F is polynomial in size(/) and we can compute, in time polynomial
insize([l), the boundary matrix of 0 : E; 1, F — Ej 1 F withrespect to the generators.

Next we want to find an element 1 € E;j > F such that 3r = f”g’(z). Using
generating sets for E; 5 F, E;1F, this reduces to a linear system of Diophantine
equations and can be solved in time polynomial in the size of the d-matrix and the
right hand side f”g’(z) (Kannan and Bachem 1981).
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Finally, we claim that ci(/z) = f'g"(t)— f'h"¢'(z) is the desired element mapped
to z by the differential in A F. This follows from a direct computation

dct(2)=0af'g"(t)—df'n"g (2)
= f'g" @1 —af'n"g (2)
= 18" "' @) —af'h'g (2)
= f/(W"9+0n" +id)g'(z) —af ' h"g (2)
= f'h"gaz+af'n"g' @)+ f'g'(2) —af'h"g (2)
=0+ fgk) =z

The computation of ¢ as well as all involved maps are polynomial-time, hence the
computation of ¢4 (z) is polynomial too. O

The next lemma will be needed as an auxiliary tool later.

Lemma 10 Let S be a countable set with a given encoding, G be the free (non-abelian)
group generated by S, and define size(]_[l. sfj) = Z/’ (size(s;) +size(k;)). Let G' ==

[G, G] be its commutator subgroup.
kj

Then there exists a polynomial-time algorithm that for an element g = iS in

G’ C G, computes elements a;, b; € G such that g = ]_[j laj, bl

In other words, we can decompose commutator elements into simple commutators in
polynomial-time at most.

. . kj . .
Proof Let us choose a linear ordering on S and let g = []; s j’ be in G': that is, for
each j, the exponents {k;» : s = s;} sum up to zero. We will present a bubble-sort
type algorithm for sorting elements in g. Going from the left to right, we will always

swap sfj and sfﬂ whenever s; 1 < s;. Such swap always creates a commutator, but
that will immediately be moved to the initial segment of commutators.

More precisely, assume that Init is the initial segment, x = $97 and y = sfﬂ;l
should be swapped, Rest represent the segment behind y, and Commutators is a final

segment of commutators. The swapping will consists of these steps:

Init x y Rest Commutators
> Init y x [x~!, y~!'] Rest Commutators

— Init y x Rest ([x_l, y_l] [[y_l, x_l], Rest_l] Commutators)

where the parenthesis enclose a new segment of commutators. Before the parenthesis,
x and y are swapped. Each such swap requires enhancing the commutator section by
two new commutators of size at most size(g), hence each such swap has complexity
linear in size(g).

Let us call everything before the commutator section a “regular section”. Going
from left to right and performing these swaps will ensure that the largest element will
be at the end of the regular section. But no later then that, the largest element yjargest
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disappears from the regular section completely, because all of its exponents add up to
0. Again, starting from the left and performing another round of swaps will ensure that
the second-largest elements disappear from the regular section; repeating this, all the
regular section will eventually disappear which will happen in at most size(g)? swaps
in total. Each swap has complexity linear in size(g) and the overall time complexity
is not worse than cubic. O

Lemma 11 Assume that F is a parametrized simplicial set with polynomially con-
tractible loops. Let k > 0, y € GFy be spherical, i.e. diy = 1,0 < i < k, and
o € GFy is arbitrary. There is a polynomial-time algorithm that computes § € GF,;H
such that do§ = [o, y] and d;§ = 1 for all i > 0.

In other words, a simple commutator of a spherical element with another element can
always be “contracted” in GF’ in polynomial time. Our proof roughly follows the
construction in Kan (1958a, Sect. 8).

Proof For x € G Fy, we will denote by cox the element of 6?7/1 such that dycox =
x: this can be computed in polynomial-time by the assumption on polynomial loop
contractions. For the simplex o € G F, we define (k + 1)-simplices By, ..., Bk by
Br = sé‘cod{)‘a and inductively B; | = (s;d;B;) - (sja_l) - (sj1a) for j < k.
Then the following relations hold:'3

- doBo = «a.
-djBj=d;iBj—1,1 <j<k
— dir1Br = 1.

The second and third equations are a matter of direct computation, while the first fol-

lows from the more general relation d({ i Bj = d({ o which can be proved by induction.
If k is fixed, then all By, ..., Bx can be computed in polynomial time.
The desired element § is then the alternating product

8 = [Bo, sov 1181, s1y1™" ... (B, sey . u]

Lemma 12 Under the assumptions of Theorem 1, there exist homomorphisms c; :
GFj— GFjy for0 < j <d—1suchthat

1. docj =1id,

2. d,'Cj = Cj_ld,'_l, O<i<j+1,and

3. cjsi=siyicj—1forO< j<d—1and0 <i < j,
4. dico(x) = 1 forall x € GFy.

Ifdisfixedandx € GFj, j <d —1, then cj(x) can be computed in polynomial time.
Proof The homomorphism ¢o can be constructed directly from the assumption on

polynomial contractibility of loops. We have a canonical basis of G Fy consisting of
all non-degenerate 1-simplices of F. For o € Fi, we denote by o the corresponding

13 Kan uses a slightly different convention in Kan (1958a) but the resulting properties are the same. The
sequence f, .. ., B can be interpreted as a discrete path from « to the identity element.

@ Springer



Computing simplicial representatives of homotopy group elements 207

generator of G Fy. The we define co(]] E];" ) to be [] b];" where b; is the element of
GFysuchthatdob; =0 and d1b; = 1.

In what follows, assume that 1 < k < d — 1 and ¢; have been defined forall i < k.
We will define ¢ in the following steps.

Step 1. Contractible elements.

Let x € G Fy.. We will say that x is contractible and y € G Fyy1 is a contraction of
x ifdyy = x and d;y = cx—1dj—1x foralli > 0.

The general strategy for defining c; will be to find a contraction % for each basis
element ((k+1)-simplex) g € G Fy and define ¢, (g) := h. This will enforce properties
1 and 2. Moreover, in case when g is degenerate, the contraction will be chosen in
such a way that property 3 holds too; otherwise it holds vacuously. Property 4 only
deals with c( and is satisfied by the definition of loop contraction (a polynomial-time
co is given as an input in Theorem 1).

Step 2. Contraction of degenerate elements.

Let g = s;y be a basis element of GF;, y € GF;_1. Then g can be uniquely
expressed as s;z where j is the maximal i such that g € Im(s;). We then define
ck(g) = sj+1cx—1(2). Note that

dock(g) = dosj+ick—1(2) = sjdock—1(2) = s;2 =g,

so property 1 is satisfied. To verify property 2, first assume thati € {j + 1, j + 2}.
Then we have

dici(g) =disjrick—1(2) = cx—1(2) = ck—1di—15j2 = ck—1d;—18.

This fully covers the case k = 1, because then the only possibility is j = 0 and
i € {1, 2}. Further, let k > 1. If i < j, then we have

dickg = djcksjz = disjy1ck—-1(2) = sjdick—1(z) = sjck—2di—12
= Cp-15j-1di—12 = cp—1di—15;2 = cp—1di 18

and if i > j + 2, then the computation is completely analogous, using the relation
disj-H = Sj+1d,'_1 instead.

So far, we have shown that ¢ (g) := s;41¢k—1g is a contraction of g. It remains to
show property 3. That is, we have to show that if g = s;z can also be expressed as
siy, then cx(siy) = sit1ck—1y-

The degenerate element g has a unique expression g = s;, ... i, 8i,v where iy <
iy < --- < iy, = j and is expressible as s;x iff i = i; for some j = 0,1,...,u.
Choosing suchi < j, we canrewrite g as g = ss;v for some v and then g = s;5;_1v,
so that y = s;_jv and z = s;v. Then we again use induction to show

Ck(siy) = 8j4+10k—1(2) = Sj41Ck—18iV = §j4+18i+1Ck—2V

= Si+15jCk—2V = Si+1Ck—15j—1V = Si+1Ck—1)Y
as required.
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Step 3. Decomposition into spherical and conical parts.

We will call an element ¥ € G Fj to be conical if it is a product of elements that
are either degenerate or in the image of cx—_1. Let x € G F; be arbitrary. We define
x; = x and inductively x;_1 = x; (si—1dix;)~". In this way we obtain xo, ..., X,
such that x; is in the kernel of d; for j > i and x = xoy where y is a product of
degenerate simplices. Further, let x* = xq (ck—1doxo) "L A simple computation shows
that x* is spherical, that is, d;x* = 1 for all i. We obtain an equation x = x*x where
X = (ck—1(doxp)y; this is a decomposition of x into a spherical part x* and a conical
element x.

We will define ¢ on non-degenerate basis elements g = o by first decomposing
g = g>¢ into a spherical and conical part, finding contractions & of g5 and h; of
8, and defining cx(g) := hihy. Then ci(g) is a contraction of g and hence satisfies
properties 1 and 2: property 3 is vacuously true once g is non-degenerate.

Step 4. Contraction of the conical part.

Let X := cx—1(dpxo) y be the conical part defined in the previous step. By construc-
tion, xg € GF x and y is a product of degenerate elements s;,u7 ... s;u;. We define
the contraction of c¢;_1(doxg) to be

¢k (cx—1(doxo)) := sock—1(doxo).

Note that this satisfies property 1 as docrcx—1(doxo) = cx—1(doxo). For property 2,
we first verify

dickcr—1(doxo) = disock—1(doxo) = ck—1(doxo) = ck—1dock—1(doxo)-
Not leti > 2. If k = 1, then the remaining face operator is d> and we have
drcico(doxo) = dasoco(doxo) = sodico(doxo) = 1 = codico(doxo)
using axiom 4 for cg. Finally, if i > 2 and k > 2, we have

dicrer—1(doxo) = disock—1(doxo) = sod;—1cx—1(doxo) = sock—1d; —2doxgo
= sock—1dodi—1x0 = Sock—1dol =1 = cx_1cp—2dod; —1x0
= cp—1¢k—2di—2doxo = ck—1d;i—1¢k—1(doxo),

where we exploited the fact that x € Efk and hence d,, xo = 1 foru > 2.

The contraction of degenerate elements y has already been defined in Step 2, so we
can define a contraction of cx_1(doxo)y to be sock—1(doxo) ck(y).

Step 5. Contraction of commutators.

Let ¢’ € GF; be an element of the commutator subgroup. By Lemma 10, we
can algorithmically decompose g’ into a product of simple commutators, so to find a
contraction of g’, it is sufficient to find a contraction of each simple commutator [x, y]
in this decomposition.

Let x = x° % and y = y¥ § be the decompositions into spherical and conical parts
described in Step 3. Using the notation ’a := bab™!, we can decompose [x, y] as
follows (Berger 1991, p. 60):
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[x. y] = (Lx, Y105, xD) (Lx, $105. £D [£, $1 = [V~ LY 799" o7 9)1%. 51 (6)

Both x~!% and y~!$ are spherical simplices and so are their conjugations. It follows
that Eq. (6) can be rewritten to [x, y] = [ay, y1][a2, y2][X, ¥] where y; and y»
are spherical. All of these decompositions are done by elementary formulas and are
polynomial-time in the size of x and y.

By Lemma 11 we can find an elements A; € /G—\F/k+1 such that dor; = [«i, yil,
i = 1, 2, in polynomial time. Further, both X and y are conical and they are in the form
X = co(doxo)Xdeg Where xo € Efk and x4.¢ is degenerate; similar decomposition
holds for y. In Step 4 we showed how to compute elements ¢* and ¢” such that ¢*,
¢ is a contraction of X, ¥, respectively. Then [c¢*, ¢’] is a contraction of [x, $] and
MiAz[c¥, ¢¥]is a contraction of [x, y].

Step 6. Contraction of spherical elements.

The last missing step is to compute a contraction of the spherical element g5 where
g3 is the spherical part of a basis element g € G F.

Let us denote by p the projection G F L AF'. The projection z := p(g%) is in the
kernel of all face operators and hence a cycle in AFj. By Lemma 9, we can compute
t = cj?(z) € ﬁk-ﬂ such that dpt = z, in polynomial time. Let 4 € G Fj4+1 be
any p-preimage!* of 7. Let iy := h and inductively define hj_1 = hj(sj,]djhj)_l
for j < k. Then hg is }E the kernel of all faces except dp, that is, hg € /é\l;k-s-l- It
follows that p(hg) € AFk4 is in the kernel of all faces except dp. We claim that
p(ho) = t.This can be shown as follows: assume that p(h;) = t, then p(h;_1) =
p(hj) + p(s/_ldjh;l) =t+sj1djit=t+0=1.

We have the following commutative diagram:

ho b————1

—~— —_— p —~
GFk+1<—> GFiy1 — AF k41

Ldo \Ldo \Ldo
—~— —_—~— p —~
GFk( GFy AFy

Sz

Both gS and dyh are mapped by p to the same element z: it follows that gS (doho)’]
is mapped by p to zero and hence is an element of the commutator subgroup. Let &
be the contraction of gS (doho) L, computed in Step 5, and finally let 4 := fzho. Then
h is an element of/G\F/kH and a direct computation shows that dph = g5 as desired.

This completes the construction of c: for each non-degenerate basis element g of
G Fy, ¢ (g) is defined to be the product of the contraction of g and the contraction'?
of g.

k .
14 Forr = Zj k;o j, we may choose h = l_[j Ej] (choosing any order of the simplices).

15 The connectivity assumption on F was exploited in the existence of the contraction c‘? on the Abelian

part.
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All the subroutines described in the above steps are polynomial-time. Thus we
showed that if there exists a polynomial-time algorithm for c_1, then there also exists
a polynomial-time algorithm for cj. The existence of a polynomial-time ¢y follows
from the assumption on polynomial loop contractibility and d is fixed, thus there exists
a polynomial-time algorithm that for x € GF; computes c;(x) foreach j <d —1.0

Lemma 13 (Construction of arrow 2) Under the assumption of Theorem 1, let 7 €
Za—1(AF) be a cycle. Then there exists a polynomial-time algorithm that computes
a cycle x € Zg_1(GF) such that the Abelianization of x is z.

The assignment z +— x is hence an effective inverse of the isomorphism
Hq-1(GF) — Hy_(AF)

on the level of representatives.

Proof Let c;_» be the contraction from Lemma 12 and z € Zd,l(;\\lj" ) be a cycle.
First choose y € GFy—1 such that p(y) = z. Creating the sequence y, =y, y;j—1 =
yjsj—1d; yj_l for decreasing j, yields an element yo € GFy4—1 that is still mapped
to z by p, similarly as in Step 4 of Lemma 12. The equation pdy(yo) = dop(y0) =

doz = 0 shows that dyyp is in the commutator subgroup /G\F/;Q. We define x =
yocd_z(doyo)_l: this is already a cycle in GF 41 and p(x) = p(yo) = z. O

6.3 Arrow 3

A cycle g € GF, d—1 € GFy_ represents a generator of the homotopy group
H;_ 1(GF ) = my(F). Given such g, our goal is to construct a simplicial set »d
with | 29| = $¢ and a simplicial map y,: X9 — F with [y,] = [g].

Consider first the following naive idea of the construction: Suppose that g =
X1---Xn, where x; € Fy,1 < i < n. For simplicity, assume that x;’s are all
nondegenerate simplices. We then take n disjoint simplices yi, ...y, and define
f: Uz 1 vi — F sending y; to x;. From the fact that d; (X7~ x,) = 1, we now
define relations on the faces of y;’s (say we conclude that d; (x;) = d;(x;+ 1)L, then
we add relation d;(y;) ~ d;(y;+1)). Putting all such relations together we define a
simplicial set Y = | |\_, y,/ ~ and a simplicial map f’: Y — F where f factors
through f’, see Fig. 3 for an example.

We have nearly achieved what we aimed for - one can show that |Y| is homotopy
equivalent to the wedge sum of d - dimensional spheres and [ f'] = g. However, in
general |Y | is not homeomorphic to S¢. One way to overcome the problem is to make
the space Y “thicker” and making sure that identifying simplices never results in a
wedge of spheres.

To this end, we utilize the following construction which is one of the main results
from Berger (1995). Here, we describe the main points of the construction while details
are given in later sections.

On an algebraic level, we define another simplicial model of a loopspace of
F—a simplicial group 2 F. Further, there is a homomorphism of simplicial groups
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dytdy
| -
>
‘. 8 A\ K,
'l - KUY './ . " .‘
b NI Y RS R
e Y1 - Y20 SYs o RECZEEN
Vi o . . . ,' -
P - L YN oe A3
LS LT S | LA T S |
do

Fig. 3 Let g € GF| with g = Xx2x3x4, where do(x]) = do(xz)_l, do(x3) = d()(x4)_1, dy(x1) =
dy(x3), da(xp) = di(x1), d1(x3) = dp(x3) and d|(x4) = dp(x4). Simplicial set Y is then obtained by
identifying faces of triangles y1, y2, y3, ¥4 as pictured here. One can see |Y| = s2v §2

t: GF — QF that induces an isomorphism on the level of homotopy groups. This is
described in Berger (1995, Proposition 3.3).

The homomorphism ¢ is given later by formula (8) and the simplicial set 2 F is
described in the next section. Here, we remark that the size of 7(g) is exponential in
size of g.

Finally, Lemma 14 describes an algorithm that for a spherical element y € 2 F;_;
constructs a simplicial map yspp, : xd (y) = Fsuchthatmy_q (R2F) > [v] = [vspnl €
74 (F) - essentially using the naive idea described above. We describe the construction
in detail in the next section. o

The size of yspp is polynomial in size(y). Hence, given a spherical g € GF 41,
the algorithm produces #(g)spn: >4(t(g)) — F thatis exponential with respect to
size(g).

6.4 Berger’s model of the loop space
Definition 9 (Oriented multigraph on X,) Let X be a O-reduced simplicial set. We

define a directed multigraph M X,, = (V,,, E,,), where the set of vertices V,, = X, and
the set of edges E,, is given by

E,={[x,i]°|x € Xp1,0<i <n,ee{l,—1}}.
We define maps source,target: E, — V, by setting source[x,i] = ditix,
target[x,i] = dix and source[x,i]”! = target[x,i] and target[x,i]”! =

source [x, i].
An edge [x,i]¢ € E, is called compressible if x = s;x’ for some x’ € X,,.

Definition 10 (Paths) Let X € sSet. A sequence of edges in M X,
y = [xr, 010 [x2, 2] - - - [k, i ] @)
is called an n-path if target [x;, i;]% = source [xj1,ij 419", 1 < j <k.
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Moreover, for every x € V, = X, we define a path of length zero 1, with the
property source 1, = x = target 1, and relations al, = a whenever targeta = x
and 1,b = b whenever sourceb = x.

The set of paths on M X, is denoted by IX,. Let y € IX, by as in (7). We
define source y = source [x1,i1]! and targety = target [xg, ix]%. The inverse of
y, denoted 7/‘1, is defined as

-1 R R
V2Rl BT 7% IR P 1)

if y = 1,, then y~! = y. Note that each path is either equal to 1, for some x or can

be represented in a form such as (7), without any units.

For algorithmic purposes, we assume that a path y = [xy, 1] [x2, i2]? - - - [xg, ix]*
is represented as a list of triples (x;,i;, €;) and has size

size(y) = Z size(x;) + size(i;) + size(e;),
J

which is bounded by a linear function in ) i size(x;).
Given an edge [x, i]° € M X,,, we define operators

do,...dp: E, —> IX,_1 and so,...,sp: E, —> [ X4

called face and degeneracy operators, respectively. These are given as follows

djx,i—11¢, j<i; [sjx, i+ 1], j<i;
djlx,i1° = 1 ladix i=j; silx, 119 = § [six, i + Nlsig1x, iD= j;
[djyix, i1, j>i. [sj+1x,0]°, J>i

One can now extend the definition of face and degeneracy operators to paths, i.e.
we define operators dy, ...dy: [ X, = [ X,—1and sq, ..., s,: [ X, —> [ X4+

diy — dj([x1, i11)d;([x2, 2]9) - - - dj ([xk, ik ]%) i y = [x1, 1] [x2, 2] - - - [, ik ],
7=y ify=1,xeX
_/')C X n-

sy — Si([xr, 011908 ([, 2192) - - - ([xks, i 1) if y = [xq, 011 [x2, 212 - - - [k, ig ]
I Z ify =1, x € Xp.

With the operators defined above, one can see that /X is in fact a simplicial set.
For any y, y' € IX such that target y = source y’, we define a composition y - y’
in an obvious way.
If the simplicial set X is O-reduced, we denote the unique basepoint * € X(. Abusing
the notation, we denote the iterated degeneracy of the basepoint sg - - - so*x € Xy by *
~——

k-times
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as well. With that in mind, we define simplicial subsets P X, £2X of I X as follows:
PX ={yelX |targety =%} QX ={y € IX |sourcey = x = targety}.

We remark that simplicial sets P X, §£2 X intuitively capture the idea of path space and
loop space in a simplicial setting.

Definition 11 A path y = [x1, i1][x2, i2]? - - - [xk, ix ] € IX is called reduced if
for every 1 < j < k the following condition holds:

(x; =x]'+1&ij =ij+1) = €j = €j4].

e.g. an edge in the path y is never followed by its inverse.
An edge [x,i]¢ € E, is called compressible if x = s;x" for some x’ € X,,. A path
is compressed if it does not contain any compressible edge.

We define relation ~ on I X (or rather on each 7 X,,) as a relation generated by
[x, i][x, i]17€ ~g Lsource ([x,i1e)» 1 € N, [x, il° € E,.
Similarly, we define ~¢ on I/ X as a relation generated by
[x,i]° ~¢ Lsource (x.ife)» if[x,i]° € E, is compressible.

We finally define 71X = (I1X/ ~c)/ ~g. Similarly, one defines PX, 2 X.

For y,y’ € IX,, we write y ~ y if they represent the same element in 7 X,,. The
symbol y, denotes the (unique) compressed and reduced path such that y ~ y. One
cansee /X (PX, £2X) as the set of reduced and compressed paths in I X(PX, 2X).

In a natural way, we can extend the definition of face and degeneracy operators
d;, s; on sets I X(PX,82X) by setting djy = d;y and s;y = 5;7. One can check that
this turns 7X, PX and £2X into simplicial sets.

Similarly, we define operation -: 2X, x 2X, — X, byy -y — yy/, ie.
we first compose the loops and then assign the appropriate compressed and reduced
representative. With the operation defined as above, 2 X is a simplicial group.

6.5 Homomorphism¢: GX —» 2X
We first describe how to any given x € X, assign a path y, € PX,, with the property
source yx = x and target y, = *:

For x € X,, n > 0, the O-reducedness of X gives us d;,d;, ---d;,x = x*, here
ij €{0,...,j},0 < j < n.Inparticular, dod - - - dy—1x = *. Using this, we define
Yx = [snx,n — Ulspsp—1dp—1x,n — 2] - - [$pSp—1 - - - s1d1da - - - dp—1x, 0].

Ignoring the degeneracies, one can see the sequence of edges as a path

x > dy_1x > dy_odyp_1x —> -+ > dody - -dy_1x.
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We define the homomorphism ¢ on the generators of G X,,, i.e. on the elements X,
where x € X, as follows:

1) = v 1%, n1Vd- (8)

This is an element of £2X,,.
The algorithm representing the map ¢ has exponential time complexity due to the
fact that an element o* with size size(o) + size(k) is mapped to

—1 -1
VdHlx[x’”]Vdnx Vd,l“x[xv”])/dnx

k times

which in general can have size proportional to k. Assuming an encoding of integers
such that size(k) =~ In(k), this amounts to an exponential increase.

6.6 Universal preimage of a path

Intuitively, one can think of the simplicial set / X of paths as of a discretized version
of space of continuous maps | X|[®!). In particular, y € IX,_; is a walk through a
sequence of d-simplices in X that connect source y with target y. However, in the
continuous case an element . € | X |I%! corresponds to a continuous map . [0, 1] —
| X |. We want to push the parallels further, namely, given any nontrivial'® y € IX,_1,
we aim to define a simplicial set Dom(y) and a simplicial map ymap : Dom(y) — X
with the following properties:

1. |Dom(y)| = DA.
2. Ymap maps Dom(y) to the set of simplices contained in the path y.

We will utilize the following construction given in Berger (1995).
Definition 12 Lety € I1X4_1 . We define Dom(y) and ymap as follows. Suppose, that
Yy = [y1, 11 [y2, i2]% - - - [yk, ix ] For every edge [y}, i1, let ; be the simplicial

map A — y ; sending the nondegenerate d simplex in Adtoy iz
We define Dom(y) as a quotient of the disjoint union of k copies of A¢:

k
Dom(y) =|_|a?/~
i=l1

where each copy of A? corresponds to a domain of a unique « ; and the relation is
given by

()~ 'target (Ly;, i;19) ~ (@j+1)~'source ([yjr1, ij4+11+).

16 By nontrivial we mean that y # 1y forany x € X;_1.
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The map ymap is induced by the collection of maps «y, ..., ax:
k d
LIz A
l O yenny 073
Ymap

Dom(y) — = X x,

We recall that simplicial set 7 X was defined as the set of “reduced and compressed”
paths in /X. Similarly, one introduces a reduced and compressed versions of the
construction Dom. As a final step we then get

Lemma 14 (Section 2.4 in Berger 1995) Let y € 2X4_1 such that diy =1¢€¢ 02X
foralli. Then the map ymap: Dom(y) — X factorizes through a simplicial set model
of the sphere £%(y) as follows:

Dom(y)
| =
sy " 3x

Further, mq—1(2X) 3 [y] = [yspn] € ma(X).

We will not give the proof of correctness of Lemma 14 (it can be found in Berger
1995). Instead, in the next section, we only describe the algorithmic construction of
Ysph »4(y) — X and give a running time estimate.

6.7 Algorithm from Lemma 14

The algorithm accepts an element y < 2X,_1 such that diy =1¢€ 02X for all i,
a spherical element. We divide the algorithm into four steps that correspond to the
four step factorization in the following diagram:

Dom(y)
Dom(y) vmap
Yc
Dom(y) - X
Ysph
Z4(y)
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Dom(y): We interpret y as an element in /X and construct ymap: Dom(y) — X.
This is clearly linear in the size of y.

Do_m(y): The algorithm checks, whether an edge [y, jI in d;,d;, ...d;, v, where
0 < i) < iy < -+ < ip < (d— 1€ —2)is compressible, i.e.
y = s;d;y. If this is the case, add a corresponding relation on the preim-
ages: a~ ' (y) ~ sjdja_l(y). Factoring out the relations, we get a map
yc: Dom(y) — X.

Although the number of faces we have to go through is exponential in d,
this is not a problem, since d is deemed as a constant in the algorithm and
so is 2¢. Hence the number of operations is again linear in the size of y.

Dom(y): Let k < d. We know that dgy = 1, so after removing all compress-
ible elements from the path diy, it will contain a sequence of pairs
([yi, ji1, [yi, ji1~) such that, after removing all [y,, j, ]! forallu < v,
then [yy, ju]® and [yy, ju] ™€ are next to each other.!” Each such pair
(Lyi, Jil¥, Lyi, Ji1™€) corresponds to a pair of indices (/;, m;) correspond-
ing to the positions of those edges in diy . These sequences are not unique,
but can be easily found in time linear in length(y). Then we glue 0‘17 ! i)

with oc,;il (y;) for all i. Performing such identifications for all k defines the

new simplicial set Dom(y).

>4(y): It remains to identify o~ (source y) and «~! (target y) with the appropri-
ate degeneracy of the (unique) basepoint. The resulting space | X9 ()| is
a d-sphere.

7 Polynomial-time loop contraction in Fy4

In this section, we show that simplicial sets F;, 2 < i < d constructed algorithmically
in Sect. 4 have polynomial-time contractible loops, thus proving Lemma 4.

Assuming that X is a O-reduced, 1-connected simplicial set with a given algorithm
that computes the contraction on loops co: (GX)o — (GX)1, the contraction ¢y on
F> is automatically defined, as F> = X.

The majority of the effort in the rest of this section is concentrated on the description
of the contraction co on F3, as show that the contraction F;, i > 3 can be easily obtained
from the contraction on F3.

We remark that the loop contractions, i.e. maps co: Go(F;) — G1(F;) withdycg =
id and dyco = 1, are not unique. We only describe one of possible choices and provide
an analysis on the overall length of the formulas/running time of the algorithm.

7.1 Notation

We will further use the following shorthand notation: For a O-reduced simplicial set
X we will denote the iterated degeneracy sp - - - so* of its unique basepoint * by * and

17 For example, [a, 1][b,2][b,2]*1[a, 1]*1 can be split into a sequence ([b,2],[b,2]*l),
(la, 1], [a, 1171).
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we set r; = m;(X). For any Eilenberg—Maclane space K (7r;,i — 1), i > 2, we denote
its basepoint and its degeneracies by 0. From the context, it will always be clear which
simplicial set we refer to.

7.2 Loop contractionon Fj,i > 3

Suppose we have defined the contraction on the generators of Go(F3). i.e. for any
(x, k) € (X x¢ K(mp, 1))1 we have

co(( k) = (e, k) - G k)™ (xjukj) € (Fa)a,ej €Z,1 < j <n

such that doco((x, k)) = (x, k) and d1co((x, k)) = 1. In detail, we get the following:

(x, k) = doco((x, k)) = (dox1, dok1) " - - - (doxn, dokn) " ©)
1 = dico((x, K) = ((dox1, T Gdak) - @ixr dikn) -+
((@an. T Con)dok) - @rn dikn) (10)

We now aim to give a reduction on the generators of Go(F;), i > 3. Simplicial set F;
is an iterated twisted product of the form

(((X xor K (2, 1) X0 K(713,2)) X -+ X K (2,0 = 3)) X¢r K (i-1,0 = 2)

As simplicial sets K (r;j_1,i — 2) are 1-reduced for i > 3, we can identify elements
of (F;)1 with vectors (x,k,0,...,0), where k € K(m2,1);,x € X|. We further
shorthand the series of i — 3 zeros in the vector with 0. Hence generators Go(F;)
are of the form (x, k, 0). The 1-reducedness also implies that T’(a) = 0 whenever
o€ (Fp),i>2.

Finally, we set

co((x, k,0)) = (x1,k1,0)" - (xn, ky, 0) "
(xj, kj,0) € (Fi)2.€;€Z,1<j<n

The (almost) freeness of Go(F;), the fact that K (7r;—1,i — 2) are 1-reduced for
i > 3 and Eqgs. (9), (10) give that dyco((x, k, 0)) = (x, k, 0) and dico((x, k, 0)) = 1.

Before the definition of contraction on simplicial set F3, we recall some basic facts
about the simplicial model of Eilenberg—MacLane spaces we are using.

7.3 Eilenberg—-MacLane spaces

As noted in Sect. 3, given a group 7 and an integer i > 0 an Filenberg—MacLane
space K (m, i) is a space satisfying

. w forj =1,
(K, 1) = {O elsej.
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In the rest of this section, by K (7, i) we will always mean the simplicial model which
is defined in May (1992, p. 101)

K(m i), = Z' (A% ),

where A9 € sSet is the standard g-simplex and Z' denotes the cocycles. This means
that each g-simplex is regarded as a labeling of the i-dimensional faces of A9 by
elements of r such that they add up to 0 € & on the boundary of every (i 4+ 1)-simplex
in A?, hence elements of K (7, q), are in bijection with elements of 7. The boundary
and degeneracy operators in K (7, k) are given as follows: For any o € K (m,1),,
dj(0) € K(m, k)41 is given by a restriction of 0 € K (i, 1) to the j-th face of
A4, To define the degeneracy we first introduce mapping n;: {0,1,...,q + 1} —
{0,1,...,q} given by

R4 for¢ < j,
"J(Z)_{e—l for ¢ > j.

Every mapping n; defines amap C*(5;): C*(A?) — C* (A9 The degeneracy sjo
is now defined to be C*(1n;) (o) (see May 1992, §23).

It follows from our model of Eilenberg—MacLane space, that elements of K (2, 1)2
can be identified with labelings of 1-faces of a 2-simplex by elements of 7, that sum
up to zero.

As > is an Abelian group, we use the additive notation for 7o. We identify the
elements of K (w2, 1), with triples (ko, k1, k2), ki € w2, 0 < i < 2, such that kg —
ki +ky =0 € mp.

7.4 Loop contraction on F3

Let X be a O-reduced, 1-connected simplicial set with a given algorithm that computes
the contraction on loops cp: (GX)g — (GX).

In the rest of the section, we will assume x € X 1. Then by our assumptions coX =
Vi, where y; € Xo, 6, €7, 1 <i <n.Letk; = 17/(y;).

We first show that in order to give a contraction on elements of the form
(x,0) and (x, k), it suffices to have the contraction on elements of the form
(x, k):

7.5 Contraction on element (x, 0)

Let (x,0) € Go(F3). We define

n

o 0) = [ [ (cote k) (51, KiK. 0)) - (7 0)) .
i=1
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7.6 Contraction on element (x, k)

Suppose (x, k) € (G F3)o. The formula for the contraction is given using the formulae
on contraction on (x, 0) and (x, k) as follows

co(x, k) = (sox, (k,0, —k)) - so(x, 0)7] =500k, —k) - co((x, —k) 1 - co((x, 0))

7.7 Contraction on element (%, k)

We formalize the existence of the contraction as follows:

Lemma 15 Let k € mo(X). Then there is an algorithm that computes an element
z € (GF3)1 such that dyz = (x, k) and diz = 1.

The proof is postponed until later and uses a variety of technical results. The main
idea is to take a generator of 5 (X) represented by a spherical element y € 71(GX)
with [y] = k, and use it to find a filler of (x, k).

Consider first the following, simplified, situation: Suppose that there is y € (X)2
with do(3) = 1 and d,(3) = doy iy = 1. Letk = [7] € m2(X), then 7/(y) = k.
Observe that

do(y, (0,0,0)) = (doy.0) = (x,0) =1
di(y.(0,0,0) = (d2y. &) ' - (d1y. 0).

Purely from the point of view of information at our disposal, we are close to finding
co(*, k). What we need to do is to employ some algebraic machinations that would

“uncouple” the pair (d2y, k)_1 into, say (d>y, 0) ! and (x, k) 1, “merge” (d>y, 0)_l
with (dyy, 0) (thus eliminating it) and , finally, “switch” the “dp” and “d;”. These
informally described operations are made precise in Lemma 17.

In general case, for an arbitrary k € 7> one cannot expect that there exists y with
the properties as above, however, the following is true:

Lemma 16 Letk € mo, then there exists y = y1' - - - y," 6/5)71 where y; € X, and
t'yi = ki € m(X), suchthat doy =1 =d1y and Y ;_, €; - ki = k.

Proof Given an element k € m, = H,(X), one can compute a cycle y’ € Z,(X) such
that

[V']1=k e m(X) = Ha(X) = Hy(K (12,2)) = m2(K (72, 2)),
where the middle isomorphism is induced by ¢, and the other isomorphisms follow
from the Hurewicz theorem.

We recall that the loop contraction ¢ on the space X is given as a part of the input.
According to Lemma 13, one can compute the inverse of the Hurewicz isomorphism

H,(GX) — Hi(AX) = Hy(X)
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on the level of representatives.
Therefore, if we consider ' € AX, we can algorithmically compute a spherical
elementy = y1¢! ..y, € GX anditis easy to see that it has the desired properties.
O

We can now use Lemma 16 and some minor technical tricks to prove Lemma 15.

Proof of Lemma 15. Let k € 75, then, by Lemma 16, we compute y = y' - - -y, €
GX with y; € Xp and t'y; = k; € mp(X), such thatdpy = 1 =djy and )7, €; -
ki = k.

We define z’ € (GF3); by

n R .
¢ = (H (sodoyi, (ki, 0, —ki))c[> . (1_[ me) .

i=1 i=1

Observe that dy(z’) = 1 and

diz" = ((x, —k1) L (doy1, 0))" -+ (Gr, —k) L (doyn. 0))".

We apply Lemma 18 on z’ and get an element z” € (G F3); with the property doz” = 1
and d;7” = (x, k). We define z = so(x, k) - (z/)~!. Thus doz = (*, k) and d;z = 1.0

7.8 Technical statements

Definition13 Let Z = {z € (GF3); | dpz = 1} andlet W = {d|z | z € Z} We
define an equivalence relation ~ on the elements of W in the following way: We say
that w ~ w’ if there exists z € Z, a, B € (GF3)1 such that dz = w, azB € Z and
di(azp) = w'.

Lemma 17 Let w € W such that

1. w :me -, where « € (GF3)| Then w =m€ ca~a-(x k) =w
w= (%, k) -a wherea € (GF3)o. Thenw ~ w' = (%, —k) « - a.

w = mil(x, 0) - o, where o € (GF3)g. Then w ~ w’ = (x, k) - a.

w = milmwx where a € (GF3)o. Then w ~ w' = (%, k) - a.

wokwn

Proof In all cases, we assume z € Z such that diz = w and we give a formula for
7 € Z withd, 7/ = w':

1. 7 = S()()C.k)_6 -z - s0(x, k)€~

2.2 = (%, (k,0,—k)) - (so(x, k))_el'Z-

3. 7' = (so(x, k) - (sox, (k, 0, —kl)) "z

4. 7' = (so(x, k) (s1x, (k, k,0)) -z .

5.7 = (oG, k + D)k, (k +1,k, =) -z
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Lemma18 Letz € (GF3)y, z € Z with

1 € 1 €n
diz=w=(,—k1) 1,0 G —ky) - (X, 0)

where Xi' - x,;" =1in GXo, x; € X, kj e m(X), ¢ € {1,—1}, 1 <i <n. Then

w~ (X7 ki, %).

Proof We achieve the proof using a sequence of equivalences given in Lemma 17.
Without loss of generality we can assume that x; = x, and €1, € = 1 (If this is not
the case, we can use rule (1) and/or relabel the elements). Using (1) gives us

w=C6 k) 0200 k) @2, 0) ) @ O)"
~ k) G ) e k) G O e kD) 0)

Then successive use of (3), (1), (4), (1) and finally (5) gives us

w~ G2, k) - o —k) - G 00 Gy —k1) - (12, 0)
~ 2,00 G k) G k) o, O G, =R
~ k) G k) G 0 Ok kD)
~ Gk k) - G —ka) (3 0) - G =) G O

multiple use or rules (2) and (1) and gives us

1 1 €n
w ~Ck, —ky — ko —k3) - (x3,0) - Gk, —ky) - (x5, 0)

So far, we have produced some element 7’ € Z C (G F3); such that dpz’ = 1,

1 1 €n
dlz/ =(k,—k; —ky —k3) - (x3,0)---Cx, —kp) - (x,,0)

and further x3°% - - - X, = 1 in GXj.
It follows that the construction described above can be applied iteratively until all

elements (x;, 0) are removed and we obtain w ~ (— > 7 ki, %)~ O/, ki, %).
O

7.9 Computational complexity

We first observe that formulas for co on a general element (x, k) depend polynomially
on the size of co(X) and the size of contractions on (*, k). Hence it is enough to analyze
the complexity of the algorithm described in Proposition 15.

The computation of y’ is obtained by the polynomial-time Smith normal form
algorithm presented in Kannan and Bachem (1981) and the polynomial-time algorithm
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in Lemma 13. The size of z’ depends polynomially (in fact linearly) on size of y’. The
algorithm described in Lemma 18 runs in a linear time in the size of z’.

To sum up, the algorithm computes the formula for contraction on the elements of
G F; in time polynomial in the input (size X + size co(G X)).

8 Reconstructing a map to the original simplicial complex

This section contains the proof of Lemma 6 formulated on page 20. To summarize
it, we will prove that whenever a simplicial set X was constructed from a simplicial
complex X*¢ by contracting its spanning tree 7" into the basepoint and X is a simplicial
complex, then we can convert a simplicial map ¥ — X into a simplicial map between
simplicial complexes Sd(X) — X*¢ where Sd(X) is a suitable subdivision of X.
We will describe an explicit construction and argue that the underlying algorithm is
polynomial.

8.1 Edgewise subdivision of simplicial complexes

In Edelsbrunner and Grayson (1999), the authors present, for k € N, the edgewise sub-
division Esdy (A™) of an m-simplex A™ that generalizes the two-dimensional sketch
displayed in Fig. 4. This subdivision has several nice properties: in particular, the num-
ber of simplices of Esd(A™) grows polynomially with k. Explicitly, the subdivision
can be represented as follows.

— The vertices of Esd;(A™) are labeled by integer coordinates (ao, . .., a;) such
that a; > 0 and Zjaj =k.
— Two vertices (ag, . ..an) and (b, ..., by) are adjacent if there is a pair j < k

suchthat |bj —a;| = |by —ax| =1 and a; = b; fori # j, k.
— Simplices of Esdy(A™) are given by tuples of vertices such that each vertex of
a simplex is adjacent to each other vertex.

(0,0,4)

(4,0,0) (3,1,0) (2,200 (1,3,0)  (0,4,0)
Fig. 4 Edgewise subdivision of a 2-simplex for & = 4. In this case, there exists a copy of the 2-simplex

completely in the “interior”, defined by vertices (2, 1, 1), (1,2, 1) and (1, 1, 2). All other vertices are at the
“boundary”: more formally, their coordinates contain a zero
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We define the distance of two vertices to be the minimal number of edges between
them.

An edgewise k-subdivision of A™ induces an edgewise k-subdivision of all faces,
hence we may naturally define an edgewise subdivision of any simplicial complex.

8.2 Constructing the map Esd, () — X*¢

Let R be a chosen root in the tree 7. We denote the tree-distance of a vertex W from
R by disty (W). Let

[ := max{dist7 (V) : V is a vertex of X*¢}

be the maximal tree-distance of some vertex from R. For each vertex V of X5¢, there
is a unique path in the spanning tree that goes from R into V. Further, we define the
maps M(j) : (X*) O — (X5)O from vertices of X*¢ into vertices of X*¢ such that

- M()(V) =V if j = distr(V), and
— M(j)(V) is the vertex on the unique tree-path from R to V' that has tree-distance
j from R if j < disty (V).

If, forexample, R—U —V —W isapathin the tree, then M (0)(W) = R,M(1)(W) = U
etc. Clearly, M(I) = M(I+1) = - - - istheidentity map, as/ equals the longest possible
tree-distance of some vertex.

Assume that d is the dimension of X and k := I(d + 1) + 1. We will define
[ Esdi(X) — X*¢ simplexwise. Let T € X be an m-simplex and f(z) =6 € X
be its image in the simplicial set X. If o is the degeneracy of the base-point * € X,
then we define f'(x) := R for all vertices x of Esd;(z): in other words, f’ will be
constant on the subdivision of . Otherwise, ¢ is not the degeneracy of a point and has
aunique lift o0 € X** (recall that X := X**/T). Let (Vy, ..., V) be the vertices of
(order given by orientation): these vertices are not necessarily different, as o may be
degenerate.

In the algorithm, we will need to know which faces of o are in the tree 7. We
formalize this as follows: let § C 2™ be the family of all subsets of {0, 1, ..., m} such
that

— For each {ip, ...,i;} € §,{V, ..., Vii} is in the tree (that is, it is either an edge
or a single vertex),
— Each set in S is maximal wrt. inclusion.

Elements of S correspond to maximal faces of o that are in the tree, in other words,
to faces of & that are degeneracies of the base-point.

Definition 14 Let A™ be an oriented m-simplex, represented as a sequence of ver-
tices (eg, ..., en). For any face s C {eg, ..., e}, we define the extended face E(s)
in Esd;(A™) to be the set of vertices (xg, ..., X;;) in Esdg(A™) that have nonzero
coordinates only on positions i such thate¢; € S.

The geometric meaning of this is illustrated by Fig. 5.
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S1

E(s1)

Fig. 5 Illustration of extended faces. Here S = {s1, s2} corresponds to the lower- and left-face of a 2-
simplex. The extended faces £(s1) and E(sy) are sets of vertices of Esdk(Az) that are on the lower- and
left-boundary. The corresponding extended tree £(T') is the union of all these vertices. The integers indicate
edge-distances dist g7 of vertices in Esdy (A2) from £(T)

Fig.6 Labeling vertices of Vs
Esdi(A2) by Varg max x

Vs Vs
Vo Vi

Vo Vi
Vo W Vo 1% Vi

Definition 15 Let S be defined as above. We define the extended tree £(T) to be the
union of the extended faces £(s) in Esd;(A™) for all s € S. The edge-distance of
a vertex x in Esdg (A™) from £(T) will be denoted by distgr (x).

In words, £(T) it is the union of all vertices in parts of the boundary of Esd; (A™)
that correspond to the faces of o that are in the tree, see Fig. 5. The number distg7 (x)
is the distance to x from those boundary parts that correspond to faces of ¢ that are in
the tree.

To define a simplicial map from Esdg (7) to X*¢, we need to label vertices of Esdy ()
by vertices of X*¢ such that the induced map takes simplices in Esdi (t) to simplices
in X%¢. Recall that Vj, . .., V,, are the vertices of o. For x = (xq, ..., x;;), we denote
by arg max x the smallest index of a coordinate of x among those with maximal value
[for instance, arg max (4, 2, 1,4, 0) = 0, as the first 4 is on position 0]. The geometric
meaning of Vagg max » 18 illustrated by Fig. 6.

Now we are ready to define the map f/ : Esdi(t) — X*¢. It is defined on vertices
x with coordinates (xg, ..., X;,) by

f/(XOs oy Xp) = M(distgr (X)) (Vargmax x)- (11)
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In the tree

VV In the tree
S VAVAVAVA

Tree in X

R R R R R R R R

Fig. 7 Example of the labeling induced by formula (11). We assume that f(t) = ¢ where o is a simplex
of X*¢ with three different vertices V V| V5. In this example, the tree connects R — Vg — V| as well as
R — Vjy — V, and the edge V|V is not in the tree. On the right, we give the induced labeling of vertices
of Esdy (t) which determines a simplicial map to X*¢. The bottom and left faces of o are in the tree,
hence the bottom and left extended faces in Esdg (t) are all mapped into R. The right face of o is the
edge V1V, that is not in the tree: the corresponding right extended face in Esdy (t) is mapped to a loop
R — Vo — Vi — Vo — Vg — R, where V| V5 is the only part that is not in the tree. The bold edges are sent
to the edge Vi V2. The most interior simplex in Esdy (7) is highlighted and is the only one mapped to o

Geometrically, most vertices x will be simply mapped to V; for which the j’th coor-
dinate of x is dominant. In particular, a unique m-simplex “most in the interior of
Esdy (7)” with coordinates

. T . T . T . T . T
J+1 J J J J
J J+1 J J J
J , J N PR J J (12)
j+1 j+1 j+1 j+2 j+1
j+1 j+1 j+1 j+1 j+2
for suitable j will be labeled by Vy, V1, ..., Vj;; in other words, it will be mapped to

18
o.

However, vertices x close to those boundary parts of Esdy(t) that correspond to
the tree-parts of o, will be mapped closer to the root R and all the extended tree £(T)
will be mapped to R. One illustration is in Fig. 7.

8.3 Computational complexity

Assuming that we have a given encoding of ¥, f, X, X*¢ and a choice of T and R,
defining a simplicial map f’ : Esd;(X) — X*¢ is equivalent to labeling vertices

18 1f dim(r) = d is maximal, then Jj = [ and this most-middle simplex has particularly nice coordinates
G+ ....0D,....0, ..., LL1+1).
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of Esdy(X) by vertices of X*¢. Clearly, the maximal tree-distance / of some vertex
depends only polynomially on the size of X*¢ and can be computed in polynomial
time, as well as the maps M (0), ..., M(l). Whenever j > [, we can use the formula
M (j) = id. Further, k = [(d+ 1)+ 1 islinear in/, assuming the dimension d is fixed. If
T € ¥ isanm-simplex, then the number of vertices in Esdy (7) is polynomial ' in k, and
their coordinates can be computed in polynomial time. Finding the lifto of f(7) = G is
at most a linear operation in size(X*¢) 4 size(c). Converting o € X*¢ into an ordered
sequence (Vp, V1, ..., V) amounts to computing its vertices dod ...cfi ..., dyo,
where d; is omitted. Collecting information on faces of o that are in the tree and the
set of vertices £(T') is straight-forward: note that assuming fixed dimensions, there
are only constantly many faces of each simplex to be checked. If s = {io, ..., i}
is a face, then the edge-distance of a vertex x from £(s) equals to ), x;,. Applying
formula (11) to x requires to compute the edge-distance of x from £(T): this equals
to the minimum of the edge-distances of x from £(s) for all faces s of ¢ that are in
the tree. Computing arg max x is a trivial operation. Finally, the number of simplices
T of X' is bounded by the size of X, so applying (11) to each vertex of Esd; (X) only
requires polynomially many steps in size(X, f, X*¢, T, X).

8.4 Correctness

What remains is to prove that formula (11) defines a well-defined simplicial map and
that |Esdx (X)| — |X*¢| — |X] is homotopic to | X'| — |X].

Lemma 19 The above algorithm determines a well-defined simplicial map Esd(X) —
xse,

Proof First we claim that formula (11) defines a global labeling of vertices of Esdy (X))
by vertices of X*¢. For this we need to check that if t’ is a face of 7, then (11) maps
vertices of Esdy (') compatibly. This follows from the following facts, each of them
easily checkable:
— If 7’ is spanned by vertices of T corresponding to s {0, ..., m}, then a vertex
x’ := (x0,...,x;) in Esdi(z’) has coordinates x in Esdi(z) equal to zero on
positions {0...,m}\s and to xo, ..., x; on other positions, successively.
- If Vk’ =V, fors = (ig, ..., i;) are the vertices of the corresponding face of o,
then

/
Varg max x’ Varg max x

— The extended tree £'(T) in Esdg(t’) equals the intersection of the extended tree
in Esdg (7) with £(t')
— The distance distg7 (x) in Esdy (/) equals distg7 (x) in Esdy (7).

Further, we need to show that this labeling defines a well-defined simplicial map,
thatis, it maps simplices to simplices. We claim that each simplex in Esd (t) is mapped

19 Here the assumption on the fixed dimension d is crucial.
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either to some subset of {Vp, ..., V,,} or to some edge in the tree T, or to a single
vertex.

We will show the last claim by contradiction. Assume that some simplex is not
mapped to a subset of {Vp, ..., V,,}, and also it is not mapped to an edge of the tree

and not mapped to a single vertex. Then there exist two vertices x and y in this simplex
that are labeled by U and W in X*¢, such that either U or W is not in {Vy, ..., V};},
UW is not in the tree, and U # W.
The fact that at least one of {U, W} does not belong to {Vj..., V,,}, implies that
distgr(x) < lordistgr(y) <1 (as M(j) maps each Vg max x to itself for j > 1).
Without loss of generality, assume that argmax x = 0 and argmax y = 1. Then
the coordinates of x and y are either

x=(j+17js-x3s"'7xn‘l)v y:(j’j+17x35"'7xm)

such that x; < j + 1foralli > 3, or

xX=(j,J,x3,--sxm), y=0U—Lj+1,x3,...,xn)

for some j such that x; < j foralli > 3.

We claim that V) # V; and that the edge V'V is not in the tree. This is because
there exists a tree-path from R via U to Vj and also a tree-path from R via W to V (and
U # W): both Vy = V| as well as a tree-edge Vp V| would create a circle in the tree.
In coordinates, this means that vertices (x, %, 0, 0, ..., 0) are not contained in £(T),
apart of (k,0,0,...,0) and (0, %, 0, ...,0). So, any vertex in £(T) has a zero on
either the zeroth or the first coordinate. This immediately implies that distg7 (x) > j
and distg7 (y) > j. Keeping in mind that coordinates of x (and y) has to sum up to
k =1(d + 1) + 1, the smallest possible value of j is j = [ (if m = d is maximal),
in whichcasex = ({ +1,1,1,...,)andy = (I, + 1, ...,1). This choice, however,
would contradict the fact that either distgr(x) < [ or distgr(y) < [. Therefore
we have a strict inequality j > [. Finally, we derive a contradiction having either
distgr (x) > j > [ > distgr(x), or a similar inequality for y.

This completes the proof that each simplex is either mapped to a subset of
{Vo, ..., V) or to an edge in the tree or to a single vertex: the image is a simplex in
X3¢ in either case. O

Lemma 20 The geometric realizations of pf’ : Esdp(X) — X and f : ¥ — X are
homotopic.

Proof First we reduce the general case to the case when all maximal simplices in X
(wrt. inclusion) have the same dimension d. If this were not the case, we could enrich

any lower-dimensional maximal simplex T = {xo,...,x;} € X by new vertices
y]T. IRTRR yé and produce a maximal d-simplex

= T T

T = {xo,...,xj,yjﬂ,...,yd}.

Thus we produce a simplicial complex £ 2 X with the required property. When-
ever f(t) is mapped to 6 where o = (Vp, ..., V;), we define f(7) to be s;.lﬁ&,
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a degenerate simplex with lift (Vo, ..., V;, V;, ..., V;). The map [ 3 — X5¢is
constructed from f : ¥ — X as above and if we prove that | f| is homotopic to | pf’|
as maps |12 — |X], it immediately follows that their restrictions are homotopic as
maps | ¥| — | X| as well.

Further, assume that all maximal simplices have dimension d. Let t € X be a d-
dimensional simplex and let 7/ be the simplex in Esdy () spanned by the vertices

A+1,0,...D, ... ... L1 +1),

that is, the simplex in the interior of T that is mapped by pf’ to 6. Let Hy (-, 1) :
|z| — |7]| be a linear map that takes || linearly to |t?"| via mapping the i’th vertex
to(,...,l+1,1...,1) where the [ 4 1 is on position i. Further, let H; be a linear
homotopy |7| x [0, 1] — |7]| between the identity H,(-,0) = id and H, (-, 1). The
composition |pf’|H; then gives a homotopy |t| x [0, 1] — |X| between the restric-
tions (|pf')|jz| and (| f|)|r|. For a general x € | X, there exists a maximal d-simplex
|t] such that x € |7| and we define a homotopy

(x,0) = |pf'IHe(x, 1)

It remains to show that this map is independent on the choice of 7.

Let us denote the (ordered) vertices of T by {vg, v, ..., vg} and let 5 € t be
one of its faces: further, let w; be the vertex of /™ with barycentric coordinates
(d,....,1,1+1,1,...,1)/k in |t| such that the [ 4 1 is in position i. The homotopy
H_ sends points in |§| onto the span of points w; for which v; € §. For y € |§], the
Jj-th barycentric coordinate of H; (v, t) is equal to 7 (/ /k) for each j ¢ §. In particular,
the j-th coordinate of H;(y, t) is between 0 and [ /k for j ¢ &, and hence it is not the
“dominant” coordinate. It follows that each z := H; (x, t) is contained in the interior
of a unique simplex A of Esdy (7) such that vag max » € & for all vertices x of A.

Let ip < i1--- < i be the indices with vi; € d,and j; < --- < jg—i be the
remaining indices. Let " = (v, ..., v);) be another d-simplex containing § as a face.
Assume, for simplicity, that the vertices of 7’ are ordered so that vertices of § have
orders ig, ..., ir—such as it is in 7. Let o, o’ be the lift of f(7), f(z) respectively,
and V;, V/ the i-th vertex of o, o’ respectively.

We define a “mirror” map m : |t| — |t’|, which to a point with barycentric coor-
dinates (x, .. ., x4) with respect to T assigns a point in |t’| with the same barycentric
coordinates with respect to t’. Clearly, Hy/(y, 1) = m(H;(y,t)) for y € |t| and
whenever z is in the interior of a simplex A € Esdy(t), then m(z) is in the interior
of m(A), where vertices of A and m(A) have the same barycentric coordinates with
respect to T and t’, respectively. If, moreover, A is such that each of its vertices r have
coordinates < [/k on positions ji, ..., ji—k, then Vygmax, = 744

argmaxm(r)*

To summarize these properties, H; (v, t) and Hy/(y, t) satisfy that20

— they have the same coordinates wrt. T, 7/, respectively,

20 1y general, vertices of § may have different order in 7 and t’ and the assumption on compatible ordering
was chosen only to increase readability. If iy < --- < iy are such that vlf, = vj; (orders of §-vertices
J
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Fig.8 The homotopy H; takes
y linearly into z and H/ takes y
into z’. Due to the symmetry
represented by the horizontal
line, |pf’| maps Hy (y, t) into Vo

the same point of X as
[pf/|Hyr(y, 1)
% ZN\AL Vi

— they are in the interior of simplices A € Esd(t), A’ € Esdi(z’) whose vertices
have the same coordinates wrt. T, T/, respectively,

— the arg max labeling induces the same labeling of vertices of A, A’ by vertices of
3, respectively.

The map pf’ takes each m-simplex A in Esdi(t) with vertices ¢, labeled by

Vargmax s, 0Ont0 p(Vargmaxrs - - - » Vargmaxr,) and it follows from the above proper-
ties that m(A) is mapped to the same simplex. We conclude that |pf’|H;(y, 1) =
|pf'|Hy (y, t) for each y € |8| and ¢ € [0, 1] (Fig. 8). O
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