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Abstract

Transcription factors, by binding to specific sequences on the DNA, control the precise

spatio-temporal expression of genes inside a cell. However, this specificity is limited,

leading to frequent incorrect binding of transcription factors that might have deleterious

consequences on the cell. By constructing a biophysical model of TF-DNA binding in

the context of gene regulation, I will first explore how regulatory constraints can strongly

shape the distribution of a population in sequence space. Then, by directly linking

this to a picture of multiple types of transcription factors performing their functions

simultaneously inside the cell, I will explore the extent of regulatory crosstalk – incorrect

binding interactions between transcription factors and binding sites that lead to erroneous

regulatory states – and understand the constraints this places on the design of regulatory

systems. I will then develop a generic theoretical framework to investigate the coevolution

of multiple transcription factors and multiple binding sites, in the context of a gene

regulatory network that performs a certain function. As a particular tractable version of

this problem, I will consider the evolution of two transcription factors when they transmit

upstream signals to downstream target genes. Specifically, I will describe the evolutionary

steady states and the evolutionary pathways involved, along with their timescales, of a

system that initially undergoes a transcription factor duplication event. To connect

this important theoretical model to the prominent biological event of transcription factor

duplication giving rise to paralogous families, I will then describe a bioinformatics analysis

of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the

patterns of evolution that paralogs have undergone in their various protein domains in

the recent past.



vii

About the Author

Roshan Prizak completed B. Tech and M. Tech in Electrical Engineering, with a special-

ization in Communication and Signal Processing at the Indian Institute of Technology

Bombay in Mumbai, before joining IST Austria in September 2013. His main research

interests include the biophysics and evolution of gene regulation, and its connection to

the spatial organization of DNA inside the nucleus. During undergraduate studies, he

worked on various research projects as part of internships, some of which were published

in journals – social organization of the Asian elephant using graph theory at JNCASR

Bangalore, opinion formation model investigating cyclic dominance on graphs with Dr.
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Introduction

Biological systems use information stored in DNA to ensure that various necessary cel-

lular processes run in the correct spatiotemporal context. This information contains not

just the “how-to-build” instructions to manufacture the set of necessary proteins from

individual amino acids, but also “regulatory” information about when, where and how

much of each protein to produce [Jacob and Monod, 1961; Britten and Davidson, 1969;

François and Hakim, 2004]. While the how-to-build instructions are mostly contained

in the coding sequences of genes (some RNAs also act as building blocks), regulatory

information is contained in both non-coding DNA and a few proteins involved in gene

regulation. Such an important set of proteins called transcription factors (TFs) are one

of the primary molecular actors in the decoding of this regulatory information from non-

coding DNA [Lambert et al., 2018; Vaquerizas et al., 2009; Mitchell and Tjian, 1989].

TFs bind to specific regions - binding sites (BSs) in the cis-regulatory elements (CREs)

on non-coding DNA - and based on their binding activities, control the spatiotemporal

expression of nearby target genes to ensure that the required proteins are produced by the

cell in various cellular contexts. This fundamental process, called transcription, is a cru-

cial step in the conversion of information on the DNA into proteins, which in turn have

the capability to perform various functions. Some of these proteins are in turn them-

selves transcription factors and hence form an inter-connected network of genes called

gene regulatory networks (GRNs) that together read out genetic information from DNA

to assist in cellular programs [Sauka-Spengler and Bronner-Fraser, 2008; Olson, 2006;

Zhou et al., 2007]. It is important to remember that such a network picture is a carica-

ture, but it offers a useful conceptual framework to understand transcription factor based

gene regulation.

In a GRN, different TFs and other target genes, which sometimes themselves code for

TFs, are associated with the nodes of the network. The network is then defined by
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connections between pairs of nodes, called edges, symbolizing an interaction between the

genes associated with the nodes; for instance, a TF node activating another gene. The

basic molecular interaction that forms these edges is the binding of a transcription factor

protein to the binding site in the CRE corresponding to a target gene. In prokaryotes,

such binding sites are located in close proximity to the target gene’s transcription start

site (TSS) on the linear DNA, and this stretch of DNA close to the gene’s TSS is called

a promoter. The mechanism of activation is usually via a direct interaction between an

activator TF and RNA Polymerase (RNAP), and repression is achieved by a physical

exclusion of RNAP or other potential activator TFs through the competitive binding of a

repressor TF. On the other hand, the mechanisms behind transcription regulation and the

role of TF-DNA binding in eukaryotes are vastly more complex and not well understood

[Coulon et al., 2013]. Apart from the gene-proximal promoters, eukaryotes also have

distal regulatory elements called enhancers that are sometimes located as far as a few

Mbp (mega basepairs) away from the TSS [Blackwood and Kadonaga, 1998; Pennacchio

et al., 2013; Maston et al., 2006]. Both promoters and enhancers contain a large number

of binding sites of various types of transcription factors, and it is believed that TFs,

via their joint binding activities on enhancers, influence transcription in a combinatorial

fashion [Spitz and Furlong, 2012]. Further, the question of how the binding activities

of TFs on these distal enhancers combines forces with those on proximal promoters and

thereby influences transcription, is largely open. It is especially challenging to explain

how these regulatory elements interact at the typical long genomic distances of a few kilo

basepairs to a few mega basepairs, bringing into focus the dynamics of these regulatory

elements in the 3D space of the nucleus [Chen et al., 2018; Lim et al., 2018]. This general

question of how the 3D spatial organization of DNA, and chromatin at large, inside the

nucleus, interacts with transcriptional machinery is opening new avenues of research.

Using a combination of new experimental methods like advanced imaging [Chen et al.,

2018; Lim et al., 2018], chromosome conformation capture techniques [Lieberman-Aiden

et al., 2009] and concepts from physics like non-equilibrium statistical physics and phase

separation [Hnisz et al., 2017; Strom et al., 2017], important headways are being made

into answering these fundamental questions [Boehning et al., 2018; Cho et al., 2018].

While the physical principles inform us about how gene regulatory systems work, to

understand why a particular gene regulatory network performs a particular function,

we need to embed these biophysical models into an evolutionary framework to prop-

erly define such questions [Levo and Segal, 2014; Necsulea and Kaessmann, 2014; Villar

et al., 2014]. Cells and organisms have evolved different types of gene regulatory net-

works to respond in a myriad of situations. Constraints emerging from a combination

of the underlying biophysics of transcription and the particular information processing

needs of the cell in a signalling context dictate which network evolves in that context.

Such ideas are now being put on a solid quantitative footing [Hillenbrand et al., 2016;

Tkačik and Bialek, 2016]. Insights from such an approach to understand the evolution

of gene regulatory networks are more generally translatable to other biological systems

involving molecular recognition between interaction partners. A few ubiquitous examples

of molecular recognition that permeate life are, nucleotide interactions in DNA replica-
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tion and repair, ligand-receptor interaction in signal sensing [Mora, 2015], protein-protein

interactions [Chothia and Janin, 1975; Jones and Thornton, 1996], immune system recog-

nition events [Akira et al., 2006] and molecular self-assembly [Murugan et al., 2015]. This

is an important insight, given the biological cell is an extremely crowded and dynamic

environment with many atoms and molecules of multiple types - sugars, proteins, ions,

lipids, acids, etc. These molecules are moving around inside the cell and constantly inter-

acting with each other, but however, only a few of these interactions – precise biochemical

reactions – are successful in affecting the state of the cell. How do we reconcile the picture

of a crowded cell with these precise schemes of biochemical reactions?

The functional fidelity of such systems, and therefore, ultimately, the fitness of the

cells and organisms, depends on the specificity of such molecular recognition interac-

tions embedded as precise biochemical reactions in a background of numerous inter-

actions in the crowded cell. This specificity stems from the specific interactions be-

tween the underlying monomer units involving the recognition partners - via hydro-

gen bonds, electrostatic interactions, entropic forces, and other such molecular forces.

These forces are not perfectly specific, giving rise to interactions between non-cognate

monomer unit pairs. As cells have to process multiple molecular recognition events in

parallel, a large number of non-cognate partners are typically present. This large excess

of non-cognate partners and the limited specificity of monomer interactions inevitably

result in a large number of incorrect recognition events between the wrong pairs of

partners. This is called crosstalk [Friedlander et al., 2016; Jacob and Monod, 1961;

Britten and Davidson, 1969].

Crosstalk is a systemic property of biological systems whose quantification requires a

bridging of the microscopic molecular picture of molecular recognition with a global sys-

temic view of the molecular interaction network. Crosstalk is typically considered delete-

rious as incorrect recognition events can result in loss/alteration of important biological

information. For instance, a wrong nucleotide base insertion during DNA replication

can result in a mutation, a wrong antibody recognition event can result in autoimmune

diseases, and a wrong TF-BS binding can result in erroneous activation of genes [Hahn

et al., 2003]. In this context, one important question is how the different possible un-

derlying microscopic molecular pictures vary in the amount of crosstalk they produce,

as organisms might have evolved molecular mechanisms that mitigate crosstalk. It has

been suggested before that molecular mechanisms like kinetic proofreading and cooper-

ativity result in reduced crosstalk [Bird, 1995; Todeschini et al., 2014], but a rigorous

quantitative framework has been lacking to properly investigate such claims.

To answer such questions in the case of transcriptional regulation, we developed a joint

framework combining the biophysics of transcription and evolutionary dynamics. The

basic interaction motif in gene regulatory networks is a TF-BS binding pair, which is

my focus of investigation for a major part of this thesis. Transcription factor proteins

are equipped with a DNA binding domain (DBD) – the amino acids which interact with

nucleotides on the DNA via hydrogen bonds and electrostatic interactions. Specificity

in TF-DNA binding arises from the specificity of the interaction between the amino
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acids and the nucleotides, and hence, TFs, depending on the amino acid sequence of

their DBD, have distinct DNA sequence binding profiles [Lambert et al., 2018]. We

use an equilibrium thermodynamic model of TF-BS binding based in sequence space

that captures these biophysical properties of TF-DNA interaction [Ackers et al., 1982;

Von Hippel and Berg, 1986; Lynch and Hagner, 2015], as the biophysical framework for

asking questions about crosstalk and evolution.

The framework we develop to understand TF-BS coevolution can be modified to under-

stand other molecular recognition systems mentioned previously. A major determinant of

the patterns of crosstalk and coevolutionary dynamics is the specificity per site, and how

it is distributed over the set of interacting sites. Further, the molecular mechanisms be-

hind the transfer of information from molecular recognition to downstream target cellular

process take a crucial role in the models. In this thesis, we assume that TF-BS binding

is enough to trigger transcription, in an equilibrium assumption. Non-equilibrium mod-

els - for instance, kinetic proofreading models, and richer models accommodating more

states for the machinery behind molecular recognition and the associated cellular process

- in the case of transcriptional regulation, models with different enhancer and promoter

states, multi-step promoter architectures [Rieckh and Tkačik, 2014] etc., offer a possibility

of investigating a broader range of biophysical models. This is the genotype-phenotype

map. Finally, coevolutionary dynamics are also influenced by the phenotype-fitness map,

which captures how the survival of the cell (or organism) depends on the set of phenotypes

associated with the molecular process in question. Completing the picture, the genotype-

phenotype-fitness map, or the fitness landscape, of a molecular-recognition system and

the associated cellular process, captures both selective as well as mutational constraints

via a combination of biophysical and evolutionary models, and the differences in these

genotype-phenotype-fitness maps between various molecular recognition system result in

different patterns of their evolution.

In Chapter 1, I will introduce in detail the biophysical framework of TF-DNA binding

in sequence space that we use in answering the various questions of the thesis. We use a

grand-canonical ensemble framework to describe the bound/unbound states of BSs inside

the nucleus, by treating different TF species with different chemical potentials. Under

this equilibrium assumption, we compute the equilibrium probability of a BS sequence

being bound by a TF molecule under various TF concentrations. Then, I will also show

how regulatory constraints on DNA sequence in the form of presence or absence of strong

binding sites for various TFs, shape the structure of the sequence space.

In Chapter 2, I will quantify crosstalk in transcriptional regulation and investigate its

dependence on various underlying parameters like the number of TFs, number of target

genes, TFs’ degree of specificity, binding site length and other biophysical parameters. I

will also show how various molecular mechanistic strategies of transcription like combina-

torial regulation, use of activators and repressors, result in different levels of crosstalk. To

connect with data, I will also present a basic bioinformatics strategy to compute crosstalk

in real organisms.

Then in Chapter 3, I will introduce a generic theoretical model that merges the biophys-
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ical framework of TF-DNA binding in sequence space developed in Chapter 1 with an

evolutionary framework. In this model, we also consider upstream signal statistics as well

to investigate transcription in a broader signal-response framework. Such a setup allows

us to ask evolutionary questions of TF-DNA systems.

In Chapter 4, I will describe a specific case of the generic TF-BS coevolution (from

Chapter 3) that has only two TFs regulating a set of target genes. I will investigate the

evolutionary dynamics following a TF duplication event and describe the steady states,

evolutionary pathways and the corresponding timescales the system takes to acquire spe-

cialized TFs. I will also show that the fitness landscape is rugged in the presence of

multiple target genes, and consequently results in slow evolutionary dynamics. Then I

will show that “promiscuity-promoting” mutations, a novel mutation type that has been

observed in a few experimental studies on TFs and protein-protein interactions, help

the system escape the ruggedness of the fitness landscape, and result in fast specializa-

tion.

In Chapter 5, I will describe a preliminary bioinformatics analysis of the evolution of

Zn-finger TFs in the human genome, one of the largest families of transcription factor in

animals. I will illustrate how various genomic features of Zn-finger TFs might be related

to each other, and probe their relationship between paralog TFs. After showing that

computation of a single dN{dS ratio (depicting presence or absence of positive selection)

across all sites of the protein damps any signal that might be present, I will describe vari-

ous site-specific models of dN{dS computation. These inform us that Zn-finger TFs have

undergone positive selection primarily at the amino acids responsible for their binding

specificity to DNA. Further, I illustrate a possible coevolution between Zn-finger TFs with

a KRAB domain and transposable elements, and show that KRAB-domain containing

Zn-finger TFs might have undergone adaptation to bind new transposable elements.

Finally, in Chapter 6, I will summarize the main findings of this thesis in a concise

manner. If you are in a hurry, and would like get an overall picture and a gist of the

main results, I would advise you to read this chapter after introduction, and depending

on further interest, refer back to individual chapters and go through them in detail.
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TF-DNA binding in sequence space

1.1 Introduction

Transcription factor proteins contain at least one DNA binding domain (DBD), compris-

ing the amino acids which interact with nucleotides on the DNA via hydrogen bonds

and other molecular forces like electrostatic and van der Waals interactions. It is these

contacts that primarily confer sequence-specific binding properties to the TF. Specificity

may also, to some extent, depend on the whole sequence or other amino acids, via protein

conformation or a shape-based TF-DNA interaction. For a majority of the TFs, depend-

ing on the amino acid composition of the DBD, each TF has a specific preferred binding

site (BS) sequence, called the consensus sequence, that the TF binds with the highest

affinity [Levo and Segal, 2014; Najafabadi et al., 2015]. This sequence-specific binding of

TFs is what enables correct spatiotemporal expression patterns in the cell. By evolving

TFs and “matching” BS sequences at the appropriate locations along the genome, the

cell ensures that the right genes are activated in various contexts. While the biophysical

mechanism behind this complex process of how TF binding is related to the expression

of the target gene is still largely unclear, studies in prokaryotes have shown that a model

assuming equilibrium binding of TF to the BS, and subsequent recruitment of RNAP to

transcribe the target gene, predicts the expression levels very well. On the other hand,

the scenario is much more complex in eukaryotes, and much less is known about the

concerted action of various TFs in regulating the transcriptional status of a gene.

Inside a cell, there are molecules belonging to various different TF types, each involved

in various aspects of the cell’s transcriptional programs. In such a picture, an important

aspect of such a regulatory system that requires multiple TFs to simultaneously find the

correct “addresses” in the form of BS sequences, is the chance of finding an incorrect
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address. Given that the cell has many transcription factors that recognize a whole range

of short sequences (of about lengths between 5bp and 20bp typically), and that a large

portion of the DNA does not contain functional BS sequences, this becomes a crucial

problem that the cell has to address. The cell should make sure that not only incorrect

activation of off-target genes is minimized, but should also make sure that BS sequences

do not frequently arise by chance in the vast chunk of non-regulatory sequence that makes

up the genome. This is related not just in preventing unnecessary sequestration of TF

molecules on nonspecific sites, but is also related to genomic stability by heterochromatin

maintenance. Some TFs can trigger the opening of heterochromatin, leading to a cascade

of transposable element expression, for instance. Such a scenario would lead to combina-

torial action of the heterochromatin-modifying TFs and the specific activating TFs, with

possibly sharper induction curves.

In this chapter, after introducing the biophysical framework of TF-DNA binding that I

use in this thesis, I will describe how constraints on a DNA sequence to be not regulatory

(not contain any BSs) shapes the sequence space. The biophysical model will set the

background for the various questions tackled in the subsequent chapters, and the explo-

ration of non-regulatory sequence space will set the tone for tackling the related problem

of transcriptional crosstalk, the topic of the next chapter.

1.2 Biophysical model

In our biophysical model of transcription, we consider TF-DNA binding to be at ther-

modynamic equilibrium and use a grand-canonical ensemble framework to describe the

bound/unbound states of the BSs [Ackers et al., 1982; Von Hippel and Berg, 1986;

Lynch and Hagner, 2015]. Even though this equilibrium assumption is more suited to

prokaryotes than eukaryotes, we consider both prokaryotic and eukaryotic TFs in our

models. We compute the equilibrium probability of a BS sequence being bound by a TF

molecule, which is a quantity that we will keep coming back to in various chapters of the

thesis. This probability of a BS being bound is related to the level of expression of the

target genes. We describe the TF by its consensus sequence and specify the affinity of

the TF to different BS sequences by their binding energies as

E “
L

ÿ

j“1

Epjq, (1.1)

where the TF binds to sequences with length L and Epjq is the contribution from the

jth position in the sequence. Such a definition assumes that different positions in the

sequence contribute linearly towards the total binding energy. Given a TF with consensus

sequence s˚, and a BS with sequence s, we have Epjq “ PWMspjq,j where PWM is the

position-weight matrix of the TF. This is a matrix of size 4 ˆ L, with entries describing

the energetic contribution of different nucleotides at each position of the binding site

sequence. We have PWMs˚pjq,j “ 0, @j to ensure that that the contribution of the
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correct nucleotide (that in the consensus sequence) at each position is zero towards the

binding energy. In the constant mismatch model, we assume that all other entries equal ϵ:

PWMspjq‰s˚pjq,j “ ϵ, @j. In this model, the binding energy between a TF with consensus

sequence s˚ and BS sequence s is given by E “ ϵdps, s˚q, where dps, s˚q is the Hamming

distance between the sequences s and s˚ [Ackers et al., 1982; Von Hippel and Berg, 1986;

Lynch and Hagner, 2015; Berg and von Hippel, 1987].

1.3 Grand-canonical ensemble

We consider the following situation of TFs inside the nucleus (though I refer to nucleus,

the arguments apply to prokaryotes as well). In a nucleus of volume V , we have TFs from

one species with copy number C, and each TF molecule occupying a volume v. Each TF

binds to a particular BS (of length L) on the DNA with energy E, which depends on the

TF consensus sequence s˚, the BS sequence s, and the position-weight matrix PWM of

the TF. Each TF also binds to a random sequence of length L on the rest of the genome

(of size G base pairs) with a nonspecific binding energy Ens. An unbound BS has an

energy of Eu.

We want to obtain µ, the chemical potential of this TF species, to use in a grand-

canonical ensemble treatment to compute pon, the equilibrium probability that the BS is

bound by a TF molecule. We have different components in this system - TF molecules,

BS sequence, random sequences on the rest of the DNA, and free solution of the nucleus.

In the canonical treatment, we consider the whole nucleus, including all of the mentioned

components, as the system, while in the grand-canonical ensemble, we consider the BS

+ any bound TF as system, and the rest of DNA + the nuclear free solution as the

reservoir. We obtain the chemical potential as,

µpCq “ ln
ZpC ´ 1q

ZpCq
, (1.2)

where ZpCq is the canonical partition for the reservoir. Intuitively, lnrZpCqs corresponds

to the free energy of the reservoir and this way of finding the chemical potential agrees

with the relation between µ and free energy: chemical potential is defined as the rate

of change of the free energy of a system with respect to the change in the number of

molecules. In the reservoir, the C TF molecules are distributed between being bound

nonspecifically to the rest of the genome and floating around in the free solution.

ZpCq “
C

ÿ

C1“0

ˆ

G

C1

˙

ep´C1Ensqe´pG´C1qEu

ˆ

N

C ´ C1

˙

e´pC´C1qEsol , (1.3)

where C1 molecules are bound somewhere on the DNA and the rest are in solution,

N “ pV {vq is the number of boxes (of size v) comprising the free solution and Esol is the
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energy of a TF in free solution. Typically, N " G " C which allows us to approximate

using
`

N
i

˘

«
N i

i!
when N is large and N " i,

ZpCq « e´GEu

C
ÿ

C1“0

GC1

C1!
e´C1pEns´Euq NC´C1

pC ´ C1q!
e´pC´C1qEsol (1.4)

“
e´GEu

C!

C
ÿ

C1“0

ˆ

C

C1

˙

”

Ge´pEns´Euq
ıC1

”

Ne´Esol

ıpC´C1q

(1.5)

“ e´GEu
1

C!

”

Ge´pEns´Euq
`Ne´Esol

ıC

. (1.6)

Now, using Eq. 1.2, we have, µ “ lnC ´ ln
”

Ge´pEns´Euq `Ne´Esol

ı

. Further, if the rest

of the genome and free solution are macroscopic subsystems of the reservoir, their local

chemical potentials are equilibrated. From this, one can show that the chemical potential

µ obtained above can also be obtained by just considering the copy number of TFs that

is bound to the DNA Cb as

µ “ µb “ lnCb ´ ln
”

Ge´pEns´Euq
ı

, where (1.7)

Cb “
Ge´pEns´Euq

Ge´pEns´Euq `Ne´Esol
C. (1.8)

Also, we have, with Cf as the number of TF molecules free in the solution,

µ “ µf “ lnCf ´ ln
”

Ne´Esol

ı

, where

Cf “
Ne´Esol

Ge´pEns´Euq `Ne´Esol
C.

Some of the random sequences on the rest of the DNA might be very similar to s˚ by

chance, and hence a TF molecule could bind to it in a specific configuration that depends

on the specific random sequence. Hence, there are two alternative TF-DNA binding

configurations - specific binding, depending on the sequence, and non-specific binding

which is sequence-independent. Here, I will illustrate how to include specific binding to

rest of the DNA as well into the computation of the chemical potential. We have,

ZpCq “
C

ÿ

C1“0

ˆ

G

C1

˙

”

C1
ÿ

C2“0

ˆ

C1

C2

˙

e´pC1´C2qEns

C2
ź

i“1

e´Epsiq
ı

e´pG´C1qEu

ˆ

N

C ´ C1

˙

e´pC´C1qEsol , (1.9)

where C2 TF molecules (out of C1 that are bound to the DNA) bind random sequences,

tsiu, on the DNA in a specific configuration, with energies tEpsiqu. Assuming that

random DNA sequences come from some underlying distribution Prand, we can write the
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following via a mean-field assumption:

ZpCq “
C

ÿ

C1“0

ˆ

G

C1

˙

”

C1
ÿ

C2“0

ˆ

C1

C2

˙

e´pC1´C2qEns
@

e´Epsiq
DC2

Prand

ı

e´pG´C1qEu

ˆ

N

C ´ C1

˙

e´pC´C1qEsol (1.10)

“

C
ÿ

C1“0

ˆ

G

C1

˙

”

e´Ens `
@

e´Epsiq
D

Prand

ıC1

e´pG´C1qEu

ˆ

N

C ´ C1

˙

e´pC´C1qEsol (1.11)

Making the same approximations as before, one obtains

µ “ lnC ´ ln
”

GeEu

´

e´Ens `
@

e´Epsiq
D

Prand

¯

`Ne´Esol

ı

(1.12)

“ lnC ´ µ0, (1.13)

where we define µ0 “ ln
”

GeEu

´

e´Ens `
@

e´Epsiq
D

Prand

¯

` Ne´Esol

ı

. Assuming that

the underlying distribution of DNA sequences is uniform over the nucleotide alphabet

tA,C,G, T u, and making the constant mismatch penalty assumption, we have

@

e´Epsiq
D

Prand
“

´1` 3e´ϵ

4

¯L

. (1.14)

Saturating energy landscape

We have assumed that binding energy between a TF and a binding site increases linearly

with the number of mismatches between the TF consensus sequence and the binding site

sequence. It is often seen in experimental measurements that the binding energy increases

till a certain threshold mismatch, after which it saturates to a constant value. Hence, an

alternative model of TF-DNA binding is that of a saturating energy landscape in which

binding energy increases linearly with mismatch k, as ϵk, till a threshold mismatch kns,

after which it is constant at Ens. A biological picture corresponding to this model is one

in which the TF-DNA complex takes up two alternative binding configurations - specific

or nonspecific - depending on which is the more favourable one energetically. In this case,

we have,

ZpCq “
C

ÿ

C1“0

ˆ

G

C1

˙

”

PNSe
´Ens ` p1´ PNSq

@

e´Epsiq
D

Prand|PNS

ıC1

e´pG´C1qEu

ˆ

N

C ´ C1

˙

e´pC´C1qEsol , (1.15)

where PNS “ PrandpEpsiq ě Ensq is the probability that a random DNA sequence of

length L has specific binding energy greater than or equal to the nonspecific binding

energy. In the constant mismatch energy model and for a uniformly distributed DNA
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sequence, the following expressions follow from above. First, let’s define kns :“ rEns{ϵs.

We have,

PNS “

L
ÿ

i“kns

ˆ

L

i

˙

3i

4L
, (1.16)

@

e´Epsiq
D

Prand|PNS
“

1

PNS

kns´1
ÿ

i“0

ˆ

L

i

˙

3i

4L
e´ϵi. (1.17)

Probability of bound BS

Now, given the chemical potential of the TF species is µ, we can write, for the equilibrium

probability that the BS is bound,

pb “
1

Z
e´pE´µq

“
1

1` exppE ´ µq
“

C

C ` exppE ´ µ0q
, (1.18)

where Z “ 1 ` e´pE´µq is the partition function of the BS (+any bound TF) as the

system. If the BS sequence s has k mismatches with the TF consensus sequence s˚, in

the constant mismatch penalty model, we have,

pb “
1

1` exppϵpk ´ k˚q
, (1.19)

where we define k˚ :“ µ{ϵ, as a critical mismatch threshold. If the BS sequence has more

than k˚ mismatches with the TF consensus sequence, then its probability of binding is

less than half: pb ă 1{2.

If there are multiple TF species (Q in total) present in the nucleus, with copy numbers

tCiu, chemical potentials tµpiqu, binding energies tEiu and mismatches with BS sequence

tkiu respectively, we have,

Z “ 1`
Q

ÿ

i“1

e´pEi´µiq “ 1`
Q

ÿ

i“1

Cie
´pEi´µ

piq

0 q
“ 1`

Q
ÿ

i“1

e´ϵpki´k˚
i q, (1.20)

where k˚
i is the threshold mismatch of the ith TF. Now the probability that the BS is

bound by a molecule of the xth TF is,

p
piq
b “

Cxe
´pEx´µ

pxq

0 q

1`
Q

ÿ

i“1

Cie
´pEi´µ

piq

0 q

“
e´ϵpkx´k˚

x q

1`
Q

ÿ

i“1

e´ϵpki´k˚
i q

. (1.21)
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Figure 1.1: Binding probability depends on the mismatches between TF con-

sensus sequence and BS sequence. Binding probability, the probability that a TF

binds a DNA sequence, under the equilibrium assumption and the constant mismatch

penalty assumption, depends on the number of mismatches, k, between the TF consen-

sus sequence and the DNA sequence. If the mismatches k are smaller than a threshold,

k˚, then the binding is strong and the DNA sequence is a BS, else it is weak and the

sequence is not a BS.

1.4 Regulatory constraints on non-coding sequence

As seen in Fig. 1.1, the probability that a particular BS (with a specified sequence) is

bound by a particular TF depends on whether the TF-BS mismatch is greater than or

lesser than the critical mismatch threshold. In real organisms, there exist long stretches

of regulatory elements like promoters and enhancers with very specific sequence features

that shape their function. On the other hand, other stretches of DNA are required to

not have any binding site sequences for TFs that are expressed in particular cells. In

this chapter, I will explore the question of how do such regulatory constraints on the

sequence space shape its structure? I will describe a first approach to this problem using

a motif-based analysis.

The following framework is used. Given a length G of genomic sequences, σ, under the

absence of any constraints there are 4G sequences possible, with each sequence equally

probable: P0pσq “ 1{4G, is a uniform distribution over the sequence space. When we

introduce equality constraints via fpσq “ a, or inequality constraints via gpσq ď b) on the

sequences, their distribution, P pσq, changes to satisfy these constraints. In our analysis,

we consider regulatory constraints as the existence or non-existence of motifs, meaning

the similarity of binding site sequences to the consensus sequences of a few specified TFs.
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Hence, the functions f and g, given a critical mismatch threshold, count the number of

BS sequences (subsequences of σ) that are similar or dissimilar to a set of TF consensus

sequences.

We are effectively asking what sequences are possible when certain motifs (sequences)

have to be present (within the critical mismatch threshold) and certain other motifs

have to be absent. First, let us consider the problem of understanding the space of non-

regulatory sequences (no motifs should be present) considering only 1 motif of length L:

no BSs for a specific TF.

1.5 One motif: non-regulatory sequence

Given a motif s˚ of length L, we’ll add in constraints on σ via the non-existence of motifs

similar to s˚ in any of σ’s subsequences.

For a sequence s˚ (motif) of length L and an integer k˚ ě 0, what is the

number of sequences σ of length G, such that for all subsequences s of σ,

we have dps, s˚q ą k˚?

Here, dps, s˚q is the mismatch or the Hamming distance between s and s˚. To answer

this question, we treat σ as a list of overlapping subsequences, ps1, s2, s3, . . . q, of length

L, each of which is a potential binding site. There are X “ G´L` 1 such subsequences.

Let us assume that the mismatch dpsi, s
˚q between si and s˚ is ki. We want to calculate

P pk1 ą k˚, k2 ą k˚, . . . q, the probability that every subsequence has a mismatch greater

than k˚. We write this as γall “ P ptki ą k˚uq for ease. First, let us consider the

computation of P ptkiuq, the overall joint probability of all the mismatches together,

which, using the chain rule, can be decomposed as

P ptkiuq “ P pk1q
X

ź

j“2

P pkj|kj´1, kj´2, . . . q. (1.22)

In the terms in the above equation, the distribution of kj depends only on the mismatches

of sites i ă j. However, as the binding sites are of length L, the distribution of kj depends

only on the previous L ´ 1 mismatches: kj´1, kj´2, . . . , kj´L`1. The other subsequences

si, i ď j ´ L of length L do not overlap with sj. Also, note that in general, kj depends

decreasingly lesser on kj´a with increasing a as the two subsequences share a smaller

overlap. Hence, we can write

P ptkiuq “ P pk1q
X

ź

j“2

P pkj|tkj´auaăj,aăLq, (1.23)

where tkj´auaăj,aăL represents a maximum of previous L´1 mismatches from site j. The

central term in this calculation is P pkj|kj´1, kj´2, . . . , kj´L`1q. Now, we can calculate

γpQ “ 1, L,G, k˚q, the probability that a DNA sequence of length G does not contain
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subsequences that are similar (by a maximum of k˚ mismatches) to one given motif of

length L as

γall “ P ptki ą k˚
uq (1.24)

“ P pk1 ą k˚
q

X
ź

j“2

P pkj ą k˚
|kj´1 ą k˚, kj´2 ą k˚, . . . , kj´L`1 ą k˚

q. (1.25)

This dependence on the previous L´ 1 mismatches is hard and cumbersome to compute,

and so we will assume that adjacent mismatch correlations can capture this mismatch

dependency sufficiently and verify its validity in Fig. 1.2. Specifically, we will assume

that P pkj ą k˚|kj´1 ą k˚, kj´2 ą k˚, . . . , kj´L`1 ą k˚q « P pkj ą k˚|kj´1 ą k˚q. This is

the first major approximation we undertake.

γadj “ P ptki ą k˚
uq “ P pk1 ą k˚q

śX
j“2 P pkj ą k˚|kj´1 ą k˚q (1.26)

“ P pk1 ą k˚qP pk2 ą k˚|k1 ą k˚qX´1. (1.27)

The second set of terms capture the mismatch correlations between adjacent sides. As

there are X ´ 1 adjacency mismatch terms from site 2 to site X, the exponent X ´ 1

comes about. Thus, neglecting adjacent mismatch correlations, we have,

γnone “ P pk1 ą k˚qX . (1.28)

We use γadj in further computations to capture adjacent mismatch dependency. The

validity of this approximation depends crucially on the properties of the motif, and would

not work well for motifs that are highly repetitive – say AAAAA, as seen in Fig. 1.2.

However, most motifs, when randomly picked from the sequence space of some length L

would not contain repetitive substrings, and hence these series of approximations hold

well.

1.6 Many motifs: non-regulatory sequence

Next, we consider the case of the non-existence of matches to Q different motifs.

For Q sequence ts˚
mu, m “ 1, 2, . . . , Q (motifs) of length L and an integer

k˚ ě 0, what is the number of sequences σ of length G, such that for all

subsequences s of σ, we have dps, s˚
mq ą k˚ @ m “ 1, 2, . . . , Q?

For this, we want to calculate P ptkim ą k˚uiďG´L`1,mďQq, where i indexes over bind-

ing sites on the sequence and m indexes over motifs. For simplicity, we write this as

P ptkim ą k˚uq. While in the previous scenario of 1 motif, we had to capture the mis-

match correlations between adjacent sites, in the case of Q motifs, we have to capture

also the mismatch correlations of a site with different motifs. Hence, the arrangement of

the motifs in the sequence space needs to be accounted for. For instance, if two motifs

are exactly similar, then their mismatches are completely correlated, and if the motifs are
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Figure 1.2: Adjacent mismatch correlations capture the mismatch correlation

structure sufficiently well. (a) We show the probability that a sequence of length

G “ 105 is nonregulatory, with L “ 5 and k˚ “ 1, when it is constrained to not contain

sequences similar to one particular motif. We change that motif on the x-axis and order

the motifs by this probability. We show the actual probability (Eq. 1.25), and also the

probability under the assumption of only adjacent mismatch correlation (Eq. 1.26) and

neglecting mismatch correlations (Eq. 1.28). (b) We show the relative errors in γ due to

the approximations in the mismatch correlation structure. Highly repetitive motifs result

in larger errors, as neighbouring mismatches are correlated for such motifs. A separate

analysis (not shown) reveals that most motifs found empirically are not repetitive and

hence this approximation holds.
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quite different from each other, then their mismatches are uncorrelated. Decomposing

like before, we have,

P ptkimuq “ P ptk1muq
X

ź

j“2

P ptkjmu|tkj´1,m, kj´2,m, . . . , kj´L,muq. (1.29)

Again, assuming that adjacent mismatch correlations can capture these mismatch depen-

dencies sufficiently, thereby resulting in P ptkjmu|tkj´1,m, kj´2,m, . . . , kj´L,muq « P ptkj,mu|tkj´1,muq.

Hence, we have,

P ptkimuq “ P ptk1muq
X

ź

j“2

P ptkjmu|tkj´1,muq. (1.30)

We can calculate γpQ,L,G, k˚q, the probability that a DNA sequence of length G does

not contain subsequences that are similar to Q given well-separated motifs of length L,

by a maximum of k˚ mismatches as

γ “ P ptkim ą k˚
uq (1.31)

“ P ptk1m ą k˚
uq

X
ź

j“2

P ptkjm ą k˚
u|tkj´1,m ą k˚

uq (1.32)

“ P ptk1m ą k˚
uq

X
ź

j“2

P ptkjm ą k˚u, tkj´1,m ą k˚uq

P ptkj´1,m ą k˚uq
(1.33)

“
P ptk2m ą k˚, k1m ą k˚uqX´1

P ptk1m ą k˚uqX´2
. (1.34)

We need to decompose P ptk1m ą k˚, k1m ą k˚uq and P ptk1m ą k˚uq into terms cor-

responding to different motifs. To achieve this, we need to specify the arrangement of

these motifs in sequence space. Our basic strategy is a mean-field-like formulation of

the arrangement of “motif balls” in the sequence space, and consider their individual

positioning and their pairwise overlaps. These balls have a “radius” k˚ around each mo-

tif, and contain DNA sequences that are the BSs for the specified TF, and are hence

forbidden to be present in a sequence that is non-regulatory. For intuition, I use the

term “radius” but it is important to remember that we are working in a discrete space

of sequences.

As an instructive guide, let us consider the decomposition of P ptk1m ą k˚uq. We define

B1m : k1m ď k˚ as an event that corresponds to such “motif balls” described above.

P ptk1m ą k˚uq now corresponds to exactly the (fractional) volume of the sequence space

(of size 4L) outside the set of all motif balls. If the balls were not at all overlapping (if TF

consensus sequences are sufficiently distinct from each other), it is pretty straightforward

to compute this as we just have to sum up the volumes of these balls. In the case that the

balls overlap, which can happen if for a pair of motifs s˚
m, s

˚
n, dps

˚
m, s

˚
nq ď 2k˚, we have to

correct for this overlap when computing the volume outside the balls. We formalize this

approach in the following manner, and illustrate the approach in Fig. 1.3.
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Figure 1.3: Arrangement of motifs in sequence space. The probability of obtaining

a non-regulatory sequence depends on the total number of motifs to be avoided via

the arrangement of these motifs in sequence space, bringing into picture how similar or

dissimilar different pairs of motifs are. In a and b, we illustrate how various “motif balls”

or “4´finned fans”, which are DNA sequences that are similar to TF motif sequences

(Hamming distance between DNA sequence and TF consensus sequence not greater than

k˚), are arranged in sequence spaces of size L and L ` 1 respectively. (a) This picture

corresponds to the computation of P ptk1m ą k˚u. For a sequence of length L, the size

of sequence space is 4L, and corresponding to each motif x is a ball of radius k˚, B1x.

Sometimes these balls can overlap (blue and yellow) if two motifs, here r and s, have

similar sequences. We consider this overlap only in the second-order approximation.

(Caption continued in the next page.)
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Figure 1.3: (Continued from previous page.) (b) This picture is used in the computation

of P ptk2m ą k˚, k1m ą k˚uq. For a sequence of size L`1, the sequence space is of size 4L`1

and corresponding to each motif, there are two 4´finned fans, each of which corresponds

to either of the two adjacent length L sites numbered 1 and 2. For each fan, there are 4

fins because the nucleotide in the other pL` 1qth position (to the extreme left or extreme

right) can contain any of the four possible nucleotides. Various 4´finned fans can overlap

as illustrated. The fans B1n and B2n corresponding to adjacent sites for the same motif n

can overlap sometimes (red), for instance, if the motif has continuous repeats of the same

nucleotide. This is accounted for by P pB1, B2q in Eq. 1.41 in both the first-order and

second-order approximations. Similar to s, the fans corresponding to two motifs r and s

can overlap (blue and yellow) in the same site if the motifs are similar. The fans B1m and

B2t, corresponding to one motif with the first site and another motif with the second site,

can overlap if motif sequences are similar after shifting one of them by 1bp. We consider

these only in the second-order approximation. In both a and b, we do not show overlap

of 3 or more balls or 4´finned fans, which we also neglect in our computations. In c and

d, we show specific examples of sequences corresponding to various scenarios of a and b

respectively. (c) Top: ␣B1mX␣B1n – length L sequence that is not similar to motifs m

(green) and n (red) both, Middle: B1rXB1s – length L sequence that is similar to motifs

r (blue) and s (yellow) both, Bottom: B1mX␣B1n – length L sequence that is similar to

motif m (green) but not similar to motif n (red). (d) Top: B1n X ␣B2n – length L ` 1

sequence that is similar to a motif n (red) in both the sites 1 and 2, Middle: B1m X B2t

– length L` 1 sequence that is similar to motif m (green) in site 1 and similar to motif t

(purple) in site 2, Bottom: B1t X ␣B1m – length L ` 1 sequence that is similar to motif

t (purple) in site 1 but not similar to motif m (green) in site 2 (compare with Middle of

d).

1.7 Dependence on motif arrangement

As described above, when we have multiple motifs, the arrangement of these motifs in

the sequence space becomes important, and we have to account for motif similarity which

can result in mismatch correlations. A generic term that comes about in the expressions

of γ is P pt␣Exuq for a set of x that corresponds to different motifs and/or different sites,

with each Ex being events pertaining to whether various mismatches exceed the mismatch

threshold k˚ or not. Note that “␣” denotes NOT, “,” and “X” denote intersection. One

can expand P pt␣Exuq as,

P pt␣Exuq “ 1´
ÿ

i

P pExq

loooooomoooooon

first-order

`
ÿ

x‰y

P pEx, Eyq

loooooooooooooooooomoooooooooooooooooon

second-order

´
ÿ

x‰y‰z

P pEx, Ey, Ezq ` . . .

looooooooooooooomooooooooooooooon

higher-order terms

(1.35)

where each successive correction term corresponds to considering successively higher order

overlap among the events tExu.
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In the computation of P ptk1m ą k˚uq, we have ␣Ex :“ k1m ą k˚, letting us identify

Ex “ Bx, with x “ 1m, corresponding to various motifs. In the computation of P ptk1m ą

k˚, k1m ą k˚uq, we have ␣Ex :“ k1m ą k˚, k1m ą k˚, letting us identify Ex “ ␣p␣B1m X

␣B2mq, with x “ m going over various motifs.

1.7.1 First order approximation

In the first-order approximation, we assume that the motifs, ts˚
mu, are fairly independent

of each other: dps˚
m, s

˚
nq ą 2k˚ @ m,n. In this case, the events Bjm : kjm ď k˚ and

Bjn : kjn ď k˚ can be assumed to be independent, and terms of the form P pBjm, Bjnq

and higher can be neglected. Hence, we can decompose the joint distribution of all

mismatches into distributions containing mismatches for each motif separately, resulting

in,

P ptk1m ą k˚
uq “ 1´

ÿ

mďQ

P pk1m ď k˚
q (1.36)

“ 1´QP pk1 ď k˚
q (1.37)

“ 1´QP pB1q, (1.38)

where we have abused notation to define B1 : k1 ď k˚ as the motif ball around any

particular motif. Similarly, we have, for adjacent sites,

P ptk2m ą k˚, k1m ą k˚
uq “ 1´Q

”

1´ P pk1 ą k˚, k2 ą k˚q

ı

(1.39)

“ 1´Q`QP p␣B1,␣B2q (1.40)

“ 1´Q
”

P pB1q ` P pB2q ´ P pB1, B2q

ı

, (1.41)

where k1 and k2 are mismatches of any motif to adjacent binding sites, and B2 : k2 ď k˚

is defined for any particular motif like B1 by abuse of notation. Combining these, we

have,

γI
adj “

´

1´Q`QP pk2 ą k˚, k1 ą k˚q

¯X´1

´

1´QP pk1 ď k˚q

¯X´2
(1.42)

“

´

1´Q`QP p␣B1,␣B2q

¯X´1

´

1´QP pB1q

¯X´2
. (1.43)

The condition on motif arrangement for the first-order approximation to strictly hold for

adjacent mismatches is not as straightforward. Even if motif similarity is avoided (B1m

and B1n overlap avoided) by making sure they are sufficiently dissimilar, B1m and B2n can

overlap for two different motifs m and n that are similar when one motif is shifted by 1bp.

Also, in this case, the relevant sequence is of size L`1 with mismatches belonging to the

two adjacent sites of length L. For each motif m, there are 8 balls now, 4 corresponding

to B2m : k2m ď k˚ and 4 corresponding to B1m : k1m ď k˚. There are 8 balls because
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the L` 1 sequence is either ˚sm or sm˚ where ˚ is any of tA,C,G, T u in the first or last

position. Hence, the “shape” of the event for each motif is now two 4-finned fans (instead

of balls), with the two fans corresponding to the L`1 sequence with a motif in one of the

adjacent sites, and the four fins of each fan corresponding to the 4 possible nucleotides

in the other single position.

1.7.2 Second order approximation

Next, we consider the overlap between balls (and 4-finned fans) and use a mean-field

approach to correct the first order approximation. We assume that all higher-order

overlap is negligible: the probability of three or more balls overlapping can be neglected.

With the overlap taken into account, we have,

P ptk1m ą k˚
uq “ 1´QP pB1q `

QpQ´ 1q

2
xP pB1m, B1nqy, (1.44)

where the second-order correction term accounts for overlap between balls of different

motifs. We have,

xP pB1m, B1nqy “

L
ÿ

z“0

αzpLqΓpk
˚, k˚, z, Lq, (1.45)

where αzpLq is the probability that a pair of motifs (of length L) from our motif ensemble

are separated by Hamming distance z, and Γpi, j, z, Lq “ P pk1m ď i, k1n ď j|dmn “ zq is

the probability that mismatches k1m and k1n for a sequence of length L with two motifs

m and n, are less than i and j respectively, when the consensus sequences of the motifs

are separated by z. This can be computed as in Eq 4.18.

The computation of P ptk2m ą k˚, k1m ą k˚uq is a bit more involved as this involves

various kinds of overlaps between the 4-finned fans corresponding to the two adjacent

sites of the various motifs. We have,

P ptk2m ą k˚, k1m ą k˚
uq “ 1´Q`QP p␣B1,␣B2q `

QpQ´ 1q

2
xPIIy, (1.46)

where xPIIy “ xP p␣p␣B1m X ␣B2mq X ␣p␣B1n X ␣B2nqqy is the mean second-order

correction term that considers the joint overlap between motifs and adjacent sites. We

can expand this as,

xPIIy “ xP pB1m,␣B2m, B1n,␣B2nq ` P p␣B1m, B2m,␣B1n, B2nq

` P pB1m,␣B2m,␣B1n, B2nq ` P p␣B1m, B2m, B1n,␣B2nq

` P pB1m, B2m, B1n,␣B2nq ` P pB1m, B2m,␣B1n, B2nq

` P pB1m,␣B2m, B1n, B2nq ` P p␣B1m, B2m, B1n, B2nq

` P pB1m, B2m, B1n, B2nqy. (1.47)
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Figure 1.4: Terms in the calculation of Eq. 1.50. The calculation of xP pB1m, B2nqy

in Eq. 1.50, involves calculating the probability that there is a sequence of length L` 1

such that for two motifs m (green) and n (purple), the first site is similar to motif m

while the second site is similar to motif n. This occurs if the motifs m and n are similar

when one of them (here, n) is shifted (here, to the right) by 1bp. The calculation involves

4 different terms corresponding to the whether motif m and motif n have a mismatch

with the first and the last position of the L ` 1 length DNA sequence respectively. (a)

Motif m does not have a mismatch with the first nucleotide (probability 1{4) and motif

n does not have a mismatch with the last nucleotide (probability 1{4), resulting in a join

probability of 1{16. The remaining L´1 positions can contain up to k˚ mismatches with

both motifs. (b) Motif m does not have a mismatch with the first nucleotide (probability

1{4) and motif n has a mismatch with the last nucleotide (probability 3{4), resulting in a

join probability of 3{16. The remaining L´ 1 positions can contain up to k˚ mismatches

with motif m and up to k˚´1 mismatches with motif n. (c)Motifm has a mismatch with

the first nucleotide (probability 3{4) and motif n does not have a mismatch with the last

nucleotide (probability 1{4), resulting in a join probability of 3{16. The remaining L´ 1

positions can contain up to k˚ ´ 1 mismatches with motif m and up to k˚ mismatches

with motif n. (d) Motif m has a mismatch with the first nucleotide (probability 3{4)

and motif n has a mismatch with the last nucleotide (probability 3{4), resulting in a join

probability of 9{16. The remaining L´ 1 positions can contain up to k˚ ´ 1 mismatches

with both motifs m and n.

We assume that k˚ is small enough and that the motif ensemble is sufficiently random

that intersections of more than two 4-finned fans simultaneously is negligible. This means

that the terms in lines 3, 4, 5 of Eq. 1.47 can be neglected, giving us,

xPIIy “ xP pB1m, B1nqy ` xP pB2m, B2nqy ` xP pB1m, B2nqy ` xP pB2m, B1nqy. (1.48)

The first two terms contain the overlap of the 4-finned fans of the two motifs to the same

binding site, while the last two terms contain the overlap of the 4-finned fans of the two
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motifs to adjacent binding sites. As there is symmetry between motifs m and n, without

loss of generality, the second order term can be written as,

xPIIy “ 2xP pB1m, B1nqy ` 2xP pB1m, B2nqy

“ 2xP pB1m, B2nqy ` 2
L

ÿ

z“0

αzpLqΓpk
˚, k˚, z, Lq, (1.49)

where αzpLq and Γpi, j, z, Lq “ P pk1m ď i, k1n ď j|dmn “ zq are as defined before. The

computation of xP pB1m, B2nqy involves accounting for various scenarios as depicted in

Fig. 1.4, resulting in,

xP pB1m, B2nqy “
1

16

L´1
ÿ

z“0

αzpL´ 1qΓpk˚, k˚, z, L´ 1q

`
3

16

L´1
ÿ

z“0

αzpL´ 1qΓpk˚, k˚
´ 1, z, L´ 1q

`
3

16

L´1
ÿ

z“0

αzpL´ 1qΓpk˚
´ 1, k˚, z, L´ 1q

`
9

16

L´1
ÿ

z“0

αzpL´ 1qΓpk˚
´ 1, k˚

´ 1, z, L´ 1q. (1.50)

1.8 Results

Equipped with expressions for γI
adj and γII

adj, we now explore the fraction of non-regulatory

sequences of different lengths under different constraints. First, in Fig. 1.5, we plot the

ratio of the fraction of non-regulatory sequences according to the first-order and second-

order approximations, γI
adj{γ

II
adj. The second-order approximation starts to differ from the

first-order approximation when the number of motifs Q increases, as the overlap among

balls and 4´finned fans also increases as a consequence.

In Fig. 1.6, we show how the fraction of non-regulatory sequences, γadj, depend on

two important parameters in our model – the number of TF motifs to be avoided, Q,

and the length of DNA sequence in question, G, for both first-order, γI
adj, and second-

order, γII
adj, approximations. From these we can infer that the fraction of non-regulatory

sequences decreases as the length of DNA sequence and the number of motifs to be

avoided increase. These have been computed using L “ 6 and k˚ “ 1, which are typical

numbers for a eukaryote. At G “ 100 and Q “ 10, when 10 motifs of length 6 have

to be avoided by at least two mismatches, in a sequence of length 100, we find that

γI
adj « 0.0115, and γII

adj « 0.0155, indicating that only between 1% and 2% of sequences of

length 100 are non-regulatory, the rest of the „ 98% containing one BS somewhere and

hence would have the potential to act as regulatory sequences. While the total number of

such sequences is very large (2% of 4100), assuming that these non-regulatory sequences
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Figure 1.5: First-order and second-order approximations differ for longer DNA

sequences and more TF motifs.. The ratio of the fraction of non-regulatory sequences

from the first-order approximation to the second-order approximation is plotted against

various total lengths, G, on the y-axis, and the number of TF motifs to be avoided, Q, on

the x-axis. The approximations result in similar values for small Q and short sequences –

lowG. As the number of motifs increase, motif overlap becomes more prevalent and hence,

the second-order approximation starts to deviate from the first-order approximation. For

G “ 100 and Q “ 10, we find γI
adj{γ

II
adj « 0.7377, parameters used: L “ 6, k˚ “ 1.

We assume that motifs and DNA sequences are uniformly random sequences of their

respective lengths.

are spread homogeneously across sequence space, it means that non-regulatory sequences

are very hard to find. Increasing the length of the DNA sequence, G, or increasing the

number of motifs, Q, that are to be avoided, only lowers the fraction of non-regulatory

sequences exponentially. However, doubling the motif length, to L “ 12, increases the

fraction of non-regulatory sequences to γI
adj « γII

adj « 0.9981. Hence, avoiding larger motifs

is easier. The fraction of G “ 1kbp sequences that avoid Q “ 10 motifs of length L “ 6 is

practically vanishing, while avoiding Q “ 10 motifs of length L “ 12 is achievable, with

the fraction of non-regulatory sequences being 0.979. With G “ 10kbp, fraction of non-

regulatory sequences decreases to 0.807, and to 0.117 for G “ 100kbp, and is vanishingly

small for G “ 1Mbp.

In summary, constraints requiring DNA sequences to be non-regulatory can significantly

shape the sequence space, with the fraction of non-regulatory sequences becoming smaller

as the length of the DNA sequence increases, the number of motifs to be avoided increases,

and the length of the motifs to be avoided decreases. While this approach informs us of

such broad dependancies of regulatory sequence space on important quantities like total

DNA sequence length and number of motifs, it lacks a rigorous biophysical backbone

of the kind described in the beginning of this chapter, that directly connects with the

functional consequence of such constraints. In the next chapter, I will incorporate the

biophysical model of TF-DNA binding described in this chapter into a broader biophysical
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Figure 1.6: Fraction of non-regulatory sequences of various lengths under vary-

ing number of TF motifs to be avoided.. The fraction of non-regulatory sequences

of various total lengths, G, on the y-axis, against the number of TF motifs to be avoided,

Q, on the x-axis, plotted on a log-scale for both (a) first-order, γI
adj, and (b) second-order,

γII
adj, approximations. As the number of motifs increases, the fraction of non-regulatory

sequences decreases, with the largest change occurring for longer DNA sequences (larger

G). Also, at a fixed Q, the fraction of longer non-regulatory sequences is smaller. For

G “ 100 and Q “ 10, we find γI
adj « 0.0115, and γII

adj « 0.0155, parameters used:

L “ 6, k˚ “ 1.

model of global transcriptional regulation to quantify crosstalk – incorrect interactions

between TFs and DNA that might lead to erroneous regulatory states – one of the direct

consequences of the cell failing to shape its sequence space according to the type of

non-regulatory constraints described here.
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Crosstalk in gene regulation

The work presented in this chapter was performed in collaboration with Tamar Friend-

lander and has been published in Nature Communications (see [Friedlander et al., 2016]);

parts of the publication that I worked on are explained in this chapter. Tamar Friedlander

did some of the calculations in Section 2.2 and Section 2.3.

2.1 Introduction

As discussed in Chapter 0, the specificity of molecular recognition events is crucial to

the functioning of a cell and ensuring that cellular processes run in their right spatiotem-

poral contexts. Cells are typically crowded with molecular components, leading to a

large number of non-cognate partners. It is not trivial to see if the limited specificity

of the underlying molecular forces behind molecular recognition leads to a large number

of incorrect recognition events that might hamper the information processing efficiency

of cellular processes. This is called crosstalk, encompassing all potentially disruptive

processes due to reactions between non-cognate components. Further, it remains to be

seen if such crosstalk is strong enough to exert selective pressure on the design of molec-

ular recognition systems. Such an evolutionary pressure might lead biological systems

to evolve specific molecular mechanisms and strategies that can overcome the delete-

rious effects of crosstalk. One paradigmatic example is the aminoacyl transfer RNA

synthetase [Yamane and Hopfield, 1977], which uses kinetic proofreading [Hopfield, 1974]

to load appropriate amino acids onto matching tRNAs. Other examples from ligand

sensing [Mora, 2015], protein-protein interactions [Swain and Siggia, 2002; Skerker et al.,

2008; Johnson and Hummer, 2011; Zhang et al., 2008; Ouldridge and ten Wolde, 2014;

Rowland and Deeds, 2014], recognition events in the immune system [McKeithan, 1995;
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Lalanne and François, 2013] and molecular self-assembly [Murugan et al., 2015] indicate

that biology places a large premium on the reduction of unintended crosstalk.

A key step in transcriptional regulation involves the sequence-specific binding of TFs to

binding sites in regulatory elements near genes. This is another example of molecular

recognition, the specificity of which arises from hydrogen bonds formed between amino

acids on the DNA-binding domains of TFs and nucleotide bases on the DNA. Depending

on the amino acid sequence of its DBD, each TF preferentially binds to a small number

of DNA sequences. But a large body of evidence shows that this binding specificity is

limited, and that TFs bind other non-cognate targets as well [Von Hippel et al., 1974;

Wunderlich and Mirny, 2009; Johnson et al., 2005; Maerkl and Quake, 2007; Rockel et al.,

2012]. Such additional binding targets have been discussed as sequestering TFs at non-

functional sites, and thereby reducing the free TF concentration [Burger et al., 2010;

Sheinman and Kafri, 2012]. But such off-targets can sometimes be embedded in the

regulatory elements of other genes, leading to an interference with various gene regulatory

programs. Given that multiple TFs (from different genes) are typically co-expressed in a

spatiotemporal window, each molecule has a small probability of erroneously regulating

some subset of all genes. Hence, crosstalk is a global systemic property that has to be

understood by considering the whole ensemble of TFs and genes, that can form disruptive

causal links between various gene regulatory programs.

The other feature of crosstalk is its combinatorial explosion as the regulatory system

grows in complexity and the number of regulatory components increases. The number

of potential non-cognate interactions grows much faster than the number of cognate

interactions, making the problem biologically relevant and theoretically interesting. But

studies so far have largely considered a simpler setting of a single TF, and computed its

binding probabilities to cognate versus non-cognate sites [Gerland et al., 2002; Sengupta

et al., 2002; Bintu et al., 2005; Lynch and Hagner, 2015]. They have not included the

crucial (mis)regulation effects of TFs on non-cognate regulatory targets and genes. They

have largely focussed on the question of how reliable gene regulation is achieved by

(cognate) TFs [Todeschini et al., 2014], whereas the complementary question of how to

prevent erroneous regulation by non-cognate TFs has remained largely unexplored (but

see [Bird, 1995]).

In this chapter, I will describe a new quantitative framework for regulatory crosstalk that

captures its global nature by simultaneously treating multiple TFs and multiple regula-

tory binding sites. We explicitly account for differential activation of genes depending on

regulatory conditions, an aspect that has been missed in previous studies of molecular

recognition [Hopfield, 1974]. In particular, the ability of the regulatory system to prevent

spurious gene activation despite crosstalk interference will emerge as an important consid-

eration. TF-DNA interactions are assumed to be in thermodynamic equilibrium [Bintu

et al., 2005; Phillips, 2015], an assumption that holds well for prokaryotic systems [Ackers

et al., 1982; Kinney et al., 2010]. Such an assumption underlies the majority of modelling

and bioinformatic applications, and puts strong constraints on models of crosstalk. In this

work, we explore the consequences of this equilibrium assumption on regulatory crosstalk,
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serving as an instructive platform for non-equilibrium studies [Cepeda-Humerez et al.,

2015].

We construct a biophysical model, based on an equilibrium assumption for TF-DNA

interactions, for crosstalk in transcriptional regulation. By basing the model in sequence

space (TF consensus sequences and BS sequences), we account globally for all cross-

interactions between TFs and their binding sites. We construct the model using many

parameters that have a direct biological meaning, and by tuning them, we identify how

they influence crosstalk levels. Some of these parameters, like the TF concentrations, are

empirically known to belong to a broad range but they change dynamically. To overcome

this, we investigated the variation of crosstalk with respect to these parameters and

show the existence of a “crosstalk floor” - a lower bound on crosstalk. Such a threshold

cannot be bettered by the cell even if were to optimally adjust those parameters using

specific molecular mechanisms. For instance, even if the cell adjusts TF concentrations by

different feedback mechanisms and compensates for TF molecule sequestration, it cannot

decrease crosstalk below a certain fixed threshold.

Using this model, we ask the following fundamental questions related to crosstalk and

gene regulatory systems.

1. How does crosstalk depend on the number of (co-expressed) genes and the parame-

ters underlying the biophysical model of TF-DNA interactions, such as binding site

length and binding energy?

2. In the context of crosstalk, what are the similarities and differences between the

regulatory strategies of prokaryotes and those of eukaryotes?

3. Are complex regulatory strategies, such as combinatorial regulation, or regulation

by activators and repressors, capable of lowering crosstalk [Todeschini et al., 2014]?

Studies have shown that many biophysical constraints, such as programmability [Ger-

land et al., 2002], response speed [Mangan and Alon, 2003], noise in gene expression and

dynamic range of regulation [Tkačik and Walczak, 2011; Dubuis et al., 2013; Friedlander

and Brenner, 2011; Friedlander and Brenner, 2008], robustness [von Dassow et al., 2000]

and evolvability of the regulatory sequences [Payne and Wagner, 2014; Stern and Or-

gogozo, 2009], shape the design of genetic regulatory networks. These constraints could

be understood at the level of individual genetic regulatory elements and do not require

a systemic formulation. But crosstalk is different. Although it arises from biophysical

limits to molecular recognition locally at the level of single genetic regulatory element, it

is only on a global scale that its cumulative effect emerges. At the local level, crosstalk

can be reduced by increasing the concentration of cognate TFs or by introducing multiple

binding sites in the promoter. It is only when we self-consistently consider that these

same cognate TFs act as non-cognate TFs for other genes, or that new binding sites in

the promoter drastically increase the number of non-cognate binding configurations, that

crosstalk constraints become clear.
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2.2 Basic model

In our basic biophysical model of gene regulation, we assume that each of the M genes

in the genome of a cell is regulated by a dedicated activator TF type. For each gene, a

molecule of its dedicated TF type binds to a single binding site of length L basepairs in the

gene’s regulatory region, and only upon this TF-BS binding, the expression of the gene

is activated. Hence, in this basic model, there are M distinct TF types, resulting in one

cognate TF for each gene. It is important to remember that this is not a realistic picture

of a gene regulatory network – there are usually multiple TFs per gene, often acting

combinatorially, and the question of who regulates the regulators. We relax some of the

assumptions later in this chapter, and in the associated publication [Friedlander et al.,

2016], and consider combinatorial regulation, cooperative regulation etc. The question

of who regulates the regulators is taken care of by assuming that upstream signals are

perfectly sensed by the cell, both by transcriptional mechanisms and other mechanisms

not relevant to the model, to “activate” the necessary regulators in any environmental

context adopting a mean-field like approach over the various possible environmental states

– thereby sampling the various “states” of the gene regulatory network inside the cell. We

leave the formulation of a full model with upstream environmental signals and temporal

evolution of GRNs, to future research. But see Chapter 3 and Chapter 4 for first steps

in this direction.

As described in Chapter 1, the probability of a BS being bound by a TF molecule depends

on the mismatch between the BS sequence and the TF consensus sequence [Ackers et al.,

1982; Von Hippel and Berg, 1986; Lynch and Hagner, 2015]. Each TF forms a perfect

match with the BS sequence of its target gene and hence, the probability that a molecule

of the cognate TF type binds is high for each BS as long as the TF is present in the

cell. However, because non-cognate TFs also have some mismatch with BS sequences,

and which can sometimes be very low due to the limitations of sequence space, each

BS could also be occasionally bound by a non-cognate TF molecule. Hence, every TF

can bind, apart from its cognate BS, other non-cognate BSs, but often only with a low

probability.

To capture the ability of gene regulation to differentially activate subsets of genes in

a pattern appropriate to the environmental conditions (signals, cell type or time), we

assume that, at any point in time, that only a subset of these M TF types are present

in the cell. We consider many such timepoints or environments, each with different

subsets of size Q ď M activating TF present in the cell in nonzero copy numbers. The

optimal gene regulatory state in each of these environments would be to activate only

those corresponding Q target genes for which activating TFs are present, while keeping

the remaining M ´ Q genes inactive. Over different environmental conditions that the

cell faces, different sets of Q out of M genes get activated by the corresponding Q cognate

TFs.

But how does the cell know which correct set of TFs to express in each particular en-
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Figure 2.1: Crosstalk in gene regulation. (a) A TF preferentially binds to its

cognate binding site, but can also bind non-cognate sites, potentially causing crosstalk -

an erroneous activation or repression of a gene. (b) In a global setting where many TFs

regulate many genes, the number of possible non-cognate interactions grows quickly with

the number of TFs; in addition, it may become difficult to keep TF recognition sequences

sufficiently distinct from each other. (c) Cells respond to changing environments by

attempting to activate subsets of their genes. In this example, the total number of genes is

M “ 4 and different environments (here, 6 in total) call for activation of different subsets

with Q “ 2 genes. To control the expression in every environment, TFs for Q required

genes are present, whereas the TFs for the remaining M ´Q genes are absent. Because

of crosstalk, TFs can bind non-cognate sites, generating a pattern of gene expression that

can differ from the one required.



32

vironment, and in what copy numbers? Cells have seemingly evolved mechanisms to

translate upstream signals into ideal TF concentrations, accounting for such sequestra-

tion effects of TFs from random binding to DNA and elsewhere [Burger et al., 2010;

Sheinman and Kafri, 2012; Weinert et al., 2014]. Even in the presence of such a perfect

adaptive tuning of TF concentrations, we will show that a residual level of crosstalk that

represents a lower bound or an intrinsic limit, is inevitable. The mechanisms behind such

an adaptive tuning of TF concentrations probably involve complex regulatory dynamics

with feedback loops, but we do not need to specify the details of these mechanisms as we

are interested in characterizing and quantifying intrinsic limits to crosstalk, which cannot

be overcome even in the perfectly evolved cell.

We use the grand-canonical ensemble framework from Chapter 1 to describe TF binding to

various binding sites. In this sequence-based framework, the strength of TF-BS binding,

which determines the gene regulatory state of the target gene, depends on the mismatch

between the BS sequence and the consensus sequence of the TF. Molecules of the TFs

can also bind other sequences on the DNA, either in a sequence-specific configuration

or sequence-independent non-specific configuration. As described before, this has two

kinds of effects: sequestration of TF molecules from free solution, decreasing their free

concentration, and by binding to non-cognate BS sequences, incorrectly regulate the

expression of other target genes.

In the grand-canonical ensemble framework of TF-BS binding, which accounts for all

possible pairs of interactions between TFs and BSs, we compute crosstalk, X, as the

average fraction of all genes in erroneous regulatory states. Crosstalk ranges between

zero, which corresponds to no erroneous regulation, and one, which corresponds to the

state with every gene being mis-regulated. We define three different kinds of erroneous

regulatory states: (a) genes that should be expressed in a certain environment but are

not, because their cognate TFs have not bound to their BSs, (b) genes that should not be

expressed in a certain environment but are incorrectly activated by the binding of non-

cognate TFs to the genes’ BSs, and (c) genes that should be expressed, but are activated

due to the incorrect binding of non-cognate (instead of cognate) TFs. We consider the

third state – “activation out-of-context” – to be an erroneous regulatory state because

activation by non-cognate TFs, even when the gene is required, might deviate the level

of the gene’s expression. However, we relax this assumption and not consider such states

as an error in Section 2.6.

We quantify these three types of erroneous states using the following 2 contributions to

crosstalk:

1. For a gene i that should be expressed and whose cognate TF is therefore present, the

possible erroneous states are (a) activation out of context: its binding site is bound

by a non-cognate TF, and (b) gene is not expressed: its binding site is unbound.

The gene is an erroneous state with probability

xi
1ptCjuq “

e´µ0 `
ř

j‰i Cje
´ϵdij

Ci ` e´µ0 `
ř

j‰i Cje´ϵdij
, (2.1)
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where Cj is the concentration of the jth TF, dij is the number of mismatches

between the jth TF consensus sequence and the binding site of gene i, ϵ the energy

per mismatch and µ0 the chemical potential contribution from sequestration on the

DNA and in free solution.

2. For a gene i that should not be expressed and whose cognate TF is therefore ab-

sent, the only erroneous state is erroneous activation: its binding site being bound

by a non-cognate regulator rather than remaining unbound. This happens with

probability

xi
2ptCjuq “

ř

j‰i Cje
´ϵdij

e´µ0 `
ř

j‰i Cje´ϵdij
. (2.2)

These errors x1 and x2 depend on the likelihood of TFs to bind non-cognate sites, which is

determined by the specific set of pairwise distances dij between TF consensus sequences

and BS sequences. When all sequences are considered together, making a particular

sequence less similar to the rest of the sequences can only happen at the cost of making

the rest of the sequences more similar among themselves. The errors depend on the

arrangement of sequences in the sequence space, with the errors of one particular gene i

depending on the distances dij @j ‰ i with the rest of the BS sequences. An important

quantity is the binding similarity measure Si between the binding site sequence of gene

i and all others, defined as:
ÿ

j‰i

Cje
´ϵdij :“ CSipϵ, Lq. (2.3)

To make the analysis easier, we assume a fully symmetric setup such that xi
1 and xi

2 are

independent of i. We assume that the set of distances dij @j ‰ i of i with the rest of

the sequences, are distributed according to some probability density P pdq, independent

of i. Such a mean-field-like assumption is reasonable for Q " 1 when the sequences are

randomly distributed in sequence space. With this assumption, we now have:

Sipϵ, Lq «
ÿ

d

P pdqe´ϵd, (2.4)

where P pdq is the distribution of distances between BS sequences and C is the total

concentration of all TFs.

The average similarity S depends only on the binding site sequences, but it carries no

functional meaning in the absence of any TF, when C “ 0. It is important to note that

this quantity, S, is not arbitrary, and in fact emerges from equations Eq. 2.1 and 2.2. An

analogous measure has been previously introduced and measured in olfaction and immune

recognition [Lancet et al., 1993], of the probability of receptors to bind an arbitrary ligand

from a large repertoire. In our model, Si is proportional to the probability of the i-th TF

to bind any non-cognate binding site. Similarity is highest, S “ 1, if all sites are identical,

and it is its lowest, S « 0, if the sites are maximally separated from each other. Short

binding sites (small L) and weaker binding energy E result in larger S making the sites

less distinguishable (Fig. 2.2). As similarity increases, non-cognate interactions increase

and hence, crosstalk also increases.
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Binding site similarity Spϵ, Lq of Eq. 2.4 could be experimentally measured by probing

the average TF-binding affinity to a large repertoire of known binding sites. Alternatively,

S can be estimated from bioinformatic data, which we explore in Sec. 2.7. Under certain

assumptions about how binding sites are organized in sequence space, S can be also

computed theoretically. For instance, if the binding sites were random sequences of

length L, the following analytical expression for S can be derived:

Spϵ, Lq “
ÿ

d

P pdqe´ϵd (2.5)

“

L
ÿ

d“0

ˆ

L

d

˙

3d

4L
e´ϵd (2.6)

“

´1

4
`

3

4
e´ϵ

¯

. (2.7)

This expression for Spϵ, Lq is same as that for xe´EpsiqyPrand
from Chapter 1. In Section

2.7, I will explain how we studied more realistic models of BS sequences’ organization

in sequence space. These different variations of sequence arrangement in sequence space

change only the value of S. Hence the same crosstalk formalism can be applied, and we

use S directly as a parameter to compute the various quantities of interest.

Further, to factor in different environmental states in the computation of crosstalk, we

assume that different subsets of Q TFs are equally likely to occur. The overall crosstalk,

X, defined as the average fraction of all genes in erroneous regulatory states, is defined

as

XpQ,M, x1, x2q “ x1
Q

M
` x2

M ´Q

M
. (2.8)

where Q is the number of TFs present (genes that need to be expressed), M is the total

number of genes that can be potentially activated, and x1 and x2 are the errors under

the mean-field assumption of BS sequences.

The expressions for x1 and x2 read:

x1 “
e´µ0 ` CS

C
Q
` e´µ0 ` CS

(2.9a)

x2 “
CS

e´µ0 ` CS
. (2.9b)

As concentration of the TFs varies between the extremes of zero or being very large, x1

and x2, and hence the level of overall crosstalk vary ( see Table 2.1).

1. C “ 0: When the TF concentration is zero, the only erroneous states are those in

which genes which should be expressed are not because their cognate TFs do not

bind to the corresponding BSs. Hence, we have x1 “ 1 and x2 “ 0, with the total

error being the fraction of genes that need to activated, XpC “ 0q “ Q{M .

2. C Ñ 8: In this case, when the TF concentration is very large, no BS is left

unbound, so all genes are always activated. We have, x1 “ SQ{p1 ` SQq and

x2 « 1. The error x1 depends on S, how similar the binding sites are, with the total
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crosstalk being XpC Ñ 8q “ 1´ Q{M
1`SQ

. If SQ ! 1, crosstalk can be approximated

as X « 1´ Q
M
p1´ SQq.
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Figure 2.2: Binding site similarity S is a basic determinant of crosstalk. Binding

site similarity, Spϵ, Lq, determines the likelihood that a TF will bind non-cognate sites,

if recognition sequences are of length L and the energy per mismatch is ϵ. A schematic

diagram of sequence space packing by different TFs: sequences (dots) in a coloured circle

are likely to be bound by the TF whose consensus is the circle’s centre star. Smaller L

contracts the sequence space and makes crosstalk (circle overlap) more likely (larger S);

crosstalk is increased (larger S) also by smaller ϵ, which expands the circle radius.

2.3 Basic crosstalk model exhibits three regulatory

regimes

The major determinants of crosstalk are the number of genes typically co-activated, Q,

the total number of regulated genes, M , the binding site similarity S, and the total

concentration of TFs, C. The first three are easy to estimate and specify but it is harder

to determine an appropriate value for C. Not only is just a limited amount of data

available, but also concentrations dynamically change in various conditions differentially

for various TFs. So, instead of specifying a concentration a priori, we compute the

optimal concentration, C˚, that minimizes crosstalk.

Such an optimal TF concentration, C˚, arises out of a trade-off between the Q genes

that need to be active (x1), for which a higher C is favored, and the M ´ Q genes that

need to be inactive (x2), for which the opposite holds (Fig. 2.3). There is an asymmetry

between the two kinds of errors: while x2 can be completely suppressed by having no
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x1 x2 crosstalk, X

e´Ea`CS
C
Q

`e´Ea`CS
CS

e´Ea`CS
Q
M
x1 `

M´Q
M

x2

C “ 0 1 0 Q{M

C “ 8 SQ
1`SQ

1 1´ Q{M
1`SQ

optimal C; only activators 1`QZ
1`Z{S`QZ

QZ
1`QZ

Q
M

1`QZ
1`Z{S`QZ

`
M´Q
M

QZ
1`QZ

Table 2.1: Crosstalk errors in the basic model. Per-gene errors of the two types:

x1 is the error of a site whose cognate TF exists and the site should therefore be bound,

but is either unbound or bound by a non-cognate factor. x2 is the error of a site whose

cognate factor does not exist, and the site should therefore be unbound, but is bound

by a non-cognate factor. The last column shows the total crosstalk, averaged over all M

sites.

TFs, C “ 0, the opposite does not hold as x1 cannot be completely eliminated even for

infinitely high C because there is always a residual cross-activation. Also, both x1 and x2

increase with the similarity S as higher similarity among BS sequences means that there

is more frequent cross-binding.

The minimal crosstalk, X˚ “ XpC˚q, at the optimal concentration, is the value beyond

which the cell cannot improve by tuning the TF concentrations, and can be computed

analytically using the mean-field-like approximation.

Taking the derivative of X and solving for its zeros,

B

BC
XpQ,M, x1, x2q

ˇ

ˇ

ˇ

C˚
“ 0,

we find two potential extrema

C˚
1,2 “

Qe´µ0

´

SpSMQ´QpSQ` 2q `Mq ˘
a

SpM ´Qq
¯

S p´MpSQ` 1q2 ` SQ2pSQ` 3q `Qq
,

but only one of them can yield non-negative concentration values (and is consistently a

minimum):

C˚
“

Qe´µ0

´

SpSMQ´QpSQ` 2q `Mq ´
a

SpM ´Qq
¯

S p´MpSQ` 1q2 ` SQ2pSQ` 3q `Qq
. (2.10)

For small S the leading terms in the optimal concentration are

C˚
“

e´µ0Q
a

SpM ´Qq
´

e´µ0QpM ´ 2Qq

M ´Q
´

e´µ0Q2p2M ´ 3Qq
?
S

M ´Q

3{2

`OrSs. (2.11)
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Figure 2.3: Optimal TF concentration C˚. x1 crosstalk component (genes that should

be active) decreases with TF concentration C, whereas x2 crosstalk component (genes

that should remain inactive) shows the opposite trend. Curves of x1 and x2 (crosstalk

of a single gene) vs. C are illustrated for various values of S. While x2 can be fully

eliminated if C “ 0, x1 has a residual component which depends on S even for infinite C.

Both crosstalk types increase with the similarity between the binding sites S (compare

curves with various S values).

Substituting Eq. (2.10) back into Eq. (2.8) yields the minimal achievable crosstalk:

X˚
“

Q

M

´

´SpM ´Qq ` 2
a

SpM ´Qq
¯

. (2.12)

For constant number of co-activated genes Q, X˚ increases to leading order like the square

root of S

X˚
“

2Q
?
M ´Q

M

?
S `OrSs. (2.13)

Substituting C˚ into the single gene crosstalk expressions Eqs. (2.1)-(2.2), we obtain the

minimal per-gene crosstalk

x˚
1 “

a

SpM ´Qq (2.14a)

x˚
2 “ SQ

˜

1
a

SpM ´Qq
´ 1

¸

. (2.14b)

With these expressions at hand, we investigate how optimal crosstalk, X˚, varies with the

number of co-expressed genes, Q, and the binding site similarity, S, for a fixed number
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Figure 2.4: Basic model with one activator binding site per gene exhibits

three distinct regulatory regimes. (a) Each binding site can be in either of the

three possible states with different corresponding energies: bound by a cognate factor

(E “ 0, green molecule), bound by a non-cognate factor with d- mismatches (E “ ϵd,

here a blue molecule with d “ 2), or unbound (E “ Ea, pink molecule). The table shows

which of these states lead to transcription and which of these outcomes is considered as

crosstalk when the cognate TF is present and the gene is required to be active (left),

or if it is absent and the gene is required to be inactive (right). (b) Minimal crosstalk

X˚, shown in colour, as a function of the number of co-activated genes Q and binding

site similarity, S. Three different regulatory regimes are separated by black and white

boundary lines, identical between b and c. Dotted lines refer to the “baseline parameters”

(Q “ 2500,M “ 5000, lnpSq “ ´10.5 - represents L “ 10, ϵ “ 2 with dmin “ 2) that we

use in all subsequent figures if not specified differently. (c) Optimal TF concentration,

C˚, that minimizes the crosstalk, relative to C1, the optimal concentration at baseline

parameters. For high binding site similarity (large S), the crosstalk is minimized at

C˚ “ 0 (white region, I: “no regulation regime”). For Q Ñ M and intermediate S, the

crosstalk is minimized at C˚ Ñ 8 (black region, II: “constitutive regime”). In a large,

biologically plausible intermediate regime, crosstalk is minimized at a finite non-zero TF

concentration (colour, III: “regulation regime”).
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of total genes, M “ 5, 000. Various mathematical constraints on the expressions for

optimal concentration and optimal crosstalk result in three distinct regulatory regimes

in the pQ,Sq plane.

1. Region I: This regime, called the “no regulation regime”, is characterized by a

vanishing optimal TF concentration, C˚ “ 0. This occurs for larger values of S

when BS sequences are very similar, and regulation is so non-specific that there is

always significant non-cognate TF-BS binding for any non-zero TF concentration.

This regime occurs for S ą 1{pM ´ Qq, mathematically arising of the constraint

that optimal crosstalk from Eq. 2.14a should be in the range r0, 1s; the threshold

similarity above which this regime occurs decreases as the number of genes to be

silent increases. While this regime is dysfunctional and biologically implausible, it

offers the insight that a fundamental limit to the similarity, S, of BS sequences is set

by the typical number of genes to be inactive, M´Q, in each environment, as evident

from the condition, S ą 1{pM ´Qq, that defines this regime. This highlights how

gene regulatory requirements, which in this case is to keep undesired gene activation

levels low in the presence of crosstalk, can constrain regulatory systems and put

fundamental limits on their global design.

2. Region II: As the number of co-activated genes, Q, in each environment increases,

the optimal concentration, C˚, also increases, and finally formally diverges, C˚ Ñ

8. This arises out of the constraint on optimal concentration from Eq. 2.10 to be

non-negative. The boundary curve in the pQ,Sq plane can be obtained as the two of

the roots of the 4th order equation in Q: SpM`SMQ´2Q´SQ2q´
a

SpM ´Qq “

0. In contrast to Region I, this corresponds to a biologically plausible scenario of

constitutively expressing all the genes rather than relying on transcriptional regu-

lation. Organisms like obligatory parasites, which live in nearly constant environ-

ments, might adopt this strategy.

3. Region III: This regime, called the “regulation regime”, corresponds to the bio-

logical picture of transcriptional regulation, occurs in a broad region of the pQ,Sq

plane, and is chracterized by a finite positive C˚, which minimizes crosstalk, given

by the expression in Eq 2.12. The boundary between the first and third re-

gion is at S˚ “ 1
M´Q

and the boundary between the second and the third is at

S˚ “
´2M`3Q˘

?
Qp5Q´4Mq

2QpM´Qq
. Hence, the second region (where C˚ “ 8) only applies

for Q ą 4M
5
.

Optimal crosstalk, X˚, is independent of the energy difference, µ0, between the cognate

and the unbound state. Increasing this energy difference only lowers the optimal con-

centration, C˚, while leaving the crosstalk unchanged. Optimal crosstalk depends both

on the fraction of genes that need to be co-activated, Q{M , and the total number of

genes that need to be inactive, M ´Q. This suggests that it is costly to maintain genes

that are never expressed, as they will be frequently spuriously expressed, arguing against

unlimited accumulation of obsolete genes in organisms.

Optimal crosstalk in the regulation regime is dominated by the second term of Eq. 2.12,
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and thus increases as „
?
S and as Q

M

?
M ´Q for sufficiently small S. At the boundary

between regions I and III, where regulation breaks down, we have SpM ´ Qq “ 1, with

the crosstalk in region I being independent of S as X˚ “ Q{M , because all genes that

need to be active are in a crosstalk state due to the absence of TFs, with the rest being

inactive as required. To be in the regulation regime (region III), S ă 1{pM ´Qq, which

sets an upper bound on the total number of genes M as M ă 1{S, corresponding to the

maximum number of genes the organism can accumulate given a certain similarity of BS

sequences.

As can be seen from Fig. 2.4b, for a given value of S, an intermediate value of Q such

that 0 ă Q ă M results in the largest optimal crosstalk. This arises out of the fact

that the two crosstalk types, x1 and x2, show an opposite dependence on the number of

active genes Q. While x1 (genes that need to be active) decreases with Q, x2 (genes that

need to be silent) increases with Q, because of the change in C˚ with Q. As the total

crosstalk is a weighted sum of these errors with varying weights that depend on Q, X˚

has a non-monotonic dependence on the number of active genes Q with a maximum at

an intermediate value - see Fig. 2.5.

Q
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Figure 2.5: Minimal crosstalk X˚ is an increasing function of the similarity S

and has a non-monotonic dependence on the number of active genes Q. The

balance between genes that need to be active (x1 crosstalk type) and genes that need

to remain inactive (x2 crosstalk type) causes a non-monotonic dependence of the total

crosstalk on the number of active genes Q, which has a maximum at an intermediate Q

value. Curves are shown only in the regulation regime, where crosstalk is minimized by

a finite TF concentration. The curves are truncated at the point of transition to regime

II where TF concentration formally diverges to infinity.

Fig. 2.4b also suggests a surprising insight that crosstalk in the basic model is surprisingly

high for an organism of M “ 5, 000 genes. For instance, at Q “ M{2, when typically
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about half of the genes are activated in each environment, and with TF specificity typ-

ical of metazoans (logpSq “ ´10.5), which we call the “baseline” parameters, optimal

crosstalk is X˚ « 0.23. This implies that almost a quarter of the genes at any point in

time are in an erroneous regulatory state. Also, as Fig. 2.6, plotted for M “ 20000, a

typical number of eukaryotic genes, suggests, a larger M results in increased crosstalk at

the same value of S. This suggests that global crosstalk is a serious constraint, and that

more complex regulatory mechanisms that connect TF-BS binding to transcriptional ac-

tivation have evolved, at least in part, to permit reliable regulation despite non-cognate

TF binding.

Q
5000 10000 15000 20000

Figure 2.6: Crosstalk in the basic model for M “ 20000 genes that are regu-

lated. (a) Minimal crosstalk, X˚; (b) Optimal TF concentration, C˚. These results are

analogous to Fig. 2.4, which is computed for M “ 5000. The results for two different

M are qualitatively similar and show 3 different regimes of regulation. We make the

following observations: (i) for larger M , the C˚ “ 0 regime expands to include lower

S values, as expected from the analytical solution for the regime boundaries; (ii) if the

fraction of co-activated genes, Q{M , remains constant, the crosstalk increases with M ,

as it also depends on the absolute number of inactive genes M ´ Q (see Eq. (2.12)).

The discrepancies at small Q between the black solid curve separating the “no regula-

tion” and “regulation” regimes, and the numerically computed C˚ values are due to the

approximation Q´ 1 « Q.

We have assumed that gene regulation is achieved by using specific TF activators to drive

the expression of genes that would otherwise remain inactive. An alternative formulation

of the problem postulates that genes are strongly expressed without TFs bound to their

regulatory sites, but need to be repressed by the binding of specific regulators to stop their

expression. In this complementary model, in which all regulators are repressors instead

of activators, results (Fig. 2.7) are a mirror image of the results shown in Fig. 2.4b for

the activator-only basic model. They can be obtained simply by mapping Q Ñ M ´Q.

Since we keep the convention that Q is the number of genes that are active, the difference

in regulation strategies amounts to having either Q activator types and keeping M ´ Q
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binding sites unbound (activator-only) or having M ´ Q repressor types and keeping Q

binding sites unbound.

Q

1000 2000 3000 4000

Figure 2.7: Crosstalk in the basic model with regulation by repressors alone

is a mirror image of regulation with activators only. (a) Minimal crosstalk, X˚;

(b) Optimal TF concentration, C˚. These results are analogous to Fig. 2.4, which is

computed for regulation with activators only. The observed picture is an exact mirror

image of Fig. 2.4, namely Qmaps toM´Q, where we keep the convention that Q denotes

the number of genes that should be active. The difference is that in the activator-model

activating Q genes requires Q types of activators, whereas in the repressor model this

requires M ´Q types of repressors.

2.4 Validity of the mean-field assumption

In computing crosstalk at a given M and Q, we have made a mean-field assumption

on the similarity measure S. Given a set of M binding site sequences of length L in

sequence space of size 4L, this amounts to assuming the following about the distribution

of mismatches between pairs of binding site sequences. The distribution of all mismatches

(with the M ´ 1 other BS sequences) corresponding to each binding site comes from the

same underlying distribution, independent of the binding site considered. For a particular

selection of Q genes, for each binding site i from the M binding sites, similarity Si can be

defined using dij where j ‰ i indexes over the binding sites of the Q selected genes.

Si “
ÿ

j‰i

e´ϵdij . (2.15)

From this, we have for crosstalk for this particular selection of Q genes,

XptSiuq “
1

M

”

ÿ

iPQ

x1pSiq `
ÿ

iPM´Q

x2pSiq

ı

(2.16)

“
1

M

”

ÿ

iPQ

e´Ea ` CSi

C{Q` e´Ea ` CSi

`
ÿ

iPM´Q

CSi

e´Ea ` CSi

ı

, (2.17)
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Figure 2.8: Comparison of mean-field and simulations. (a) and (c) We plot the

difference in optimal crosstalk between simulations and the mean-field approach, X˚
sim ´

X˚ for different Q and S. (b and (d) We plot X˚
sim ´ X˚ against Q for three different

S. Here, M “ 5000, L “ 10, and S has been varied by tuning ϵ. X˚
sim is a Monte Carlo

estimate of the mean crosstalk, obtained over nsel different selections of Q out of M genes.

nsel “ 1 in the top row, and nsel “ 30 in the bottom row. The mean-field approach is in

general a very good approximation of the simulations. The maximal crosstalk difference

is 0.02. At smaller S, the difference is larger.

where x1pSiq and x2pSiq depend on Si as shown. We’re interested in the mean crosstalk

X “ xXptSiuqy over all selections of Q out of M genes, which is equivalent to the joint

distribution of all Si. Each Si comes from the same underlying distribution with mean

S. So we have,

X “ xXptSiuqy “
1

M

”

ÿ

iPQ

xx1pSiqy `
ÿ

iPM´Q

xx2pSiqy

ı

. (2.18)

In the mean-field assumption, we have xx1pSiqy « x1pxSiyq “ x1pSq and xx2pSiqy «

x2pxSiyq “ x2pSq which gives us

X “
Q

M
x1pSq `

M ´Q

M
x2pSq. (2.19)

From this, one can obtain the optimal crosstalk X˚. To check the validity of such a mean-

field assumption, we performed simulations by picking binding sites from the sequence
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space and computing optimal crosstalk X˚
sim, and compared this with the mean-field

crosstalk X˚. To do this, we first picked M binding sites (genes) randomly from the

sequence space and fixed them. Now, for each Q, we perform nsel different selections of

Q out of M genes. For each such selection, after computing the binding site mismatches

and occupancies, we compute the crosstalk. To get the mean crosstalk for Q, we perform

a Monte Carlo estimate of the mean crosstalk over these nsel different selections of Q

out of M genes. We see that the mean-field crosstalk systematically over-estimates the

actual crosstalk, but is nevertheless a very good approximation to it.
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Figure 2.9: Comparison of mean-field and simulations. (a) We plot the difference

in optimal crosstalk between simulations and the mean-field approach, X˚
sim ´ X˚ for

different Q and S. (b) We plot X˚
sim ´ X˚ against Q for three different S. Here,

M “ 500, L “ 8, and S has been varied by tuning ϵ. X˚
sim is a Monte Carlo estimate

of the mean crosstalk, obtained over nsel “ 100 different selections of Q out of M genes.

Again, as with M “ 5000, the mean-field approach is a very good approximation of the

simulations. The maximal crosstalk difference is only slightly larger than 0.02.

2.5 Mixed models of activators and repressors

In the baseline models, we have M genes, all of which are regulated by only activators

or only repressors. Here, we consider mixed models, where some genes are regulated by

activators and the other genes by repressors. Here, we assume thatMA genes are regulated

by activators and MR genes are regulated by repressors. We have M “ MA `MR. In a

particular environment, we assume that Q genes need to be ON. Out of these, we assume

that QA genes are regulated by activators and QR genes are regulated by repressors.

Hence, we have Q “ QA `QR. For the QA genes (out of MA activator-regulated genes)

that need to be activated (and hence, ON), we have QA activators present in the cell. For

the QR genes (out of the MR repressor-regulated genes) that need to be not repressed
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(and hence, ON), we don’t have their repressors present. But for the rest MR ´ QR

genes (out of the MR repressor-regulated genes) that need to be OFF, we have MR´QR

repressors present in the cell. So, a total of T “ QA`MR´QR TFs are present in the cell.

As before, S is the similarity of the binding sites and C the total concentration of TFs

(activators+repressors). The concentration of a particular TF type, when present, will

now be C{T . We assume that any non-cognate interaction (“activation out-of-context”

or “repression out-of context”) contributes towards crosstalk error.

For a gene that is activated and needs to be ON, it needs to be bound by the cognate

activator. The unbound state and any non-cognate binding (non-cognate activator or

repressor) are crosstalk states.

xA
1 “

e´Ea ` CS
C
T
` e´Ea ` CS

pQA out of M genesq. (2.20)

For a gene that is activated and needs to be OFF, it needs to be unbound. Any non-

cognate binding is a crosstalk state.

xA
2 “

CS

e´Ea ` CS
pMA ´QA out of M genesq. (2.21)

For a gene that is repressed and needs to be ON, it needs to be unbound. Any non-cognate

binding is a crosstalk state.

xR
1 “

CS

e´Ea ` CS
pQR out of M genesq. (2.22)

For a gene that is repressed and needs to be OFF, it needs to be bound by the cognate

repressor. The unbound state and any non-cognate binding (non-cognate repressor or

activator) are crosstalk states.

xR
2 “

e´Ea ` CS
C
T
` e´Ea ` CS

pMR ´QR out of M genesq. (2.23)

Notice that xA
1 “ xR

2 and xA
2 “ xR

1 . Now, the overall crosstalk error reads

Xmixed,fullpQA, QR,MA,MRq “ xA
1

QA

M
` xA

2

MA ´QA

M
` xR

1

QR

M
` xR

2

MR ´QR

M
(2.24)

“ xA
1

MR `QA ´QR

M
` xA

2

MA `QR ´QA

M
(2.25)

“ xA
1

T

M
` xA

2

M ´ T

M
(2.26)

“ XpQeff “ T,Meff “Mq. (2.27)

Hence, given a set of pQA, QR,MA,MRq of the mixed model, crosstalk is same as that

in an equivalent baseline activator model with Qeff “ T “ MR `QA ´QR and Meff “

M “MA `MR.

Given M , there are many mixed models possible. In each of the mixed models, the

cell has different number of genes put under the control of activators (MA). This can
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be tuned on an evolutionary timescale. Once MA is chosen, different selections of Q

genes have different numbers of genes under the control of activators pQAq and repressors

pQR “ Q ´ QAq. For each mixed model pQA, QR,MA,MRq, there exists an optimal

concentration which depends on the number of TFs, at which one can compute an optimal

crosstalk.

For a given M,Q and S, we find the best possible MA, which minimizes the crosstalk.

For some MA, we define the optimal crosstalk as the average optimal mixed crosstalk for

all selections of Q genes (different QA),

X˚
pM,Q, S,MAq “

ÿ

QA

PQA
X˚

mixed,fullpQA,M,Q, S,MAq, (2.28)

where PQA
is the fraction of Q gene selections that have QA activated genes.
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Figure 2.10: Mixed model at best MA. (a) We plot the optimal number of activated

genes M˚
A for different Q at M “ 500 and logpSq “ ´10.5. For Q ă 250, it is best to

have all under activators (M˚
A “ 500) and for Q ě 250, it is best to have all genes under

repressors (M˚
A “ 0). (b) We plot the optimal mixed crosstalk, computed at M˚

A, and

averaged over different gene selections using PQA
.

We have

PQA
“

`

MA

QA

˘`

M´MA

Q´QA

˘

`

M
Q

˘ , (2.29)

X˚
mixedpM,Q, Sq “ min

”

X˚
pM,Q, S,MAq

ı

, (2.30)

M˚
A “ argmin

MA

X˚
pM,Q, S,MAq, (2.31)

where M˚
A is the optimal MA. As in Fig. 2.10, we see that for Q ă M{2, the best

strategy is to use all activators MA “M , and for Q ą“M{2, the best strategy is to use

all repressors.
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2.6 Alternative crosstalk definition

So far, we considered “activation out-of-context” — i.e., activation by the binding of a

non-cognate TF when the cognate TF is present (but not bound) — to be a crosstalk state.

Our reasoning was motivated by viewing transcriptional regulation as a signal transmis-

sion apparatus. In this interpretation, gene activation by a non-cognate TF amounts to

generating a response (transcriptional activity) to a wrong input signal. Consequently,

this should count as crosstalk, despite the fact that (by chance) the correct signal was

simultaneously present in the cell. This is perhaps easiest to appreciate if one considers

more realistic setups in which genes are not simply “ON” and “OFF”, but can be quan-

titatively regulated by the level of their cognate TF. In such a model, there might be two

TFs present and varying in concentration as a function of time: one cognate for the gene

of interest and one not. In this case it is clear that the correct response of the gene is to

track the changes in the cognate TF, and not to simply be expressed in a constant “ON”

state; consequently, tracking the non-cognate TF due to crosstalk is obviously an error,

even if the cognate TF is present at the same time.

One could, however, argue that “activation-out-of-context” should not be considered as an

error state. If the presence or absence of TF signals is a binary variable and if the binary

response is defined solely by the state of transcriptional activity (activation/inactivation

of gene), then when the presence of the signal matches the response state, the regulation

outcome is correct, irrespective of the molecular details on the promoter. For example, for

a gene whose cognate TF is present, activation by any means (either by cognate or non-

cognate binding) is the correct response. In this scenario, the “out-of-context activation”

is actually what one might call beneficial crosstalk: here, non-cognate TF can be seen

as helping to activate the gene when the cognate TF is also present. For a gene whose

cognate TF is absent, activation is still an incorrect response, like before.

Hence, x2piq retains the same expression, but x1piq changes to

x1piq “
e´Ea

Ci ` e´Ea `
ÿ

j‰i

Cje
´ϵdij

. (2.32)

As shown in Fig. 2.11, optimizing C results in three distinct regulatory regimes, like in

the default basic setup. For small S in the regulation regime, the optimal C is given to

the leading order by:

C˚
„

e´Ea

?
S

Q
?
M ´Q

. (2.33)

The minimal crosstalk error at the optimal concentration C˚ is given by

X˚
“ ´SQ` 2

Q

M

a

SpM ´Qqp1` SQq. (2.34)
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Figure 2.11: Basic model with alternative crosstalk definition also exhibits three

distinct regulation regimes. The alternative definition does not count “activation

out-of-context” as an error state. (a) Minimal crosstalk error, X˚, shown in color, as

a function of the number of co-activated genes Q, and binding site similarity S. (b)

Optimal TF concentration C˚, that minimizes the crosstalk, relative to C0, the optimal

concentration at the baseline parameters (see main text).

2.7 Estimating the binding site similarity, S

2.7.1 Optimal packing

In real organisms, binding site sequences for different genes could depart from a random

distribution (even after taking into account the statistical structure of the genomic back-

ground). For example, to achieve high specificity of regulation, we could hypothesize that

binding site sequences evolved to minimize the overlap between any pair of consensus se-

quences. To explore the crosstalk limit under such optimal use of sequence space and

contrast it with the random choice of binding sites in our basic model, we synthetically

constructed binding site sequences that are as distinct as possible. Specifically, our op-

timal codes are described by a parameter dmin, which is the minimum required number

of basepair differences between any pair of binding site sequences. This is the Hamming

distance HD between sequences. The problem of choosing M sequences of length L such

that each pair differs by at least dmin is not solvable in general. We construct numerical

approximations to these optimal codes using the following algorithm:

1. Generate all possible sequences of length L and store them in a list called words.

Create an empty list, called codewords, which will store the binding site sequences.

2. Pick the first entry, s, from the list words, to be a binding site sequence, and append

it to the list codewords.



49

3. Erase s and all of its Hamming neighbours at distance strictly less than dmin from

the list words.

4. If the list words is not empty, repeat from step 2. If the list words is empty, stop.

When the procedure terminates, the list codewords will contain binding site sequences

that are separated by at least dmin mismatches. The outcome of this procedure depends on

the initial ordering of the list of all possible sequences. The procedure is not guaranteed

to generate the maximal set of sequences satisfying the Hamming distance criteria.
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Figure 2.12: Optimal packing of binding sites in sequence space. This alternative

model with optimal packing of binding sites in sequence space leads to values for S̃ (y-

axis) that can be remapped to the Spϵ, Lq (x-axis) for the random code with the mismatch

energy model, Epdq “ ϵd and L “ 10 bp binding sites (corresponding scale for ϵ shown in

the top axis). Dashed lines denote equality. Optimally designed binding sites effectively

decrease S. Here, their sequences are at least dmin bp distant from each other (gray lines

= different dmin as indicated).

From the list of generated binding site sequences, we obtain P pdq, the distribution of

mismatch distances between all pairs of binding sites, and hence obtain the value of S

as

S̃pdminq “
ÿ

dědmin

P pdqe´ϵd. (2.35)

dmin “ 0 corresponds to the “random code” and results in S̃pdmin “ 0q “ S “ p1
4
` 3

4
e´ϵqL.

Note that increasing dmin decreases the maximum possible M as sequences move further

apart in sequence space whose size is fixed. A well-known upper bound on the number

of sequences satisfying the Hamming distance criterion is the Singleton bound [Lin and

Costello, 2004]: Mpdmin, Lq ď 4L´dmin`1. As shown in Fig. 2.13, with L “ 8 and dmin “

3, we already have M ď 4096. With L “ 10 and dmin “ 4, we have M ď 16384.

As L becomes smaller, the possible range of M also decreases. This suggests that for
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prokaryotes, optimally packed binding site sequences can be significantly better than

random packing, because they typically have L ą 10 and M ă 104. On the other hand,

eukaryotes have smaller L and larger M , and therefore, might not have enough sequence

space for optimal packing to be significantly better than random packing.

d
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100

M
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0 1 2 3 4 5
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Figure 2.13: Bounds on the maximal number of binding site sequences for dif-

ferent dmin with binding sites of length L “ 8. Two bounds from the coding theory

(Singleton upper bound and Gilbert-Varshamov (GV) lower bound [Lin and Costello,

2004]) are shown together with the values of M obtained by our numerical approxi-

mation procedure. These are shown both for the usual definition of distance between

sequences as the Hamming distance HD as well as for a definition that considers the

reverse complements of the sequences HDrc. For dmin “ 0 there are M “ 48 « 65000

possible sequences where all sequence pairs are at least dmin distant from each other, but

the number quickly decreases with increasing dmin. From the HD to HDrc, the Singleton

bound doesn’t change from the usual situation but the Gilbert-Varshamov (GV) bound,

which takes into account the “volume of restricted ball” around each sequence goes down.

Because of stronger constraints, the number of sequences that can be packed goes down

from the usual situation but only by a factor of « 2.

2.7.2 Reverse complemented sequences

We also consider a different definition of distance between sequences that considers the

double-stranded nature of DNA into account. If a TF that binds a sequence s can also

bind its reverse complemented sequence r “ RCpsq and thus r cannot be another BS

sequence. Hence, one needs to consider the reverse complement of both the sequences in
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question. If si and sj are two sequences with reverse complements ri and rj respectively,

this new definition of Hamming distance is

HDrcpsi, sjq “ min
”

HDpsi, sjq, HDpri, sjq, HDpsi, rjq, HDpri, rjq
ı

, (2.36)

where HDpsi, sjq is the usual Hamming distance as considered previously.

This restricts the sequence space much more than with the usual definition and as such,

as seen in Fig. 2.13, we can pack fewer binding sites in the sequence space at a specific

dmin. In Fig. 2.14, we map S from the reverse complement code to S from a random

code. See that S increases by about a factor of « 2 for realistic ϵ P r2, 5s, because of

these stricter constraints.
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Figure 2.14: Reverse complemented sequences. Using an alternative definition HDrc

of distance between binding site sequences, which takes into account the double-stranded

nature of DNA by considering the reverse complements as well of the sequences in ques-

tion, leads to values for S̃ (y-axis) that can be remapped to the Spϵ, Lq (x-axis) for the

random code with the usual Hamming distance definition HD. Here, we have considered

L “ 8 bp binding sites (corresponding scale for ϵ shown in the top axis). Dashed lines

denote equality. This alternative definition increases S because more sequences are now

found in the “shells” around the consensus to which the TF can bind on the reverse

strand. S increases by about a factor of « 2 for ϵ P r2, 5s, and by about a factor of « 1.7

for ϵ “ 1.

2.7.3 Saturating model of TF-DNA binding energy

It has been experimentally observed that the binding energy between TF and DNA

saturates to some nonspecific value after a certain number of mismatches between the

TF’s cognate sequence and the DNA sequence in question [Maerkl and Quake, 2007]. We

consider such a saturating energy model, characterized by a parameter d0, the number of

mismatches after which binding energy saturates.
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Figure 2.15: Saturating energy model. An improved affinity model where the mis-

match energy saturates after d0 mismatches, Epdq “ ϵminpd, d0q (gray lines = different

d0 as indicated), effectively increases S. d0 „ 4 has been reported experimentally [Maerkl

and Quake, 2007]. This alternative model leads to values for S̃ (y-axis) that can be

remapped to the Spϵ, Lq (x-axis) for the random code with the mismatch energy model,

Epdq “ ϵd and L “ 10 bp binding sites (corresponding scale for ϵ shown in the top axis).

Dashed lines denote equality.

The binding energy is given by Epdq “ ϵminpd, d0q. We obtain S as

S̃pd0q “
ÿ

d

P pdqe´Epdq, (2.37)

where P pdq is the distribution of mismatch distances between all pairs of binding sites

picked at random from the sequence space. d0 “ L corresponds to a mismatch model with

non-saturating energy. Decreasing d0 limits the specificity of the TF towards binding site

sequences far away from the consensus and thereby increases S̃pd0q.

2.7.4 Empirical values

We obtain organism-specific estimates of S from known databases [Gama-Castro et al.,

2011; Mathelier et al., 2013; Spivak and Stormo, 2012] of the binding site sequences of

different TFs. In the main text, for a particular genome, we defined S for a collection

of TFs with the same mismatch penalty ϵ and binding sites of a specific constant length

L. In real organisms, different TFs have different ϵ and L, making it difficult to directly

calculate S for a genome. Instead we obtain a value of S for each TF by defining it as

the value of S of a hypothetical genome in which all TFs have the same binding site

properties pϵ, Lq as our TF. Hence, for each organism, we obtain a set of S values.
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Many databases document the binding site sequences of TFs in Position Count Matrices

(PCMs). The PCM of a TF with a binding site of length L is a 4ˆ L matrix B with bij
denoting the number of known TF binding site sequences that have nucleotide i in position

j. One can obtain estimates of ϵ and L from B, and use them to calculate S. There are

two broad ways to estimate ϵ and L (and hence, S) of a TF: (a) Information method, (b)

Pseudo-count method. In (a), we calculate the information contained in the whole binding

site motif and obtain an ϵ that distributes this information uniformly among all sites in

an equivalent “effective” motif that has the same length as the original, but only has 0

or ϵ mismatch energy values. In (b), we obtain ϵ for all entries of the PCM and calculate

an average ϵ from these entries. To handle zeros in the PCM which lead to undefined

ϵ, (b) uses an arbitrary pseudo-count. Method (a) can, in contrast, avoid the use of

pseudo-counts and, additionally, reproduces by construction the information content of

each known motif, which is the key statistical property of TF specificity [Wunderlich and

Mirny, 2009; Schneider et al., 1986]. Hence, we used (a) to infer S values. In both the

methods, we used PCMs that have that have been constructed from at least 10 distinct

binding site sequences.

Information method

In this method, we first obtain the binding site length L and also the total information

I, contained in the binding site sequences of the TF.

I “
ÿ

j

Ij “
ÿ

j

ÿ

i

pij log2
pij
qij

, (2.38)

where Ij is the information contained in position j, pij is the frequency of nucleotide i in

position j, obtained in a straightforward way from B, and qij is the expected background

frequency. To get rid of non-specific positions, we neglect all positions that contain

information less than a certain threshold (Ij ą 0.2 bits for position j to be considered

part of the binding site). For a random genome, qij “ 0.25 @ i, j, resulting in

I “ 2L`
ÿ

i,j

pij log2 pij. (2.39)

The maximum information in the motif is 2L bits (when ϵ Ñ 8) with each position

contributing a maximum of 2 bits, which for finite ϵ, is reduced by an entropy term.

Obtaining information per position Ipos “ I{L, we infer an ϵ that uniformly distributes

the information in the motif among individual positions. At a specific position j˚, without

loss of generality, assume that i “ 4 has the best binding energy p“ 0q. The probability

of observing i “ 4 at j˚ is given by p4 “ 1{Z while the probability of observing any of

the three other possible nucleotides is given by p1,2,3 “ e´ϵ{Z, with Z “ 1 ` 3e´ϵ [Berg
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and von Hippel, 1987]. Hence,

Ipos “ 2`
ÿ

i

pi log2 pi (2.40)

“ 2´
1

Z
log2 Z ` 3

1

Z ln 2
ϵe´ϵ ´ 3

e´ϵ

Z
log2 Z (2.41)

“ 2´ log2 Z ` 3
1

Z ln 2
ϵe´ϵ. (2.42)

The mismatch energy ϵ can be obtained from the above expression, and from ϵ and L,

we obtain Spϵ, Lq “ p1
4
` 3

4
e´ϵqL.
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Figure 2.16: Distributions of S for TFs from different databases. In each panel,

organism-specific (from a single database) boxplots of S are shown. The first boxplot

in each panel corresponds to S values obtained from information estimates, and the

remaining four correspond to S values obtained using the psuedo-count method with

δ “ 0, 0.1, 0.5, 1 from left to right. E. coli TFs were obtained from RegulonDB [Gama-

Castro et al., 2011] and yeast (S. cerevisiae) from two different databases - scerTF [Spivak

and Stormo, 2012] and JASPAR [Mathelier et al., 2013]. All the other organism specific

TFs were obtained from JASPAR. Notice that in the pseudo-count method, δ has the

biggest influence on the estimates in E. coli. Importantly, for all other organisms, the

estimates are invariant to δ and in general seem to agree with the information estimate.

Pseudo-count method

In this method, we infer ϵ for all three non-cognate nucleotides in each position, and

obtain ϵ for the TF as an average of these 3L values. For an arbitrary position j, as

before, assume that i “ 4 has the maximum counts pb4j ą bij , i “ 1, 2, 3q. We obtain

ϵij “ log
b4j
bij

and mismatch penalty for position j as ϵj “
1
3
pϵ1j ` ϵ2j ` ϵ3jq. If some

entry bkj “ 0, ϵkj is undefined. To take care of this, we first add a pseudocount δ to all
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Parameter Explanation

ϵ Energetic mismatch penalty

L Binding site/TF motif length

S Binding site similarity

B PCM of a TF, matrix of size 4 ˆ L

I Total information in the TF motif

pij Frequency of nucleotide i in position j

qij Expected frequency of nucleotide i in position j

ϵij Energetic contribution of nucleotide i at position j

δ Pseudo-count added to PCM B

Bδ Pseudo-count added PCM

Table 2.2: Explanation of parameters involved in similarity estimation.

entries of B and obtain a modified PCM Bδ to infer ϵ. The value of δ chosen is arbitrary

and it is common practice to use δ “ 0.5 or δ “ 1. As before, to get rid of non-specific

positions, we consider positions that have ϵj ě 1. This is similar to the previous exclusion

criterion in the information method; requiring ϵj ě 1 is equivalent to requiring Ij ě 1.7

bits. From the remaining, we take a mean to obtain ϵ “ 1
L

ÿ

j

ϵj, and finally obtain

Spϵ, Lq “ p1
4
` 3

4
e´ϵqL.

2.8 Combinatorial regulation (AND gate)

So far, we have been dealing with models in which each gene is regulated by a single type

of TF, whether as a single activator or a repressor. Here, we will consider a simple model

of combinatorial regulation and compute optimal crosstalk for this setup as a function of

different parameters of interest.

As before, we have M genes in total, with each gene having two binding sites, corre-

sponding to two different (cognate) TF types. For a particular gene to be ON, we need

the presence of both the cognate TF types, which need to occupy both the binding sites.

Transcription of the gene occurs only when both the binding sites are occupied. In the

non-crosstalk setup, this corresponds to an implementation of an AND gate. We don’t

specify how this AND gate is implemented on the molecular level.

To bring combinatorial regulation into picture, we allow a particular TF to interact with

many different TFs in regulating a set of genes. In the basic activation setup, the total

number of genes M was equal to the total number of TFs. In the combinatorial regulation

setup which is an extension of the basic activation setup, the total number of genes M

will be equal to the total number of different TF-TF interactions that exist. This will

depend on the extent of combinatorial regulation which we quantify using f , the fraction

of TF-TF interactions each TF type realizes.
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2.8.1 Total number of TFs T

If there are T TFs in total, each TF can potentially interact with Nint “ fpT ´ 1q other

TF types, where f is the fraction of total interactions each TF type realizes. This gives

us M “ TNint{2, which gives us T «
a

2M{f and Nint «
?
2Mf . But each TF should

interact with at least one other TF, so we require Nint ě1. Taking both of these into

account, we have, for Nint, the number of TFs each TF interacts with, and the number

of total TFs T ,

Nint “ maxp1,
a

2Mfq, (2.43)

T “
2M

Nint

. (2.44)

If each TF interacts wtih all other TFs, we have f “ 1 and Nint “ T ´ 1, which give

us T «
?
2M . This we call “perfect combinatorial regulation” because it minimizes the

number of TFs needed to express a certain number of genes. If each TF realizes only

a fraction 1{2M ă f ă 1 of its interactions, we have Nint ą 1 interactions for each

TF, which gives us T «
a

2M{f . This we call “imperfect combinatorial regulation”. If

f ď 1{2M , we have Nint “ 1, which gives us T “ 2M . This we call “worst combinatorial

regulation”.

2.8.2 Number of TFs for Q genes to be ON

As before, we will compute the optimal crosstalk when Q genes are required to be ON.

Here, we compute the “typical” number of TFs t by following a similar recipe as before.

We have Q “ tnint{2, where nint is the number of interactions per TF now. This will be

smaller as there are fewer TFs (t ď T ). As before, we have

nint “ maxp1,
a

2Qfq, (2.45)

t “
2Q

nint

. (2.46)

When f ą 1{2Q, we have t “
a

2Q{f and when f ď 1{2Q, we have t “ 2Q.

2.8.3 Number of genes with only one TF present and none

present

Unlike in the basic activation setup, in the combinatorial regulation, when Q genes are

required to be ON, apart from genes that do not have any cognate TFs, we have genes

that have only one out of the two cognate TFs present. In such a situation, as calculated

above, we have t TFs and each TF has nint interactions, while the total number of

interactions it can have are Nint. So each TF that is present has Nint ´ nint missing
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interactions. So the number of genes that have only one TF present can be obtained

as

Q1 “
tpNint ´ nintq

2
. (2.47)

The number of genes with no TFs present now is Q0 “M´Q´Q1. In Table 2.3, we have

listed all possible configurations for the two binding sites of a gene, along with details

of crosstalk states and statistical weights. From this, we get the per-gene crosstalk for

different types of genes. For genes that have both the cognate TFs present (Q out of M),

the per-gene crosstalk error is

xboth “ 1´
pC{tq2

pC{tq2 ` 2e´EapC{tq ` 2pC{tqCS ` 2e´EaCS
` pCSq2 ` pC{tqCSp2ϵ, Lq ` e´2Ea

. (2.48)

For genes that have only of the two cognate TFs present (Q1 out ofM genes), the per-gene

crosstalk error is

xone “
pC{tqCS ` pCSq2 ` pC{tqCSp2ϵ, Lq

e´EapC{tq ` pC{tqCS ` 2e´EaCS ` pCSq2 ` pC{tqCSp2ϵ, Lq ` e´2Ea
. (2.49)

For genes that do not have any of their two cognate TFs present (M ´Q´Q1 out of M

genes), the per-gene crosstalk error is

xnone “
pCSq2 ` pC{tqCSp2ϵ, Lq

2e´EaCS ` pCSq2 ` pC{tqCSp2ϵ, Lq ` e´2Ea
. (2.50)

Hence the total crosstalk is

X “
Q

M
xboth `

Q1

M
xone ` 1´

Q`Q1

M
xnone. (2.51)

At a given M and f , for each pQ,Sq pair, we compute the optimal concentration C˚

numerically, and obtain the minimal crosstalk X˚
comb.
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Figure 2.17: Different regimes on the pQ,Sq plane for the basic and combinato-

rial setup. Here we show how the boundaries between different regulatory regimes shift

between the basic activation setup and combinatorial regulation setups. In the leftmost

panel, we have the regimes for the basic activation setup. In all the other panels, we

have the regimes for the combinatorial setup for f “ 0.001, 0.1 and 1 respectively from

left to right. For f “ 0.001, the “regulation regime” is slightly smaller than in the basic

activation setup. As f increases, the “regulation regime” increases in size (and is bigger

than in the basic activation setup) and the boundary with C “ 0 is pushed higher towards

bigger similarity.
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Figure 2.18: Difference in optimal crosstalk between combinatorial setup and

the basic activation setup for different f . We show the difference in optimal crosstalk

between combinatorial setup and basic activation setup for different f . (a) f “ 0.001;

here, combinatorial regulation performs worse in comparison to the basic activation setup.

(b,c,d) f “ 0.01, 0.1, 1 respectively; here, combinatorial regulation is almost always

helpful and gives a significant improvement over basic activation in terms of optimal

crosstalk. At the baseline parameters of Q “ 2500,M “ 5000 and log pSq “ ´10.5,

optimal crosstalk for the combinatorial setups reads X˚
comb “ 0.28, 0.18, 0.11 and 0.07 for

f “ 0.001, 0.01, 0.1 and 1 respectively, compared to X˚ “ 0.23 for the basic activation

setup.

As plotted in Fig. 2.17, the boundaries between different regimes shift in the combi-

natorial setup. In particular, while at small f , the “regulation regime” shrinks in the

pQ,Sq plane, as f increases, it expands. As f increases towards 1, the boundary between

the “regulation regime” and “C “ 0” regime moves towards larger S. In Fig. 2.18, we

have plotted the difference in optimal crosstalk between combinatorial regulation and the

basic activation setup. For f “ 0.001, combinatorial regulation doesn’t improve from
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the basic activation setup in terms of optimal crosstalk. But for f “ 0.01, 0.1, 1, combi-

natorial regulation gives a lower optimal crosstalk than the basic activation setup. So,

there exists a threshold in f such that for combinatorial regulation below that threshold,

the “regulation regime” shrinks in comparison to the basic activation setup and performs

worse. Above the threshold, the “regulation regime” expands towards larger S and gives

a lower optimal crosstalk than the basic activation setup. At the baseline parameters of

Q “ 2500,M “ 5000 and log pSq “ ´10.5, optimal crosstalk for the combinatorial se-

tups reads as X˚
comb “ 0.28, 0.18, 0.11 and 0.07 for f “ 0.001, 0.01, 0.1 and 1 respectively,

compared to X˚ “ 0.23 for the basic activation setup.
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Figure 2.19: Number of TFs present - t, and number of interactions per TF -

n, against Q for different f , on log-log scale. Here we show (a) how number of TFs

t and (b) number of interactions per TF n vary with Q for different f . For each f , for

Q smaller than some threshold value which depends on f , the number of TFs t varies as

Q “ 2t and the number of interactions per TF n is constant at 1. For all Q greater than

this threshold value, log n increases linearly with logQ (n changes with Q in a power-law

fashion).

This decrease in crosstalk is consistent simply with the reduction in the number of reg-

ulatory components (T and t, the number of TFs, see Fig. 2.19), as discussed in the

next section. In the case of perfect combinatorial regulation f “ 1, we have about
?
2M instead of M TF species in the basic activation setup, which is a significant reduc-

tion in the number of regulatory components. Hence, each TF now effectively controls

θ “M{
?
2M “

a

M{2 genes, and so the decrease in crosstalk is expected to be roughly
?
θ compared to the basic activation setup as argued below. The actual reduction in

crosstalk is not as large because of certain differences between the combinatorial setup

and θ-genes setup of the next section. One major difference is that in the θ-genes setup,

the cell can only activate sets of genes of size θ, while in the combinatorial setup, the cell
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has the power to activate single genes at will, albeit at the cost of partially activating

genes that are not needed. Fundamentally, therefore, crosstalk decrease gains come from

the decrease in the number of regulatory components in the system, which again points

to the explosion in the number of possible noncognate interactions as the crucial origin

of the crosstalk.

Although this combinatorial strategy allows crosstalk reduction and has been documented

at specific promoters, we point out that the predicted, square-root scaling of the number of

TF species with the total number of genes, M , is inconsistent with published reports [van

Nimwegen, 2004; Maslov et al., 2009], which is in fact quadratic (!) making it unlikely that

crosstalk reduction is achieved through genome-scale combinatorial control as analysed

here.

crosstalk if gene needs to be

configuration activity
ON

OFF, C can be Energy Weight

(XY) X Y none

1 CC ON - 0 pC{tq2

2 UC OFF + - Ea e´EapC{tq

3 NC ON + + ϵd pC{tqCS

4 CU OFF + - Ea e´EapC{tq

5 CN ON + + ϵd pC{tqCS

6 UU OFF + - - - 2Ea e´2Ea

7 UN OFF + - - - Ea ` ϵd e´EaCS

8 NU OFF + - - - Ea ` ϵd e´EaCS

9 NxNy ON + + + + ϵpd1 ` d2q pCSq2

10 NxNx ON + + + + 2ϵd pC{tqCSp2ϵ, Lq

Table 2.3: Caption next page.
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Table 2.3: (Previous page.) All possible binding configurations and the corre-

sponding energies for a combinatorial regulation setup implementing an AND

gate. Each gene has two binding sites which bind two different cognate TF types. The

“configuration” column lists all the configurations of the two binding sites of a gene. “C”

denotes binding by cognate factor, “N” - binding by non-cognate and “U” - means that

the site is unbound. We distinguish between binding of non-cognate molecules of the

same type (NxNx) and different types (NxNy). The “activity” column denotes whether

in the given configuration the gene is either ON or OFF. To implement the AND gate, we

assume that transcription occurs (ON) only when both the binding sites are bound. The

next four columns denote whether this configuration is counted as crosstalk (+) or not

(-). In the leftmost column “ON”, both the cognate transcription factors are present (and

the gene should be ON). In the next three “OFF” columns, at least one of the cognate

TFs is absent (and the gene should be OFF). In “C can be X” column, the cognate TF

of only the left binding site (X) is present, in “C can be Y”, the cognate TF of only the

right binding site is present, and in “C can be none” column, both the cognate TFs are

absent. Blank space denotes a non-existing configuration: these are the configurations

including a cognate factor bound in the situation that it is absent. The column “Energy”

specifies the energy of these configurations. We define the reference energetic level E “ 0

as the state “CC” when both sites are bound by their cognate factors, such that all other

energies are positive. The column “Weight” denotes the statistical weight of the configu-

rations, taking into account the concentrations of the relevant TFs and the energy of the

configurations. Note that the statistical weight of the last binding configuration NxNx

uses Sp2ϵ, Lq instead of the otherwise Spϵ, Lq.

2.9 Every transcription factor regulates Θ genes

When every gene has its own unique TF type, this allows for maximal flexibility in

regulating each gene individually. But real gene regulatory networks inevitably have

fewer TFs than the number of target genes, so that at least some transcription factors

regulate several genes.

To accommodate this picture, here we consider a simple extension of the basic model,

in which each TF regulates Θ genes rather than one. We assume no overlap between

the sets of genes regulated by various TFs, so that the total number of TFs species is

now Θ times smaller than before. If Q genes should be active, then Q{Θ TF species

should be present in a given condition. Assuming that Q{Θ " 1, we can approximate

Q{Θ´ 1 « Q{Θ as before. The only change from the basic crosstalk formulation is in x1,
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because the concentration of cognate factors is now Θ times larger than before:

xΘ
1 “

e´Ea ` CS
C

Q{Θ
` e´Ea ` CS

(2.52a)

xΘ
2 “

CS

e´Ea ` CS
. (2.52b)

This formulation is analytically solvable, yielding

X˚
Θ “

Q

ΘM

´

´SpM ´Qq ` 2
a

SΘpM ´Qq
¯

(2.53a)

xΘ˚
1 “

a

SpM ´Qq
?
Θ

(2.53b)

xΘ˚
2 “

SQ

Θ

˜ ?
Θ

a

SpM ´Qq
´ 1

¸

(2.53c)

C˚
Θ “

e´EaQpΘ´ SpM ´Qqq

S2pM ´QqQ` SpM ´ 2QqΘ`
a

SpM ´QqΘ3{2
. (2.53d)

For small S the leading term in the optimal concentration is

C˚
Θ “

1
?
Θ

e´EaQ
a

SpM ´Qq
`Op1q. (2.54)

Compared to the basic model result of Eq. (2.11), the optimal TF concentration is now

reduced by factor of
?
Θ, as is the minimal crosstalk error of the first type, xΘ˚

1 . The

dependence on Θ of the crosstalk of the second type, xΘ
2 , is more complicated. These

gains in crosstalk have, however, been achieved by sacrificing the ability to regulate each

gene individually: now, the smallest set of genes that can be co-activated is of size Θ.

Typically, TFs might constitute Á 10% of the genes [van Nimwegen, 2004]; with Θ „ 10,

the crosstalk could be reduced by a factor of „ 3 at best.

2.10 Discussion

Molecular recognition events, which are essential to the functioning of the cell and the

organism, are ultimately limited in their specificity by the finite specificity of their un-

derlying monomer interactions. For instance, in the case of transcriptional regulation,

the specificity limits of the hydrogen bond mediated interactions between amino acids of

the TF’s DBD and the nucleotide base pairs on the DNA, set the limits with which a TF

molecule can bind to the correct target site (based on the latter’s sequence) while avoiding

spurious binding to off-target sites that might trigger unwanted cellular programs. Such

consequences, which might be commonplace inside the cell because transcription takes

place in a mix of cognate and a large number of non-cognate TF species, might be severe
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to the cell. But studies so far have not considered this issue to their completion and quan-

titatively analyzed what role such off-target interactions might play in the functioning of

the cell. In this chapter, we constructed a theoretical framework to study such crosstalk,

accounting for all possible cross-interactions between TFs and binding sites. As crosstalk

is a systemic phenomenon, we constructed our model as such, enabling us to compute

a lower bound on crosstalk (with respect to TF concentrations) and thereby estimate

what level of cross-interactions cannot be overcome by the cell, given a particular class

of molecular mechanisms behind transcriptional regulation. This lets us not only assess

the effectiveness of various regulatory strategies in decreasing crosstalk, but also enable

us to derive limits that crosstalk places on gene regulatory system design.

We show that crosstalk depends primarily on the total number of genes M , the typical

number of co-activated genes, Q, and the average level of similarity between pairs of bind-

ing sites, S, and that these parameters robustly define three possible regulatory regimes.

An important regime is the “regulation regime”, in which a non-zero and finite TF con-

centration that minimizes crosstalk exists with binding sites sufficiently distinguishable

from each other (S not too large) and the typical number of co-activated genes not ex-

treme (Q not too high). The other two regimes are anomalous cases where regulation is

dysfunctional - either the optimal TF concentration that minimizes crosstalk is zero or

infinity. A closer look at the boundaries between these regimes indicates that the average

similarity between binding sites, S, puts an upper bound to the total number of genes

that an organism can effectively regulate [Itzkovitz et al., 2006].

Another paradigmatic example of molecular recognition is protein-protein interaction net-

works [Zhang et al., 2008; Johnson and Hummer, 2011], studies on the evolution of which

have applied a combination of positive and negative design using computer simulations,

concluding that ’negative design’ seriously constrains the possible architectures [Sear,

2004a; Sear, 2004b; Myers, 2008; Johnson and Hummer, 2011]. Analogous to the binding

sites similarity, S, Johnson et al. [Johnson and Hummer, 2011] used the minimal en-

ergy gap between specific and nonspecific interactions as a quantitative measure for the

likelihood of specific versus nonspecific interactions. They inferred that the energy gap

follows a power-law with the total number of proteins in the network, and that it depends

inversely on the size of the binding surface, L, analogous to our results. Further, they

found the network designs that have hubs - proteins having multiple specific partners -

have higher crosstalk compared with networks that inhabit only pairwise interactions.

This is different between protein-protein interaction networks as all nodes interact with

each other in them, and TF-DNA interactions, as BSs do not interact with themselves.

Another study by Zhang et al. [Zhang et al., 2008] concluded that a trade-off exists be-

tween proteome diversity and concentrations and that the empirical values are close to

the limits set by crosstalk.

Much like TF concentrations in our model, protein concentrations face a trade-off that

they should be high enough to form specific interactions, but not so high as to form many

nonspecific ones. This explosion of the number of non-cognate configurations comes up

in other molecular contexts like prebiotic metabolism [Schuster, 2000] and the immune
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system [Košmrlj et al., 2008], where receptors are designed by selection to recognize

foreign peptides while avoiding self-binding. In the context of TF-DNA interactions

Sengupta et al. [Sengupta et al., 2002] studied how mutation and selection counteract

each other to tune TF specificities. They identified a trade-off between avoiding the loss

of current targets (for which a lower specificity is favoured) and avoiding the spurious

recruitment of new ones (for which a higher specificity is favoured); they also report an

inverse relation between the number of different targets and the TF specificity for each.

In this light, an intriguing direction for future research is to explore how crosstalk might

limit the complexity of regulatory networks in an evolutionary setting, a first step in

which we take in Chapter 4.

In the parameters space of M,Q and S, where are real organisms placed? Prokaryotes

usually have longer binding sites and fewer genes than eukaryotes, and hence crosstalk is

low between 1 and 10%. Crosstalk is high in eukaryotes, which have significantly more

genes and shorter binding site. Even for a short genome of M “ 5, 000 genes, such

as yeast, or for longer genomes of metazoans where most of the genes have been non-

transcriptionally silenced, we expect minimal crosstalk of X « 0.23, almost a quarter of

genes in erroneous states at any point. But the equilibrium thermodynamics based bio-

physical model of transcription considered here perhaps might not be completely relevant

for eukaryotic systems, and the activation of transcription might require binding events

of multiple different types of TFs that involve kinetic proofreading as well.

Traditional knowledge suggests that complex regulatory schemes increase the specificity

of gene regulation by cognate factors and hence completely mitigate the problem of

crosstalk. In contrast, by considering mechanisms that involve combinatorial regulation

by multiple TFs, we reveal a more intricate picture. We showed that [Friedlander et al.,

2016] cooperativity, and a combined use of activators and repressors, do not eliminate

spurious interactions for the reason that by adding new regulatory components, the num-

ber of non-cognate interactions also drastically increases, therefore making crosstalk often

worse. In this chapter, I showed how a simple AND-gate type combinatorial regulation

that requires co-binding of TFs of various types helps overcome crosstalk by decreasing

the number of regulators necessary to regulate a fixed number of genes. But further work

is needed to fully elucidate crosstalk limits in more general models of combinatorial control

and cooperativity, with interesting parallels to precision in biochemical sensing, in equi-

librium as well as out-of-equilibrium scenarios [Govern and ten Wolde, 2014; Mora, 2015;

Skoge et al., 2013; Cepeda-Humerez et al., 2015].

Taken together, our work on crosstalk suggests that this global constraint poses signifi-

cant challenges in eukaryotic regulation that can be mitigated, but not easily removed.

Although the initial conclusion was based on the simplest model of gene regulation, even

an analysis of more complex regulatory strategies revealed that crosstalk remains a chal-

lenge. One reason for this is because a major determinant of crosstalk is the binding site

similarity S, denoting how similar different binding site sequences are, which primarily

depends on the typical mismatch energy ϵ and the length of the binding sites, L. Although

crosstalk could be reduced by extending binding site length and/or augmenting the bind-
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ing energy, both parameters are severely constrained by a combination of biophysical and

evolutionary factors. The scale of the mismatch energy is set by the energetics of hydrogen

bonds to „ 2´4kBT , whereas the length of individual binding sites in eukaryotes appears

strongly constrained by evolutionary considerations to „ 10 bp [Sengupta et al., 2002;

Stewart et al., 2012; Tuǧrul et al., 2015]. Furthermore, the performance of complex regu-

latory schemes is also limited by the explosion of possible non-cognate configurations that

may lead to erroneous regulation, hence only those that significantly reduce the number

of regulatory components mitigate the problem of crosstalk. These constraints apply uni-

versally: any regulatory scheme operating at equilibrium, no matter how complex, faces

a fundamental limit to its achievable error, for reasons that led Hopfield [Hopfield, 1974]

to propose kinetic proofreading.

The primary conclusion from this chapter is that crosstalk in gene regulation is an im-

portant constraint, and is far from being solved. Equilibrium mechanisms of gene reg-

ulation, unless they significantly reduce the number of regulatory components cannot

overcome crosstalk and face fundamental limits from its emergence. In this light, it is

conceivable that cells might have evolved out-of-equilibrium solutions where energy is

deliberately spent to counteract the detrimental effects of crosstalk. For instance, perma-

nent gene silencing by spending energy to compactify DNA [Allshire and Madhani, 2018;

Wang et al., 2016], or localization of transcriptional activity to specific cellular compart-

ments via phase-separation like mechanisms [Hilbert et al., 2018] that spend energy to

switch between dynamic states, or molecular reaction schemes for gene regulation that

implement variants of kinetic proofreading [Cepeda-Humerez et al., 2015].
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General theoretical formulation of

TF-BS coevolution

In the preceding chapters, I described questions concerning the biophysical setup of gene

regulation that relies on transcription factor-DNA binding. While in Chapter 1, I intro-

duced a thermodynamic equilibrium model of TF-DNA binding using the grand-canonical

ensemble, and described how simple constraints based on such biophysical considerations

shape the sequence space of DNA sequence involved in regulation, in Chapter 2, I showed

how to quantify and investigate crosstalk, a global biophysical phenomenon that corre-

sponds to incorrect cross-interactions between TFs and BSs, using the biophysical model.

Another set of important questions concern the evolution of gene regulatory systems; as

gene regulatory networks are ultimately embedded in the DNA sequence – various func-

tional domains TF coding genes, binding site sequences on the regulatory elements – they

can be completely understood only in the context of how the biophysical relationship be-

tween DNA sequence and regulatory function interacts with functional constraints that

dictate fitness and other evolutionary considerations, ultimately shaping the evolution of

DNA sequence that represents these GRNs.

In the chapter, I will introduce a general setup that embeds the biophysical model of

gene regulation (Chapter 1) inside a population genetic framework of evolution. By

combining the biophysical model with a fully specified evolutionary model comprising

important evolutionary parameters like population size, fitness, mutation rates etc., we

can ask evolutionary questions on the structural and functional design of gene regulatory

networks with an arbitrary number of interacting components. For instance, in Chapter

4, I will develop, as a special case of the general setup described in this chapter, a

model to describe the evolution of a gene regulatory network of two TFs under different

signal sensing constraints. We will answer questions about the various pathways and the
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evolutionary timescales involved in the specialization of duplicate TFs, something that

cannot be achieved without merging the biophysical model with a population genetics

framework. Also, such a generic framework will serve as a platform to construct models

that can be used in future research on the evolution of gene regulatory systems.

3.1 General setup

We have Q TF types and M binding sites, each of which is associated with a particular

gene. As described in Chapter 1, we describe each TF type by its consensus sequence,

which is the BS sequence it prefers to bind to, and the mismatch penalty ϵ which cor-

responds to the increase in TF-BS binding energy with every mismatch between the TF

consensus sequence and the BS sequence. Each TF i is present in concentration ci, which

in turn could depend on upstream signals that the TFs sense using signal sensing do-

mains (see 4 for more details). The phenotype of the gene regulatory network is the set

of expression levels of all M genes, which we quantify by considering the equilibrium

probability of the corresponding binding sites being bound. These probabilities depend

on the Q ˆM mismatches between the TF consensus sequences and the BS sequences,

and also the concentrations of the TFs.

3.2 Environment

The set of concentrations of all TFs, Ct “ pc1, c2, . . . , cQq defines an environmental state,

where t indexes either time, space, or some other external condition. The environmental

state can be modeled in two ways:

Set of possible states. The total set E of possible environmental states, Ct P E for

all t “ 1, 2, . . . , can be listed out explicitly. In each state Ct, the concentrations ci are

deterministic. When t indexes time, the sequence tCtu might, for instance, correspond

to a particular temporal sequence of TF concentrations, like in developmental programs.

When t indexes space, this might correspond to fixed TF concentration patterns that

arise in different tissues. Here, one can just explicitly list the sequence of environments

tCtu or consider the distribution PE over possible environments E, Ct „ PEp.q.

Stochastic treatment. The concentrations ci can be treated as continous random

variables. For instance, one can assume that Ct comes from a multivariate Gaussian

distribution. Ct „ NQpxCy,Σcq. Such a model can be considered to represent pattern

of TF concentrations with just one “cell state”. Different cell states, which are to be

understood as clearly distinct environmental contexts (for example, presence of different

sets of nutrients) with different means xCy, can be modeled by considering a multivariate

Gaussian mixture distribution, Ct „
ř

i βiNQpxCyi,Σiq with
ř

i βi “ 1, where i indexes

over the possible cell states and βi represents the frequency of that cell state. When t

indexes time, we sample TF concentration patterns in the same cell over different times.



69

When t indexes space, we are sampling cells from different tissues (each tissue has a

different cell state) with βi reflecting the “size” of different tissues. Note that listing out

possible states is a special case of the stochastic treatment in which all the variances are

zero, E is the set of all possible cell states txCyiu and βi “ PEpxCyiq.

3.3 Phenotype

In a given environmental state Ct, the expression levels of each gene j depend on the

equilibrium probability of its binding site being occupied (occupancy probability) by

some TF molecule, pbpj, tq “
řQ

i“1 p
piq
b pj, tq, where p

piq
b pj, tq is the probability that a TF

molecule of type i is bound. These occupancy probabilities comprise the phenotype of

the GRN. For each TF i and binding site j pair, kij denotes the number of mismatches

between the consensus sequence of TF i and the sequence at binding site j. For each

binding site j and TF x, p
pxq

b pj, tq depends, apart from the mismatches kij for all TFs

i P t1, 2, . . . , Qu and the mismatch penalties tϵiu, on the chemical potentials tµiptqu, which

depend on concentrations Ct and other sequestration factors (see Chapter 1), as

p
pxq

b pj, tq “
eµxptqe´ϵxkxj

1`
Q

ÿ

i“1

eµiptqe´ϵikij

. (3.1)

}} .   .   .

.   .   .   .

Q: number of TF types present

M: total number of binding sites/genes
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Figure 3.1: Schematic of the biophysical model. We have Q TF types, each of

which can bind to M binding sites with different affinities. These affinities depend on

the genotype which is specified by the mismatches tkiju between the ith TF’s consensus

sequence and jth binding site sequence, and the mismatches tdrsu between the consensus

sequences of rth and sth TFs.
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3.4 Genotype

The primary actors in the GRN model are the TFs, which can sense upstream signals and

bind to binding sites, resulting in regulated gene expression patterns. In principle, the

genotype is the set of coding sequences of the TFs and the BS sequences corresponding to

the binding sites of the various target genes. However, as we are interested in TF-DNA

binding as the phenotype, and as empirical data characterizing the binding preferences

of TFs is readily available, we consider the genotype to be comprised of (a) the binding

site sequences on the regulatory regions of the target genes, and (b) the position weight

matrices (PWMs) of various TFs, characterizing their binding preferences to different

BS sequences, and possibly. The PWMs contain information about the TF consensus

sequences, which are BS sequences that the TFs prefer to bind, and the relative penalty

on binding energy as BS sequences deviate from the consensus sequence. Any other

domains of interest in the TF, like the signal sensing domain, can also be included in this

genotypic description.

This genotypic space characterized by sequences is very large, bringing practical limi-

tations of computation into consideration. However, as the occupancy probabilities of

binding sites, which is our phenotype of interest, depend only on the mismatches be-

tween the TF consensus sequences and the BS sequences (constant mismatch penalty

model described in Chapter 1 and above), we will instead work in the “mismatch” space.

This space of mismatches, which we call the “reduced genotype space” is defined by

ptkiju, tdrsu, tϵiu, tLiuq for i, r, s “ 1, 2, . . . , Q and j “ 1, 2, . . . ,M , where Li is the length

of sequences bound by TF i, ϵi is the mismatch penalty of TF i, kij is the number of mis-

matches between ith TF’s consensus sequence the BS sequence j, and drs is the number

of mismatches between the consensus sequences of TFs r and s. While this reduced space

of genotypes is more convenient computationally as it drastically reduces the number of

dimensions, it introduces feasibility constraints on the set of possible mismatches. Not all

combinations of tkiju and tdrsu are feasible, and some combinations occurring more often

than others; depending on the values of mismatches, the number of underlying genotypic

sequences that result in them can vary from 0 to very large.

3.5 Fitness

Given a sequence of environmental states tCtu for t “ 0, 1, 2, . . . , at each environmental

state, we define optimal occupancy probabilities p0bpj, tq for every binding site j. For

instance, p0bpj, tq could be defined to be 0 for genes which need to OFF, and 1 for genes

which need to be ON in different environments, a template we use in Chapter 4. Hence,

for a given genotype, we obtain the phenotype of occupancy probabilities using the bio-

physical model of TF-DNA binding, and by comparing how close these are with optimal

occupancy probabilities defined for various environments, we obtain the genotype’s fit-

ness.
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Directional selection: Optimal occupancy probabilities p0jptq P t0, 1u, meaning binding

sites are required to be either empty or saturated. Let S “ t1, 2, . . . ,Mu be the set of all

binding sites and S1ptq be the subset of binding sites which are expected to be saturated.

So, p0jptq “ 1 if j P S1ptq and p0jptq “ 0 if j R S1ptq. In this setup, we define the fitness of

a genotype x “ ptkiju, tdrsuq for Ct as

Ftpxq “
ź

j
p1` sjptqpjptqq (3.2)

“ 1`
ÿ

j

sjptqpjptq `Ops2q, (3.3)

where sjptq is the selection coefficient for binding site j. Note that sjptq ą 0 if j P S1ptq

and sjptq ă 0 if j R S1ptq. In the limit of weak selection, the higher order terms can be

neglected and fitness can be reduced to a linear function,

Ftpxq “ 1`
ÿ

j

sjptqpjptq. (3.4)

Stabilizing selection: Optimal occupancy probabilities p0jptq P r0, 1s, meaning they can

take intermediate values. In this setup, we define fitness of a genotype x “ ptkiju, tdrsuq

for Ct as

Ftpxq “
ź

j

´

1` sjptqppjptq ´ p0jptqq
2
¯

(3.5)

“ 1´
ÿ

jPS

sjptqppjptq ´ p0jptqq
2
`Ops2q, (3.6)

where sjptq is strength of selection for binding site j in environmental state Ct.

Now, given a set of environmental states Ct, there are two ways to define overall fit-

ness. Multiplicative fitness: This is suitable for the case of precise sequential (either

temporal or spacial) developmental processes. Multiplicative fitness gives us

F pxq “

´

T
ź

t“1

Ftpxq
¯1{T

, (3.7)

where T is either the total number of time steps in the developmental program, or the

number of tissues that involve in the regulation of the M binding sites. Average (over

environmental states) fitness: This is suitable when the environmental state follows

some statistics and we are interested in just the average behaviour over space or time.

When Ct comes from a multivariate Gaussian mixture distribution, we have

F pxq “
ÿ

j

βj

˙

c1,c2,...,cQ

fCptciu; xCyj,ΣjqFtciupxq, (3.8)

where fCptciu; xCy,Σq is the probability density function of the Q´dim multivariate nor-

mal distribution with mean xCy and covariance Σ. When the environmental states can

be listed out as a set E, fitness can be reduced to

F pxq “
ÿ

mPE

βmFmpxq, (3.9)

where βm is the probability of experiencing an environmental state m.
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3.6 Evolutionary dynamics

We model the evolution of the population as a Markov chain, with the state space defined

as the set X of all possible reduced genotypes x “ ptkiju, tdrsuq. Here, we consider ϵi
and Li to be constant for all TFs and do not consider their evolution, but an extension

of the model to include them is not hard. We think of each mismatch, either kij or drs as

a dimension, which can take L ` 1 possible values, L being the length of a binding site.

We also define Y as the set of all mismatches y “ tkiju between TF consensus sequences

and binding site sequences and Z as the set of mismatches tdrsu between TF consensus

sequences. We haveX “ Y
Ś

Z and the number of dimensions areMQ`QpQ´1q{2. The

total size of the state space is pL` 1qMQpL` 1qQpQ´1q{2. Such a Markov chain treatment

amounts to assuming the monomorphic fixed state limit in which the population is almost

always composed of some single genotype x. An occasional mutation x1 either leads to

fixation, in which case the new state is x1 or gets lost, in which case the population stays

in x state. Fixation or loss of x1 occurs before another mutation occurs. A mutation and

its subsequent fixation move the population to a new state, and the transition rates R

in the Markov chain are defined in terms of the mutation rate and fixation probability

as

Rx,x1 “ NUx,x1pfixpxÑ x1
q, (3.10)

where N is the population size, Ux,x1 is the mutation rate from x to x1, pfixpx Ñ x1q is

the fixation probability of a x1 mutant in a population of x. We can ask questions related

to the stationary distribution of the Markov chain, or the dynamics (using the transition

rates) on the state space. Under certain conditions [Wright, 1931; Sella and Hirsh, 2005;

Barton and Coe, 2009], the stationary distribution over states x is given by

P pxq „ Ωpxqe2NeF pxq, (3.11)

where Ωpxq is proportional to the distribution in the neutral case, and Ne is the effective

population size. There are two contributions to the stationary distribution P pxq over

states X - (a) the entropy term Ωpxq, which specifies the number of microstates (se-

quences) that give that particular set of mismatches x “ tkiju, and (b) the drift-selection

term e2NeF pxq, which specifies the join action of drift and selection. After normalizing,

the exact stationary distribution is given by

P pxq “
Ωpxqe2NeF pxq

ÿ

x1

Ωpx1
qe2NeF px1q

. (3.12)

If F pxq “ gpxq ` h, where the constant h is independent of x, P pxq doesn’t depend on

h.
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3.7 Timescale separation

As a first approximation to the general problem of TF-binding site coevolution, we assume

a timescale separation. Specifically, we assume that binding sites evolve on a faster

timescale while TFs evolve on a slower timescale. The rate of evolution is affected by two

factors - mutation rate and fixation probability. While mutation rate decides how much

raw material is produced that is capable of evolutionary change, fixation probability tells

us how capable the new raw material is of producing evolutionary change. That TFs

evolve much slower than binding sites can thus be argued in two independent ways.

3.7.1 Lower TF mutation rate

TFs could have a lower effective mutation rate than binding sites. DNA binding domains

of TFs have about 4´ 7 amino acids that interact with binding sites, which corresponds

to about 8 ´ 14 nucleotides (in the gene coding for the TF) that are involved in the

TF-DNA binding. This is comparable to the number of nucleotides in a single binding

site but is much smaller compared to the size of a CRE (like enhancer) in which binding

sites can evolve in various positions. So, while in a TF-single BS setup, the mutation

rates are comparable, in a CRE-TF setup, the mutation rate for TFs is much lower than

for binding sites.

3.7.2 Effect of fixation probability

Each mutation, either in the TF or the binding site, has a certain fixation probability that

depends on its selective effect and population size. If most mutations in the nucleotides

coding the DBD of TFs are deleterious, they have negligible rates of fixation and hence

only a few mutations in TFs are expected to get fixed. It is not clear if this is the case for

a generic TF (due to the biochemical properties of amino acids in the context of TF-DNA

interactions) and it would be worth investigating the mutational spectrum of TFs [Maerkl

and Quake, 2007; Maerkl and Quake, 2009]. More importantly, this can be the result of

the pleiotropic nature of TFs. Because a TF regulating many genes (by binding to many

binding sites) is constrained highly, a major fraction of mutations can be expected to be

deleterious. Hence, a major chunk of mutations in such TFs would be quickly lost from

the population. The number of mutations that are capable (have non-negligible fixation

probability) of getting fixed, either due to selection or drift are low, which shows as a

lower rate of TF evolution. Further research into the mutational effects of TF mutations

would help us understand the relative rates of the molecular evolution for TFs and their

BSs.
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3.8 Fast timescale: fixed drs, evolution of only binding

sites

In the monomorphic fixed state limit we assume that the population resides in some

specific state x “ py, zq where y “ tkiju is the set of binding site mismatches and

z “ tdrsu is the set of TF mismatches. When a mutation occurs, it gets either fixed or

lost quickly before another mutation occurs. On the fast timescale, mutations occur only

in the binding sites giving rise to a new potential state x1 “ py1, zq. So we are essentially

fixing the TF mismatches z and considering the evolution of binding sites alone. The

state space X can be separated into pL ` 1qQpQ´1q{2 groups of pL ` 1qMQ states each,

where each group corresponds to the states that have a specific z. On the fast timescale,

the population is constrained to one of these groups that is specified by z. So, we describe

binding site evolution as a Markov chain on Y . We have

Ry,y1;z “ NUBS
y,y1pfixpy Ñ y1; zq, (3.13)

where UBS
y,y1 is the mutation rate from y to y1, and pfixpy Ñ y1; zq is the fixation probability

of y1 in y for z.

For a fixed z, the entropy term Ωzpyq factorizes into M terms, each with Q dimen-

sions,

Ωzpyq “
ź

j

Ωpjq
pk1j, k2j, . . . , kQjq, (3.14)

where Ωpjqpk1j, k2j, . . . , kQjq specifies the number of microstates associated with the set

of mismatches of jth binding site. When F pyq is also linear in the contribution from each

binding site, it also factorizes into terms for each binding site. Hence, Pzpyq also factorizes

into M terms of Q-dim each, with each term describing the distribution of mismatches

tkiju associated with the jth binding site.

Pzpyq “
ź

j

P pjq
pk1j, k2j, . . . , kQjq, (3.15)

where P pjqpk1j, k2j, . . . , kQjq is the distribution of mismatches associated with binding site

j. Each binding site evolves independently of the others. Even if selection is not weak

or the appropriate definition of fitness is multiplicative, one can obtain a steady state

distribution Pzpyq, only that it will not factorize into terms for each binding site.

3.9 Slow timescale: evolution of TFs

On the slower timescale, in some state x “ py, zq, we have mutations in TFs which then

get quickly fixed or are lost from the population. A mutation that changes the consensus

sequence of TF r can potentially change the Q ´ 1 mismatches tdrsu to the consensus
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Figure 3.2: Markov chain for the co-evolution of TFs and binding sites: general

considerations and fast-timescale dynamics. Shown is a Markov chain modeling the

coevolution of TFs and binding sites. Each node is a state x “ py, zq in the Markov chain,

defined by the set of mismatches y “ tkij : i “ 1, 2, . . . , Q, j “ 1, 2, . . . ,Mu between TF

consensus sequences and binding site sequences and the set of TF consensus sequence

mismatches z “ tdrs : r, s “ 1, 2, . . . , Q, r ‰ su. Each link defines a transition on this

Markov chain with R defining the transition rate. On the fast timescale, only transitions

on darker edges occur, and the population is constrained to states with a single color,

which shows states with the same TF mismatches z. States xB and xC are two such

states with the same TF mismatches z1 (yellow color) but with binding site mismatches

y1 and y2 respectively. Ry1,y2;z1 denotes the transition rate between these states. On

the slower timescale, transitions on lighter edges occur, changing both y and z, and the

population moves to a new colored state. It moves on the dark edges (fast timescale)

among the states in the new color till another such light edge transition occurs on the

slower timescale. xA and xB show a slow timescale transition.

sequences of the other TFs, and also the M mismatches tkrju to all the binding sites.

Hence the new mutation x1 “ py1, z1q changes both y and z. This new mutation gets

fixed or lost before another mutation, either in the TFs or the binding sites, occurs.

The probability of its fixation depends on the fitness difference ∆Fx1,x “ F px1q ´ F pxq.

For TF mismatch state z, the binding site mismatches y would be in their steady state

distribution Pzpyq on the fast timescale. So the genetic background y for z on which the

new TF mutation z1 arises follows a distribution Pzpyq.

This gives rise to a picture of TF evolution as a Markov chain with states described by the

set of TF mismatches z “ tdrsu, where each state is composed of many internal binding

site states y that follow a distribution Pzpyq. One can define the transition rates Rz,z1

between TF states z and z1 as an average of all possible binding site mismatch transitions
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Figure 3.3: Markov chain for the co-evolution of TFs and binding sites: slow-

timescale dynamics. On the slower timescale, we have a Markov chain describing

the jumps between states with different TF mismatches. Here, each state is given by

a colored circle, for example, the blue circle denotes the state with TF mismatches z1
while the green circle denotes the state with TF mismatches z5. Inside each TF state

is embedded a fast-timescale Markov chain (with its states as filled small circles of the

same color) whose dynamics happen as described before. For example, the blue state z1
has a fast-timescale Markov chain with blue small circles inside it, etc. The transition

rate from z1 to z3 is given by Rz1,z3 .

y Ñ y1.

Rz,z1 “ NUTF
z,z1

ÿ

y

ÿ

y1

”

PzpyqV py
1; y, z Ñ y1, z1

qpfixpy, z Ñ y1, z1
q

ı

, (3.16)

where UTF
z,z1 is the TF mutation rate from z to z1, Pzpyq is the steady state distribution

of y for TF state z, pfixpy, z Ñ y1, z1q is the fixation probability of py1, z1q in py, zq and

V py1; y, z Ñ y1, z1q is the entropic term. Calculating U and V is challenging, and here we

will go through an example calculation to get some insight.
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3.10 Calculating U and V

Imagine that x “ py, zq where y “
Ť

itkij : j “ 1, 2, . . . ,Mu and z “
Ť

rtdrs : s ‰

ru. Now suppose, w.l.g., that there is a mutation in the first TF which changes its

consensus sequence. This changes its mismatches to the consensus sequence of all other

TFs. Suppose that the new TF state is given by

z1
“ td1

1s : s ‰ 1u Y
”

ď

r‰1

tdrs : s ‰ ru
ı

. (3.17)

For a particular z1, UTF
z,z1 can be obtained by the number of ways (sequences) z1 can be

obtained from z. This mutation also changes the first TF’s mismatches to all M binding

sites so that the new binding site state is of the form

y1
“ tk1

1ju Y

”

ď

i‰1

tkiju
ı

. (3.18)

Suppose that Y is the set of all such y1 that can result from this transition. To get V ,

first we count the number Ωz1pynewq of sequences with ynew in z1. Now, for each y1 P Y ,

we obtain V as

V py1; y, z Ñ y1, z1
q “

Ωz1py1q
ÿ

y2PY

Ωz1py2
q
. (3.19)

As a first step in making progress with this calculation, we need to find an expression for

Ωzpyq, the entropic term for binding site mismatches y “ tkiju for a given z “ tdrsu. At

a given z, this decomposes into terms for each binding site Ω
pjq
z pypjqq, where ypjq is the

mismatch set for binding site j. While this can be done for 2 TFs (see Eq. 4.18 from

Chapter 4), the general solution is hard to obtain.

3.11 Treatment in energy space

Because of these computational hurdles, instead of considering the sequence space with

mismatch classes, we directly treat evolution in binding energy space. Genotype is spec-

ified by MQ binding energies tEiju between TFs and binding sites, and a covariance

matrix Σ of size Q ˆ Q. While the non-diagonal elements of Σ specify how similar the

consensus sequences of different TF pairs are, the diagonal elements specify the variance

of each binding energy Eij. For a given Σ (which means fixing the TF consensus se-

quences), in the neutral evolution case, the binding energies Etiuj for each binding site j

are follow a multivariate Gaussian distribution with covariance matrix Σ. This is equiva-

lent to the entropic contribution Ω in the mismatch setup. While a mutation in binding

site j changes Etiuj (in a state-dependent way), mutations in TFs change Σ.

In contrast to the sequence-based framework, here we instead consider on the fast timescale

and in the neutral case, the steady state distribution for the binding energies Ei :“
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tEijujPTFs each binding site i to be P pEi|σq „ N pĒ,Σq, a Gaussian with mean Ē “

3ϵL{4 and covariance matrix Σ which depends on ϵ, L and TF mismatches drs as Σrs “
ϵ2

4
p3L{4´ drsq. In the selection case, we have

P pE|σq “

ś

i P pEi|σq expp2NeF pσ,Eqq

xexpp2NeF pσ,Eqqyś

Pi

, (3.20)

where E “ tEiui are the binding energies of all sites together, F pσ,Eq is the fitness

of E, σ,
ś

i P pEi|σq is the total entropic contribution (joint distribution of all binding

energies E), xXyś

Pi
is the mean of X on this distribution. Now, on the slow timescale,

we have for P pσq

dP pσq

dt
“

ÿ

σ1

µσ1Ñσxpfixpσ
1, E 1

Ñ σ,EqyE,E1P pσ1
q

´
ÿ

σ1

µσÑσ1xpfixpσ,E Ñ σ1, E 1
qyE,E1P pσq, (3.21)

where µσÑσ1 is the mutation rate from σ to σ1 and viceversa, pfixpσ,E Ñ σ1, E 1q is

the fixation probability of σ1, E 1 in σ,E, and xXyE,E1 is the mean of X over the joint

distribution of E and E 1. We have

xpfixpσ,E Ñ σ1, E 1
qyE,E1 “

ĳ

dEdE 1pfixpσ,E Ñ σ1, E 1
qP pE,E 1

|σ, σ1
q (3.22)

“

ĳ

dEdE 1pfixpσ,E Ñ σ1, E 1
qP pE 1

|E, σ, σ1
qP pE|σ, σ1

q (3.23)

“

ĳ

dEdE 1pfixpσ,E Ñ σ1, E 1
qP pE 1

|E, σ, σ1
qP pE|σq, (3.24)

where P pE,E 1|σ, σ1q is the joint distribution of E and E 1, given σ and σ1, which can be

written as the product of P pE 1|E, σ, σ1q and P pE|σq. P pE 1|E, σ, σ1q is the distribution of

new binding energies E 1, given that you jump from energies E and TF sequences σ to

σ1. We expect this “jump probability distribution” to satisfy two broad constraints: E 1

should be close to E with a width of size ϵ and E 1 should satisfy the constraints due to

σ1 via P pE 1|σ1q or the like.

As an example, consider the mutation in TF r such that σ changes to σ1. This changes E

to E 1. The binding energies tErjuj of each binding site j change to tE 1
rjuj but all other

energies remain same: tE 1
sjus‰r,j “ tEsjus‰r,j. Let us consider one particular binding

site i, whose binding energies Ei :“ tEsius intially come from P pEi|σq. In the weak

selection limit, we can consider binding sites separately. In the new state E 1, for binding

site i, only Eri changes to E 1
ri while for all other s ‰ r, E 1

si “ Esi. We need to find

P pE 1
ri|E

1
si “ Esi @s ‰ r, Eri, σ, σ

1q. We have

P pE 1
ri|E

1
si “ Esi @s ‰ r, Eri, σ, σ

1
q “

P pE 1
ri, Esi @s ‰ r|Eri, σ, σ

1q

P pEsi @s ‰ r|Eri, σ, σ1q
, (3.25)

where P pE 1
ri, Esi @s ‰ r|Eri, σ, σ

1q is the joint distribution of E 1
ri and Esi @s ‰ r, given

everything else. E 1
ri will have a mean Eri, variance ϵ2, and covariance between E 1

ri and
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Esi @s ‰ r will be according to Σ1 corresponding to σ1. Because they do not change, the

means, variances and covariances of all other energies Esi @s ‰ r follow from P pEsi @s ‰

r|σq which is a marginal of the initial distribution P pEi|σq. We also have

P pEsi @s ‰ r|Eri, σ, σ
1
q “

P pEi|σq
ş

dEsiP pEi|σq
. (3.26)

In the neutral case, P pE 1
ri, Esi@s ‰ r|Eri, σ, σ

1q is Gaussian with the means and covariance

matrix changed as mentioned before, and P pEsi @s ‰ r|Eri, σ, σ
1q comes from P pEi|σq

which is also a Gaussian. Once we obtain all the terms of the Master equation for P pσq,

we can numerically solve it to understand evolution in energy space.

We have assumed neutrality in the above approach, and leave the case of selection in the

energy space to future research as full genotype treatment for a generic GRN is a hard

and complicated problem.

3.12 Summary

In this chapter, I introduced a generic theoretical framework to investigate questions

about the coevolution of many transcription factors and their binding sites involved in

a gene regulatory network. At the core, this model is based in sequence space – TF

consensus sequences, BS sequences, and sequences of other domains of the TF that are

important towards the functioning of the GRN. By building on existing knowledge of the

biophysics of TF-DNA binding (Chapter 1), we go from genotype to phenotype, which

is the set of binding probabilities of various TFs to various BSs. Then by invoking a

“function” for the regulatory network, I described various ways to define the fitness of

the regulatory programs. Such a generic model is very rich and flexible, and allows

for the modeling of temporal processes like developmental programs, and also processes

that require, from a fitness point of view, a certain average behaviour from the cell, for

instance, nutrient uptake and metabolism. The technical details become involved, and

the problem turns hard, when one considers the full calculation of evolutionary steady

states and evolutionary dynamics in the sequence space. I briefly explore an alternative

way this problem by considering evolution in energy space rather than sequence space.

While a more thorough exploration of this is left to future research, there are, however,

tractable and biologically relevant cases if we restrict ourselves to evolutionary dynamics

in sequence space for 2 TFs only, a problem we investigate in the next chapter.
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Coevolution of duplicated TFs with

their binding sites

The work presented in this chapter was performed in collaboration with Tamar Friend-

lander and has been published in Nature Communications (see [Friedlander et al., 2017]).

Tamar Friendlander came up with the calculation in Eq. 4.18, and also did some calcu-

lations in Section 4.9.

4.1 Introduction

There is a large body of evidence showing that phenotypic evolution takes place primarily

through changes in gene regulation [King and Wilson, 1975; Gilad et al., 2006; Wray,

2007; Carroll, 2005], and that such evolution may be flexible and rapid [Yona et al.,

2015; Madan Babu et al., 2006]. But the relative contribution of TF evolution, via

coding-sequence changes in the genes that code for these proteins, as compared with

regulatory sequence evolution that modify binding site sequences, is one that is not

clearly understood yet. TFs play an important role in signal transmission, hence it

is important to consider TFs together with the upstream signals they sense and the

downstream target genes they regulate. Mutations in the TFs alter the affinity and

specificity of TF proteins towards their upstream signals and their downstream binding

sites. Together with changes in the binding sites themselves on the DNA, the organism

uses TF mutations to “rewire” gene regulatory networks - weaken or remove extant

interactions and add new ones, either functional or spurious - to explore the space of

possible regulatory networks. However such evolutionary exploration is constrained by
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the functionality of the intermediate gene regulatory network states, and hence affects

the emergence of novel functions.

A primary mechanism by which regulatory networks evolve and diversify in functionality

is via gene duplication [Ohno, 1970; Magadum et al., 2013; Yona et al., 2012] of genes

that code for transcription factors. TFs exist in multiple paralogous families, the mem-

bers of which have probably originated by such gene duplication events, as can be inferred

from structure and sequence alignment of TF protein sequences. Different organisms have

different number of TFs in these paralogous families, and some families are restricted to

only a subset of species, indicating varying selection pressures across organisms. Such

gene duplication of TFs gives rise to gene regulatory divergence, resulting in a variety

of new phenotypes. For instance, a typical evolutionary outcome is that a regulatory

function previously accomplished by a single (or several) TF(s) is now carried out by a

larger number of TFs, allowing for additional fine-tuning and precision, or, alternatively,

for an expansion of the regulatory scope [Kacser and Beeby, 1984; Simionato et al., 2007;

Larroux et al., 2008; Hobert et al., 2010; Achim and Arendt, 2014; McKeown et al., 2014;

Baker et al., 2011; Sayou et al., 2014; Pougach et al., 2014; Nadimpalli et al., 2015;

Arendt, 2008]. As the two copies are degenerate in the organisms, initial preservation

and fixation of duplicates takes place via either a rapid weakening of expression of the

duplicates [Lan and Pritchard, 2016] or alternatively a selection to increase expression

levels [Conant et al., 2014; Loehlin and Carroll, 2016]. Following this, the preserved ex-

tra copies of the TFs thus provide the “raw material” required for further modifications

leading to evolutionary diversification with an additional TF. The post-duplication spe-

cialization of TFs often involves divergence in both their inputs (e.g., ligands) and outputs

(regulated genes) [Wray, 2007; Wittkopp and Kalay, 2012]. Examples range from repres-

sors involved in bacterial carbon metabolism that arose from the same ancestor via a

series of duplication-divergence events [Nguyen and Saier, 1995], and ancestral TF Lys14

in the metabolism of S. cerevisiae, which diverged into 3 different TFs regulating different

subsets of genes in C. albicans [Pérez et al., 2014], and the MalR paralogs involved in

the metabolism of maltose-like and palatinose-like sugars in S. cerevisiae [Pougach et al.,

2014], to many variants of Lim and Pou-homeobox genes involved in neural development

across different organisms [Hobert and Westphal, 2000] and many more.

After a TF duplication event, because the two copies of the TF genes are identical in

sequence, molecular recognition between TFs, their input signals, and their binding sites

is specific but undifferentiated between the TF copies. Under selection pressure for the

TFs to specialize into different functions, recognition sequences and ligand preferences

of the two TFs can diverge by subsequent mutations. But this can happen only under

the constraint that some degree of matching between TFs and their binding sites (and

upstream signals) is continually maintained to ensure network function. This results in

a coevolutionary constraint between the TFs and the binding sites, ultimately affecting

the likelihood of potential evolutionary trajectories, and the relevant timescales involved

in traversing them. However, very little is known about the resulting limits to evolution-

ary outcomes; specifically, it is unclear how these likelihoods and timescales depend on

important parameters, such as the number of regulated genes, the length and specificity
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of the binding sites, the correlations between the input signals, etc.

On the other hand, TF duplication has been studied very little from a theoretical perspec-

tive. One class of models consider the framework of gene duplication-differentiation and

largely focus on the sub-functionalization of proteins like enzymes that do not have any

regulatory role [Innan and Kondrashov, 2010]. A few studies have included cis-regulatory

mutations [Force et al., 1999; Lynch and Force, 2000; Force et al., 2005; Proulx, 2012],

but only in a simplified fashion, e.g., by considering a small number of discrete alleles that

represent TF binding sites appearing and disappearing at fixed rates [Force et al., 2005;

Proulx, 2012]. Such an approach ignores the essentials of molecular recognition, and

hence cannot model co-evolution between TFs and their binding sites.

Another set of models deal with regulatory sequences explicitly and consider the evolu-

tion of gene regulation using a biophysical description [Shea and Ackers, 1985; Kinney

et al., 2010; Sherman and Cohen, 2012; He et al., 2010] based in the sequence space.

Such an approach captures the essential details of the TF-DNA molecular recognition

and accounts for the fact that TFs can bind a variety of DNA sequence with vary-

ing affinities [Maerkl and Quake, 2007; Wunderlich and Mirny, 2009; Payne and Wag-

ner, 2014]. However, most studies have focused only on the evolution of binding sites

while keeping the TF constant [Payne and Wagner, 2014; Berg et al., 2004; Lässig, 2007;

Lynch and Hagner, 2015; Tuǧrul et al., 2015], hence largely leaving out TF duplication

and their subsequent evolution (but see [Poelwijk et al., 2006; Burda et al., 2010]).

In this chapter, I will describe how we combine these two complementary frameworks

of a biophysical description of gene regulation and evolutionary modeling of TF-BS in-

teractions, to define a modeling framework that will let us understand the role of TF

duplication and TF-BS coevolution in biophysically realistic fitness landscape on the se-

quence space. This is a departure from previously considered simpler models that have

been “artificially” constructed by manually adding in features, and suggest that realistic

landscapes emerge out of simple biophysical and functional constraints and exert a major

influence on the evolutionary dynamics and outcomes.

I will first introduce the basic model with two activating TFs and two target genes. I

will describe the steady state distribution of evolutionary outcomes, showing that a few

functional phenotypes describe the entire evolution over the huge genotypic space. I

will show how the statistics of upstream environmental signals affects these steady state

outcomes and also consider an alternative model in which TFs act as repressors. Then

I will describe the possible evolutionary trajectories and timescales, showing that two

major pathways exist, whose likelihoods and speeds depend on various biophysical and

evolutionary parameters. I will investigate the role of crosstalk interactions on steady

states and evolutionary pathways, and also compare our sequence space models with a

simpler biallelic type model. Next, I will extend the basic model to consider the case

of each TF regulating multiple downstream target genes, and show that the resulting

timescales becomes long as the fitness landscapes become increasingly rugged. Finally, I

will study the effect of “promiscuity-promoting mutations”, a new type of mutation that

has been observed empirically [Sayou et al., 2014; Pougach et al., 2014] to decrease the
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binding specificity of TFs in specific sites, on the timescales of specialization.

4.2 Model description and parameters

4.2.1 Biophysical model

In our model, nTF transcription factors regulate nG genes by binding to sites of length

L base pairs; for simplicity, we consider each gene to have one such binding site. The

specificity of a TF for any sequence is determined by the TF’s preferred (consensus)

sequence; sequences matching consensus are assigned lowest energy, E “ 0, which cor-

responds to tightest binding, and every mismatch between the consensus and the bind-

ing site increases the energy by ϵ; this additive “mismatch” model has a long history

in the literature [Maerkl and Quake, 2007; Lässig, 2007; Von Hippel and Berg, 1986;

Gerland et al., 2002].

The equilibrium probability that the binding site of gene j (j “ 1, . . . , nG) is bound

by active TFs of any type i (i “ 1, . . . , nTF) is a proxy for the gene expression level

and is given by the thermodynamic model of gene regulation [Shea and Ackers, 1985;

Bintu et al., 2005]:

pjmptkiju, tCipmquq “

ř

i Cipmqe
´ϵkij

1`
ř

i Cipmqe´ϵkij
, (4.1)

where Cipmq is dimensionless concentration of active TFs of type i in condition m, kij
is the number of mismatches between the consensus sequence of the i-th TF species and

the binding site of the j-th gene, and ϵ is the energy per mismatch in units of kBT .

Concentration Cipmq of active TFs depends on condition m, which can represent either

time or space (e.g., during developmental gene expression programs) or a discrete external

environment (e.g., the presence/absence of particular chemical signals).

The simplest case considered here assumes the existence of two such signals that can be

either present or absent, in any combination, for a total number of 4 possible environments

(m “ 00, 01, 10, 11), occurring with probabilities αm; an important parameter will be the

correlation, ´1 ď ρ ď 1, between the two signals. The presence (’1’) or absence (’0’) of

these two signals defines the different environments m P t00, 01, 10, 11u that are possible,

with αm denoting the frequency of environment m. These probabilities can be expressed

in terms of three important parameters - f1, f2, the frequencies of each signal, and ρ, the

correlation between the signals. We have

α11 “ f1f2 ` ρδ, (4.2)

α10 “ f1p1´ f2q ´ ρδ, (4.3)

α01 “ f2p1´ f1q ´ ρδ, (4.4)

α00 “ 1´ α11 ´ α10 ´ α01, (4.5)
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where δ “
a

f1f2p1´ f1qp1´ f2q. The frequency of each signal can be obtained as

f1 “ α10 ` α11 and f2 “ α01 ` α11. We assume that both the signals are present at

equal frequencies, and that each signal is present (or absent) half the time, resulting in

f1 “ f2 “ 0.5. Hence, we have

α00 “ α11 “
1

4
p1` ρq, (4.6)

α10 “ α01 “
1

4
p1´ ρq. (4.7)

Thus when the signals are uncorrelated (ρ “ 0), we have α00 “ α10 “ α01 “ α11 “ 1{4.

When the signals are fully correlated (ρ “ 1) we obtain α00 “ α11 “ 0.5 and α10 “ α01 “ 0

and vice versa for anti-correlation (ρ “ ´1). We explore asymmetric environments in

Sec. 4.4.

Fig. 4.1a,b illustrate this setup for this simple case nTF “ nG “ 2, assuming that the

two copies of the TF emerged through an initial gene duplication event and are fixed

in the population. Transcription factors are equipped with an evolvable signal sensing

domain (captured by σi P r00, 01, 10, 11s). The original TF regulates two downstream

genes by binding to their binding sites. It is sensitive to both external signals, which can

be present with a varying degree of correlation (Fig. 4.1a). Each of the downstream genes

is suitable to respond to only one of the two signals. Before duplication the genes are

constrained to follow the only TF available which responds to both signals. The extra

TF formed in the duplication event offers an additional degree of freedom in regulating

these genes, if the TFs specialize such that each of them senses only one of the two signals

and regulates only a subset of the genes. If the TF i is responsive to a signal and that

signal is present in environment m, then its active concentration Cipmq “ C0; otherwise,

Cipmq “ 0. Given constants C0, ϵ, and the genotype D—comprising TF consensus and

binding site sequences as well as TF sensitivity alleles σi—the thermodynamic model of

Eq. (4.1) fully specifies expression levels for all genes in all environments.

This framework is applicable to more general pathway architecture than a TF that im-

plements both signal sensing and gene regulation in the same molecule. Often these

two functions are split between different components of the same pathway; for example,

a separate upstream component senses the signal(s) and consequently activates the TF

(e.g. by phosphorylation or another modification). Additionally, TF production is also

regulated. One can also think of the evolution of the regulatory sequences of the gene

coding for the TF in terms of our model. Since our model is defined in very general

terms, it can capture such situations as well.

Gene birth can occur via different biological mechanisms, some of them allowing for the

emergence of slightly modified copies of original genes or allowing for different regulation

of the same coding sequence. One such mechanism is called ’retroposition’: creation of du-

plicate gene copies in new genomic positions through the reverse transcription of mRNAs

from source genes (also known as RNA-based duplication or retroduplication) [Kaess-

mann et al., 2009]. These newly formed genes often lack regulatory elements of the

parental gene and may also be slightly modified due to transcription errors (that are sig-

nificantly more common than DNA-duplication errors). It was shown that transcription
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Figure 4.1: Schematic of the TF duplication model. (a) Simplified physiology

of signal transduction: external signaling molecules (red and green squares) are sensed

by the cell (1), activate transcription factors inside the cell (2), which in turn activate

the corresponding downstream genes (3). The temporal / spatial appearance of the

two external signals can be correlated to different extent, as measured by correlation

coefficient, ρ. These signals can correspond to different time periods in development,

spatial regions in the organism or tissue, or external conditions / ligands. (b) TF,

initially responsive to two external signals (red and green “slots”) and regulating two

genes, duplicates and the additional copy fixes in the population. Immediately after

duplication, the two copies are undifferentiated. (Continued in the next page.)
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Figure 4.1: (Continued from the previous page.) (c) Various mutation types that can

occur post-duplication with their associated rates. (d) After accumulating several muta-

tions, the pattern of mismatches between TF consensus sequences and the binding sites

is reflected in new values of tkiju, which determine the activation levels of the two genes

according to Eq. (4.1). M , the number of matches between the consensus sequences of

the two TFs (with a value between 0 and L), keeps track of the overall divergence of the

TF specificities. For a list of model parameters and baseline values see Table 4.1.

none

environment
(signals present)

gene

activator
TF activeTF inactive

OFF
ON-s(pjm-1)2

-sβ(pjm-0)2
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01
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11
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Figure 4.2: Optimal expression patterns and fitness contributions in different

environments. In the basic model, TFs are considered to be activators, which in the

presence of signals, can bind to BSs and activate the corresponding genes. Shown are the

optimal expression patterns of the two genes in the four different environments, and the

mechanistic components of the genotype that can achieve these optimal patterns.

of these so-called ’retrogenes’ is very common and often relies on regulatory elements of

neighboring genes [Vinckenbosch et al., 2006].

4.2.2 Evolutionary model

After duplication, three types of mutation can occur, as shown in Fig. 4.1c: point mu-

tations in the binding sites (rate µ), mutations in the TF coding sequence that change

TF’s preferred (consensus) specificity (rate rTFµ) and mutations in the two signal-sensing

alleles (rate rSµ), which can give each TF specificity to both signals, to one of them, or

to neither. An example in Fig. 4.1d shows the state of the system after several mutations

have affected the degree of (mis)match between the TFs and the binding sites, kij; an

especially important quantity that tracks the overall divergence of the TF specificity is

denoted as M , the match between the two TF consensus sequences.

We define fitness such that the specialized genotypes have higher fitness compared to the

initial non-specialized genotypes. As shown in Fig. 4.2, we define the ideal expression level

of gene j in environment m, p˚
jm, such that p˚

jm “ 1 if signal j is present in environment
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m and p˚
jm “ 0 if signal j is absent in environment m. The fitness of a genotype equals

the squared deviation of the actual expression pjm from the ideal one p˚
jm, summed over

all genes j and averaged over all environments m:

F “ ´s
ÿ

j

ÿ

m

αmβjmppjm ´ p˚
jmq

2, (4.8)

where s denotes the selection intensity and αm is the frequency of the m-th environment.

We define environments by the presence or absence of the signals, which result in different

active TF concentrations depending on their signal responsiveness. βjm is the penalty for

each type of deviation from the ideal expression level, allowing for diverse penalties for

different genes or at different environments. For example, a gene which is not expressed

when needed can incur a higher penalty than the expression of a gene that is not necessary

in a given environment. To capture these latter interactions, which we call crosstalk

interactions, we exploited βjm to tune the fitness penalty in Section 4.7. Expression

levels pjm for a genotype are calculated using Eq. (4.1) by obtaining the dimensionless

concentrations of the TFs, Cipmq, from their signal sensing alleles σi, and the mismatches,

kij, from the TF consensus sequences and the BS sequences.

4.2.3 Putting the pieces together

With the fitness of genotypes and the mutations between them defined, we consider an

evolutionary framework to study the evolutionary dynamics of this regulatory system. We

assume mutation rates to be low enough such that a beneficial mutation fixes before an

additional mutation (beneficial or not) arises. The condition under which this assumption

is valid was recently rediscovered by Desai and Fisher [Desai and Fisher, 2007] and

reads logp4N∆F q

∆F
! 1

4Nµb∆F
, and is based on Gillespie’s Strong-Selection-Weak-Mutation

(SSWM) framework [Gillespie, 1983; Gillespie, 1984; Gillespie, 1994]. ∆F is the fitness

advantage of the beneficial mutant, N is the population size and µb is the rate of beneficial

mutations.

Under this condition the population is almost always fixed (monomorphic), and its evo-

lutionary trajectory is captured by a series of discrete transitions between different geno-

types. Consequently, when a new mutation emerges, it competes with only one other

genotype. The fixation probability of a new mutation that alters the genotype from y to

x equals

ΦyÑx “
1´ expp´pF pxq ´ F pyqqq

1´ expp´2NpF pxq ´ F pyqqq
, (4.9)

where the fitness F is defined by Eq. (4.8) given the frequencies of the various environ-

ments αm and the desired expression pattern of the genes p˚
jm at each. Eq. (4.9) applies to

a diploid population in which the mutant x appears in a single copy over a uniform back-

ground of the other genotype y. For diploids, the fitness difference ∆F “ F pxq ´ F pyq

refers to the fitness difference between the two homozygotes or to twice the selective

advantage of the heterozygote (one copy of the mutant) over the prevailing homozygote



89

Parameter Explanation Baseline value

L BS length, length of sequences that TFs bind 5

ϵ Energy contribution per bp towards TF-BS binding 3 kBT

C0
Active TF free concentration in the presence of signal,

set such that pjm “ 0.5 at k “ 1.5
4.5

f1 Frequency of signal 1 0.5

f2 Frequency of signal 2 0.5

ρ Correlation between input signals 0

βX

βjm when p˚
jm “ 0 for gene j in environment m:

penalty in fitness on activating a gene when it is not

needed (crosstalk interaction)

0.5

other β

βjm when p˚
jm “ 1 for gene j in environment m:

penalty in fitness on not activating a gene when it is

needed (functional interaction)

1

Ns Selection strength 25

rS
Relative mutation rate of the signal sensing domain

compared to the binding site mutation rate per bp
1

rTF

Relative mutation rate of the TF consensus sequence

per bp compared to the binding site mutation rate per

bp

1

Table 4.1: Model parameters and their baseline values.

genotype [Gillespie, 2004]. The overall rate of substitution from genotype y to x is given

by [Lässig, 2007]:

rxy “ 2NµxyΦyÑx, (4.10)

where µxy denotes the mutation rate from genotype y to x. Note that the fixation

probability in Eq. (4.9) below, depends, via the fitness, and in turn via the binding

probabilities, directly on the TFs’ signal sensing alleles σi, and the mismatches kij of the

BS sequences with the TF consensus sequences, but not on M , the match between the

TF consensus sequences. But, as shown in Fig. 2A of the main text, the set of possible

kij’s is constrained by M , and hence, there is implicit selection on M . Also, importantly,

selection does not directly depend on the TFs and BSs, but only via their biophysical

interaction to result in appropriate gene regulation, thereby requiring concerted evolution

of TFs and BSs.

In Table 4.1 we list the model parameters and their baseline values used in calculations

(unless stated otherwise).

4.2.4 Space of reduced genotypes

The size of the genotype space is huge, |D| “ 44L`2 « 1013.25 for L “ 5, which makes

it hard to analytically track the evolutionary model. Since the fitnesses of genotypes



90

depend only on the mismatches kij and the signal sensing alleles σi, and the mutations

only alter kij, σi and the TF consensus sequences’ match M , we consider the space of

“reduced-genotypes”, G “ tM,kij, σiu, keeping track of only these reduced features of

the genotype. The size of the reduced-genotype space is |G| ă 16pL ` 1q5 « 105.09 for

L “ 5, which is tractable. Hence, for analytical calculations, we treat the regulatory

network in the reduced-genotype space G, and for simulations, we treat the regulatory

network in the full genotypic space D. Note that the reduced genotype representation

in our model framework is not an approximation, but is an exact solution of the full

genotype model, with the tractability gained due to clever bookkeeping of states in the

sequence space.

Fig. 4.3 shows the interplay of biophysical constraints that give rise to a realistic fitness

landscape for our problem. Given a match, M , between two TF consensus sequences, only

certain combinations of mismatches, (k1j, k2j), of the TFs with each of the two binding

sites are possible. A particular allowed combination can be realized by different numbers

of genotypes, as shown in Fig. 4.3a, providing a detailed account of the entropy of the

neutral distribution. For each of the four environments, Eq. (4.1) predicts gene expression

at every pair of mismatch values (Fig. 4.3b); together with the probabilities of different

environments occurring, the gene expression pattern determines the genotypes’s fitness,

F . TF specialization then unfolds on this landscape by different types of mutations

(e.g., Fig. 4.3c). Although the landscape is complex and high-dimensional, it is highly

structured and ultimately fully specified by only a handful of biophysical parameters.

Furthermore, because of the sigmoidal shape of binding probability as a function of

mismatch k [Eq. (4.1)], it is possible to assign phenotypes of “strong” and “weak” binding

to every TF-BS interaction, allowing us to depict network interactions graphically, as

shown in Fig. 4.3d, and to classify the possible macroscopic evolutionary outcomes, as

we will show next.

4.2.5 Classification of genotypes into “macrostates”

Since our interest is in the biological function implemented by the network, we further

coarse-grain the space of reduced-genotypes G, and classify these reduced-genotypes into

six possible macro-states, M “ tNo Regulation, Initial, One TF Lost,

Specialize Both, Specialize Binding, Partialu, by distinguishing only between “strong”

and “weak” interactions. We set a threshold kT and consider an interaction as weak,

kij P W , if kij ą kT , and strong, kij P S, if kij ď kT . In the basic version of the model

where both TFs have same biophysical properties (in particular same L) kT is the same

for all TF-BS interactions (but see the extension in Section 4.10). The threshold kT for

each TF-BS pair ij is set such that for mismatches k ă kT , pjmi
ě 0.5 and for k ą kT ,

pjmi
ă 0.5 when only TF i is present and other TF(s) are absent, Cipmiq “ C0.

The full genotypic space D is a union of sequences belonging to different macrostates z:

D “
ď

zPM
Sz, (4.11)
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Figure 4.3: Biophysical and evolutionary constraints shape the genotype-

phenotype-fitness map after TF duplication. (a) Match, M , between transcription

factor consensus sequences (here, of length L “ 5), constrains the possible mismatch

values, k1j, k2j, between the gene’s binding site and either TF. For example, when the

two TFs are identical (M “ L “ 5, bottom left), they must have equal mismatches with

all genes (k1j “ k2j). Some combinations of mismatches are impossible given M (white),

while others are realized by different numbers of genotypes (grayscale). (b) Expression

level (color) for a regulated gene given all mismatch combinations, k1j, k2j, at M “ 3.

Impossible mismatch combinations are colored white. Each of the four panels shows ex-

pression levels in four possible environments, m “ 00, 10, 01, 11. Fitness F depends on

the structure of mismatches (a), the biophysics of binding (b), and the frequencies of

different environments, αm. Here we choose α so that the marginal probability of each

input signal f1,2 is always f1 “ f2 “
1
2
but the correlation can be varied, and assign

weight βjm “ 1 whenever the gene should be induced but is not, and βjm “
1
2
when it is

induced when it should not. The general case when f1 ‰ f2 ‰ 0.5 is analyzed in Section

4.4. (Continued in the next page.)
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Figure 4.3: (Continued from the previous page.) (c) A single point mutation, e.g. a

change in one TF’s binding specificity from T to G, can simultaneously affect the match,

M , and either increase, decrease, or leave intact the mismatches, k11 and k12, that de-

termine fitness. (d) TF-BS interactions with mismatch k that is low enough to ensure a

high binding probability (p ą 1{2) are assigned to a “strong binding” phenotype (solid

link); conversely, p ă 1{2 is a “weak binding” phenotype (dotted link).

Figure 4.4: Typical genotypes in No Regulation macrostate. In the left genotype,

even though both TFs sense some signals, they do not bind well to either of the binding

sites, hence preventing any information transmission. In the right genotype one TF binds

both the binding sites but does not sense any signal and the second TF does not bind

any binding site even though it senses both signals. This way or the other no information

is transmitted between the signals and the genes.

where Sz is the set of all genotypes that belong to macrostate z. We apply the following

classification rules.

No Regulation

The No Regulation macrostate consists of all genotypes in which there is no regulation

of any form (no information transmitted from the signals to genes). This can happen

if both the TFs either do not sense any signal or do not bind well to any binding sites.

x P SNo Regulation if @i
´

p@j kij PWq OR pσi “ 00q
¯

. (4.12)

Initial

The Initial macrostate consists of all genotypes in which there is complete regulation

with no form of specificity: both the TFs sense both signals and bind both binding sites.

This is the typical initial state right after duplication.

x P SInitial if @i
´

p@j kij P Sq AND pσi “ 11q
¯

. (4.13)
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Figure 4.5: Initial macrostate genotypes. In these genotypes, both TFs sense both

signals and bind both binding sites.

Figure 4.6: Typical genotypes in One TF Lost macrostate. In the left genotype, only

the first TF is involved in regulation as it senses both signals and binds to both binding

sites. The second TF senses the green signal but does not bind any of the binding sites,

hence it is not involved in regulation and is “lost”. In the right genotype, again only

the first TF is involved in regulation as it senses the red signal and binds both binding

sites. The second TF not involved in any regulation because it does not sense any signal,

although it binds the first binding site.

One TF Lost

The One TF Lost macrostate consists of all genotypes in which one of the TFs is not

involved in any regulation while the other is involved in some regulatory activity (namely,

one TF does not sense any signal or does not bind well to any of the binding sites). This

is equivalent to the genotypes before duplication, except that there is a “lost TF”.

x P SOne TF Lost if
ˇ

ˇ

ˇ
i :

´

p@j kij PWq OR pσi “ 00q
¯ˇ

ˇ

ˇ
“ 1. (4.14)

Specialize Both

The Specialize Both macrostate consists of all genotypes in which there is correct

specialization of TFs with respect to both signal sensing and binding sites specificity. In

these genotypes, one TF senses only the first signal and binds only to the first binding

site, while the other TF senses only the second signal and binds only to the second binding

site.

x P SSpecialize Both if

pk11, k22 P S AND k12, k21 PW AND σ1 “ 10 AND σ2 “ 01q

OR pk12, k21 P S AND k11, k22 PW AND σ1 “ 01 AND σ2 “ 10q. (4.15)
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Figure 4.7: Genotypes in Specialize Both macrostate. Both genotypes have specific

paths from the signals to the genes. In the left genotype, while the first TF senses the red

signal and binds the first (correct) binding site, the second TF senses the green signal and

binds the second (correct) binding site. Hence, the first TF mediates the red signal to

first gene pathway while the second TF mediates the green signal to second gene pathway.

In the right genotype, the TFs exchange roles. The first TF mediates the green signal to

second gene pathway while the second TF mediates the red signal to first gene pathway.

Figure 4.8: Typical genotypes in Specialize Binding macrostate. In both geno-

types, the first TF binds the first binding site and the second TF binds the second binding

site, but they have not correctly specialized in their signal sensing domains. In the left

genotype, while the second TF has specialized correctly to sense only the green signal, the

first TF still senses both the signals. Hence, while the red signal pathway is established

properly, the green signal pathway is not - both genes are activated in the presence of

green signal. In the right genotype, the TFs have specialized in signal sensitivities, but

opposite to the desired response pattern.

Specialize Binding

In contrast, the Specialize Binding macrostate consists of all genotypes in which there

is specialization of TFs with respect to binding site specificities, but not with respect to

the signal sensing domains.

x P SSpecialize Binding if p@i σi ‰ 00q AND
˜

´

pk11, k22 P S AND k12, k21 PWqAND␣pσ1 “ 10 AND σ2 “ 01q
¯

OR
´

(k12, k21 P S AND k11,k22 PW) AND␣pσ1 “ 01 AND σ2 “ 10q
¯

¸

. (4.16)
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Figure 4.9: Typical genotypes in Partial macrostate. In the left genotype, both TFs

regulate only the first gene while the second gene is unregulated. In the middle genotype,

the first TF regulates both genes while the second TF regulates only the second gene. In

the right genotype, both TFs regulate both genes but, unlike the Initial macrostate,

here the first TF does not mediate any information from the green signal.

Partial

The Partial macrostate consists of all genotypes which do not belong in any of the other

macrostates mentioned above. It contains a mixture of different regulatory architectures:

both TFs regulate only one gene with the other gene unregulated, one TF regulates both

genes while the other TF regulates only one gene or both TFs bind both binding sites

but at least one TF has specialized in signal sensing.

Role of L in macrostate classification

Keeping ϵ and C0 constant while changing L keeps the threshold mismatch kT constant.

Hence, the number of mismatches |S| in the strong binding class remains the same while

the number of mismatches |W | in the weak binding class increases. Hence, as L increases,

the number of genotypes in all macrostates except Initial increase. The volume of

macrostates with a larger number of weak mismatches increase more than the volume of

macrostates with a smaller number of weak mismatches. For instance, No Regulation

increases more than Specialize Binding. As One TF Lost and Specialize Binding

have the same number of weak mismatches, the ratio of the number of genotypes in them

stays the same for different L.

4.3 Steady state

We consider mutation rates to be low enough that a beneficial mutation fixes before an-

other beneficial mutation arises [Desai and Fisher, 2007], allowing us to assume that the

population is almost always captured by a single genotype. The probability that the pop-

ulation occupies a particular genotypic state, P pD, tq, evolves according to a continuous-

time discrete-space Markov chain. Transition rates between states are a product between

the mutation rates between different genotypes and the fixation probabilities that de-

pend on the fitness advantage a mutant has over the ancestral genotypes [Lässig, 2007;

Kimura, 1962], rxy “ 2NµxyΦyÑx, where N is the population size, µxy is the mutation
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rate from genotype y to x, and ΦyÑx is the probability of fixation of a single copy of x

in a population of y. Our model only requires us to keep track of mismatches and not

full sequences (i.e. the reduced-genotypes, G “ tM,kij, σiu), which significantly reduces

the genotype space dimensionality. This framework allows for calculation of the steady

state distribution of genotypes, or reduced-genotypes Eq. Eq. (4.17) and classification of

genotypes into relevant macrostates as we describe later.

Evolutionary outcomes in steady state are determined by a balance between selection

and drift. The steady state distribution over reduced-genotypes is [Gillespie, 2004]

PSSpGq “ P pG, tÑ 8q “ P0pGq expp2NF pGqq, (4.17)

where P0 is the neutral distribution of genotypes and N is the population size. Eq. (4.17)

is similar to the energy/entropy balance of statistical physics [Berg et al., 2004; Sella and

Hirsh, 2005], with fitness F playing the role of energy and log P0 the role of entropy; in

our model, both of these quantities are explicitly computable, as is the resulting steady

state distribution. PSSpGq is the non-trivial solution of RPSSpGq “ 0. It is also possible to

obtain PSSpGq by invoking the set of detailed balance conditions, rxyPSSpyq “ ryxPSSpxq,

@x, y.

To calculate the neutral distribution P0 of the reduced-genotypes (distribution in the

absence of selection), we enumerate the number of possible BS sequences j that have

mismatch values (k1j,k2j) with respect to two TFs that match each other at M out of L

consensus positions:

Nseqpk1, k2|Mq “

jmax
0
ÿ

j0“jmin
0

ˆ

M

j0

˙

3M´j0

ˆ

L´M

L´ j0 ´ k1

˙ˆ

j0 ` k1 ´M

L´ j0 ´ k2

˙

2k1`k2`2j0´L´M ,

jmin
0 “ maxpmaxp0,M ´minpk1, k2qq, r

L`M ´ k1 ´ k2
2

sq,

jmax
0 “ minpM,L´maxpk1, k2qq.

(4.18)

The neutral distribution (up to proportionality constant) equals

P0pxq „ Nseqpk11, k21|MqNseqpk12, k22|Mq

ˆ

L

M

˙

3L´M . (4.19)

Understanding the high dimensional distribution over genotypes is difficult, but classifica-

tion of individual TF-BS interactions into “strong” and “weak” ones, as described above,

allows us to systematically and uniquely assign every genotype to one of a few possible

macroscopic outcomes, or “macrostates,” graphically depicted in Fig. 4.10a and defined

precisely in Section. 4.2.5. Thus, in the No Regulation state, input signals are not

transduced to the target genes, either because TF-BS mismatches are high and there is

no binding or because TFs themselves lose responsiveness to the input signals; in the One

TF Lost state, a single TF regulates both genes (as before duplication), while the other

TF is lost, i.e., its specificity has diverged so far that it does not bind any of the sites;
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the Specialize Binding state corresponds to each TF regulating its own gene without

cross-regulating the other but the signal sensing domains are not yet signal specific, as

they are in the Specialize Both, the state which we have defined to have the highest

fitness. Finally, the Partial macrostate predominantly features configurations where

each of the TFs binds at least one binding site, but one of the TFs still binds both sites

or retains responsiveness for both input signals; functionally, these configurations lead

to large “crosstalk,” where input signals are non-selectively transmitted to both target

genes.

Ultimately, these macrostates are the functional network phenotypes that we care about.

The number of genotypes in each macrostate, however, can vary by orders of magni-

tude; for example, the No Regulation state is larger by „ 104 relative to the high-fitness

Specialize Both state, for our baseline choice of parameters (L “ 5, ϵ “ 3). Selection

can act against this strong entropic bias, and the distribution of fitness values across

genotypes within each macrostate is shown in Fig. 4.10b. Clearly, the mean or median

fitness within each macrostate is a poor substitute for the detailed structure of fitness

levels that depend nonlinearly on TF-BS mismatches and the degeneracy of the sequence

space. Unlike the entropic term in Fig. 4.10b, fitness also depends on the statistics of

the environment, αm, and in particular, the correlation ρ between the two signals. For

example, when the signals are strongly correlated, the Initial state right after duplica-

tion or the One TF Lost state can achieve quite high fitnesses, since responding to the

wrong signal or having a high degree of crosstalk will still ensure largely appropriate gene

expression pattern in all likely environments. In contrast, at strong negative correlation,

many genotypes in Specialize Binding and Initial states will suffer a large fitness

penalty because their sensing domains are not specialized for the correct signals, while

the Specialize Both state will have high fitness regardless of the environmental signal

correlation.

How do fitness and entropy combine to determine macroscopic evolutionary outcomes?

Fig. 4.11a shows the most probable macrostate as a function of selection strength and

signal correlation. From Eq. (4.17) we obtain the steady state distribution over the

macrostate space. For every macrostate z PM the probability to be in this macrostate

at steady state equals the sum of probabilities of being in all reduced-genotypes x that

are assigned to that macrostate

QSSpzq “
ÿ

xPSz

PSSpxq. (4.20)

We denote the the most probable macrostate at steady state by

z˚
SS :“ argmax

zPM
QSSpzq. (4.21)

At weak selection, specific TF-BS interactions cannot be maintained against mutational

entropy and the system settles into the most numerous, No Regulation state. Higher

selection strengths can maintain a limited number of TF-BS interactions in Partial

states. Beyond a threshold value for Ns, the evolutionary outcome depends on the signal

correlation: when signals are anti-correlated or weakly correlated, the TFs reach the fully
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Figure 4.10: Functional macrostates that are relevant evolutionary outcomes.

(a) Left: evolutionary macrostates (see text) depicted graphically as network phenotypes

with solid (dashed) lines indicating strong (weak) TF-BS interactions. Red and green

squares in the TFs represent the corresponding signal sensing domains. Right: input-

output table, where columns represent the presence of either (red or green) external

signal and rows represent the resulting gene activation for each phenotype. (b) (Top)

Distribution of fitness values, NF , across genotypes in each macrostate (color-coded as

in (a)), shown as violin plots, for two values of signal correlation, ρ. Black dots =

median fitness in the macrostate. For each macrostate, we show the distribution of NF

values for the set of underlying genotypes corresponding to that macrostate. NF is the

fitness multiplied with population size – differences in NF are relevant to the strength

of selection across genotypes. (Bottom) The number of genotypes in each macrostate

(logarithmic scale).
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Figure 4.11: Steady state evolutionary outcomes of TF duplication. (a) Most

probable outcome of gene duplication in steady state (color-coded as in (a)), as a function

of selection strength, Ns, and the correlation between two external signals, ρ. (b) Free

fitness F̂ (at Ns “ 25) for different macrostates as a function of correlation between

signals, ρ: for most macrostates, free fitness increases with signal correlation, except for No

regulation, which is naturally unaffected by it, and Specialize Both, which dominates

for low correlation values. (c) The dominant macrostate (as in (a)), as a function of the

signal frequencies, f1, f2, and the signal correlation, ρ, at fixedNs “ 25. For simplicity we

plot only cases where f1 “ f2. Signals in the hashed region are mathematically impossible.

(d) Steady state distributions for mismatches (PSSpkij|σ1 “ 10, σ2 “ 01q, upper row) and

the match between the two TF consensus sequences (PSSpM |σ1 “ 10, σ2 “ 01q, lower left),

under strong selection (red; at baseline parameters denoted by the red cross in (a)) and

neutrality (blue; Bernoulli distributions). Comparison between analytical calculation and

400 replicates of the stochastic simulation (lower right). Here and in subsequent figures,

baseline parameter values are L “ 5, ϵ “ 3, rS “ rTF “ 1.
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specialized state, whereas high positive correlation favors losing one TF and having the

remaining TF regulate both genes and respond to both signals. As signal correlation

increases, so does the selection strength required to support full specialization. Detailed

insight at a fixed value of Ns is provided by plotting the free fitness F̂ , as in Fig. 4.11b,

which combines the fitness and the entropy of the neutral distribution from Fig. 4.10b

into a single quantity that determines the likelihood of each macrostate given ρ; the

macrostate with highest free fitness is shown as the most probable outcome in Fig. 4.11a

for Ns “ 25, but free fitness also allows us to see, quantitatively, how much more likely

the dominant macrostate is relative to other outcomes. Fig. 4.11c examines the case

where not only the correlation, ρ, but also the frequencies, f1, f2, of encountering both

signals are varied: for low frequencies, even selection strength of Ns “ 25 is insufficient to

maintain TF specificity against drift, while for high frequencies and positive correlation

one TF is lost while the remaining TF regulates both genes.

The map of evolutionary outcomes is very robust to parameter variations. The energy

scale of TF-DNA interactions is that of hydrogen bonds: ϵ „ 3 (in kBT units), con-

sistent with direct measurements. The scale of C0 is set to ensure that consensus sites

are occupied at saturation while fully mismatching sites are essentially empty. The only

remaining important biophysical parameter is L, the length of the binding sites. As

expected, increasing L expands the regions of No Regulation and Partial at low Ns,

due to entropic effects. Surprisingly, however, one can demonstrate that the important

boundary between the Specialize and One TF Lost states is independent of L; further-

more, the map in Fig. 4.11a is exactly robust to the overall rescaling of the mutation

rate, µ, and even to separate rescaling of individual rates rS, rTF.

We compare the steady-state marginal distributions of TF-BS mismatches and the match,

M , between the two TFs, under strong selection to specialize (Ns “ 25) vs neutral

evolution (Ns “ 0). Mismatch distributions for k11 and k21 in Fig. 4.11d display a clear

difference in the two regimes: strong selection favors a small mismatch of the BS with

the cognate TF, sufficient to ensure strong binding but nonzero due to entropy, and

a large mismatch with the noncognate TF, to reduce crosstalk. Surprisingly, however,

the distribution of matches M between two TF consensus sequences shows only a tiny

signature of selection, with both distributions peaking around 1 match. As a consequence,

inferring selection to specialize from measured binding preferences of real TFs might not

be feasible with realistic amounts of data.

4.4 Asymmetric environments

At the baseline parameters, we assume symmetry between the occurrences of the two

signals, namely their frequencies f1 “ f2 “ 0.5, where f1 “ α10`α11 is the frequency of the

first signal, and f2 “ α01`α11 is the frequency of the second. In Fig. 4.11c, we explored

the role of signal frequency fi, together with signal correlation ρ, while maintaining

symmetry (f1 “ f2). Here we explore the effect of asymmetry in signal occurrence



101

(f1 ‰ f2) on the final evolutionary outcomes and in particular on the probability to fully

specialize.
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Figure 4.12: Under medium to strong selection, specialization occurs under a

broad range of signal frequencies. Under weak selection specialization occurs

only if signal frequencies are sufficiently high. Phase plots of the most probable

macrostate at steady state as a function of signal frequencies f1 and f2, at three different

selection strengths Ns “ 10, 25, 100. The intersection between the red dashed lines,

f1 “ f2 “ 0.5, denotes the baseline parameters used anywhere else in this work.
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Figure 4.13: For different ρ, f1 and f2 are constrained, but the phase plots in

the accessible region are similar. Phase plots of the most probable macrostate at

steady state (at Ns “ 25 and baseline parameters) as a function of signal frequencies f1
and f2, at three different signal correlations, ρ “ -0.5, 0, 0.5. The white region of the

plots denotes the forbidden areas; ρ, f1 and f2 are constrained and hence, not all pf1, f2q

pairs are possible for different ρ.

In Fig. 4.12 we plot the most probable macrostate as a function of the signal frequencies f1,

f2 for different values of selection intensities Ns when the signals are uncorrelated (ρ “ 0);

Fig. 4.13 shows that at different ρ, f1 and f2 are constrained but the qualitative features of

the plots are retained. When both signals are rare, f1, f2 ! 1, No Regulation macrostate

dominates, as selection on both pathways is weak. When one of the signals is frequent

while the other is rare, f1 " f2, only the frequently used pathway is maintained, and the
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dominant macrostate is Partial. Only when both signals are frequent and selection is

not too weak, specialization occurs. Hence, a signal-gene pathway is maintained only if

it is required often enough, and the threshold for this (boundary between Partial and

Specialize Both) depends on selection strength Ns. As selection strength Ns increases,

this threshold moves to lower f1 and f2. As the frequencies of both signals increase,

the dominant macrostate Specialize Both is replaced by Specialize Binding, where

sensing one signal is a good proxy for the other signal as well, and later by One TF Lost

when one TF is sufficient to transduce both signals.

4.5 TFs as repressors

none
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gene

repressor

TF inactiveTF active
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ON-s(pjm-0)2

-sβ(pjm-1)2

α
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α
01

α
11
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Figure 4.14: Optimal expression patterns and fitness contributions in different

environments with repressor TFs. When TFs act as repressors, the scheme is differ-

ent from when they act as activators. In the absence of a signal, they are in their active

state, meaning they bind to their binding sites and thereby repress the corresponding

genes. In the presence of a signal, the TFs become inactive, meaning they do not bind

to their binding sites and thereby do not repress the corresponding genes. Shown are the

optimal expression patterns of the two genes in the four different environments, and the

mechanistic components of the genotype that can achieve these optimal patterns. Note

that the environments in which repressor-BS binding is required are the environments in

which the corresponding genes are required to be OFF. These are the terms in the fitness

that correspond to crosstalk and hence have βX , decreasing the effective selection to βXs.

Here, we explore the scenario where TFs act as repressors. As described in Fig. 4.14, the

primary difference is that repressor TFs, in the absence of a signal, are in their active

state, meaning they bind to their binding sites and thereby, repress the corresponding

genes. In the presence of a signal, the TFs become inactive, meaning they don’t bind to
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their binding sites and thereby, don’t repress the corresponding genes. From the figure,

notice that the effective selection pressure on repressor-BS binding is reduced to βXs

because the environments in which repressor-BS binding is required are those in which

the corresponding genes are required to be OFF.

In Fig. 4.15, we plot the dominant macrostate at steady state as a function of Ns and ρ

at baseline parameters (with βX “ 0.5) when the TFs act as repressors. Notice that this

is mostly similar to Fig. 4.11a, where TFs act as activators. One distinguishable feature

is that the No Regulation to Partial to Specialize Both transition occurs at larger

Ns values. In fact, with βX “ 1, when the selection pressures for repressor-BS binding

are not diluted, these transitions occur at very similar Ns values as in the activators

case.

In Fig. 4.16, we explore the role of signal frequency, fi, on the dominant macrostate in

the case of TFs acting as repressors. Note that this is a reflection, on the fi axis, of the

plot in the activators case (Fig. 4.11c). At low signal frequencies, fi « 0, the genes are

required to be OFF together most of the time, and hence, one repressor TF can regulate

both the genes by always binding to their binding sites. This results in a dominance of the

One TF Lost state. At high signal frequencies, fi « 1, both genes are required to be ON

together most of the time, and hence, repressor-BS binding occurs very rarely, thereby

experiencing negligible selection pressure to maintain repressor-BS binding. Hence, the

dominant state is that of No Regulation, where the repressor TFs don’t bind to their

binding sites, and hence, the genes are always ON.
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Figure 4.15: Dominant macrostate phase plots vs Ns and ρ when TFs act as

repressors. Phase plots of the dominant macrostate against the selection strength, Ns,

and the signal correlation, ρ, for (a) βX “ 0.5 and (b) βX “ 1.
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Figure 4.16: Dominant macrostate phase plots vs ρ and f1 “ f2 when TFs act

as repressors. Phase plots of the dominant macrostate against the signal correlation,

ρ, and the signal frequency, f1 “ f2 for (a) βX “ 0.5 and (b) βX “ 1.
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Figure 4.17: Under medium to strong selection, specialization occurs under a

broad range of signal frequencies. For repressor TFs, under weak selection

specialization occurs only if signal frequencies are low. Phase plots of the most

probable macrostate at steady state (for ρ “ 0) as a function of signal frequencies f1 and

f2, at three different selection strengths Ns “ 10, 25, 100 when TFs act as repressors. The

intersection between the red dashed lines, f1 “ f2 “ 0.5, denotes the baseline parameters

used anywhere else in this work.
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Figure 4.18: For different ρ, f1 and f2 are constrained, but the phase plots in

the accessible region are similar. Phase plots of the most probable macrostate at

steady state (at Ns “ 25 and baseline parameters) as a function of signal frequencies f1
and f2, at three different signal correlations, ρ “ -0.5, 0, 0.5. The white region of the

plots denotes the forbidden areas; ρ, f1 and f2 are constrained and hence, not all pf1, f2q

pairs are possible for different ρ.

In Fig. 4.17, we explore the effect of asymmetry in signal occurrence (f1 ‰ f2) on the final

evolutionary outcomes and in particular on the probability to fully specialize. We plot

the most probable macrostate as a function of the signal frequencies f1, f2 for different

values of selection intensities Ns when the signals are uncorrelated (ρ “ 0); Fig. 4.18

shows that at different ρ, f1 and f2 are constrained but the qualitative features of the

plots are retained. The principal difference from the activators case is that specialization

now occurs at lower signal frequencies, with the One TF Lost state dominating at very

low fi, and No Regulation state domination at very high fi.

4.6 Evolutionary dynamics

Next, we focus on evolutionary trajectories and the timescales to reach the fully special-

ized state after gene duplication.

To determine evolutionary dynamics we numerically integrate P pG, tq in time-steps cor-

responding to one generation tg :

P pG, t` tgq “ P pG, tq `RtgP pG, tq, (4.22)

where R is the Markov chain transition matrix. From P pG, tq, we obtain the macrostate

dynamics, QpM, tq. For every z PM,

Qpz, tq “
ÿ

xPSz

P px, tq. (4.23)

Again, at every time-point we determine the most probable macrostate, as illustrated in

Fig. 4.21 as

z˚
ptq :“ argmax

zPM
Qpz, tq. (4.24)
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To follow different pathways to specialization and the timescale to reach each, we calcu-

late mean first hitting time TSÐx from any reduced-genotype x, to a subset of reduced-

genotypes S, by using the recursive equation

TSÐx “ tg `
ÿ

y

ayxTSÐy, (4.25)

where ayx are the elements of the transition probability matrix A “ I `Rtg. In partic-

ular, we consider subsets Sz of genotypes that belong to a particular macrostate z, and

compute the mean first hitting times, TSzÐx, to this macrostate. Time to specialization,

τ , is the time to reach Specialize Both macrostate. Using a similar procedure, for

every macrostate z, we also compute the dwell time, tdwellpzq, which is the mean time

to “escape” from that macrostate into any other macrostate z1. For every genotype x in

Sz, the mean time to escape from Sz is by definition TS1
zÐx, the mean time taken to hit

S 1
z “ G ´ Sz, the complementary set of Sz. We define the dwell time in macrostate z as

tdwell
pzq :“ xTS1

zÐxyxPSz . (4.26)

We supplement these analytical solutions by stochastic simulations. We use the Gillespie

Stochastic Simulation Algorithm [Gillespie, 1976] to track the evolutionary trajectories

of the system. Since we employ the fixed-state assumption, the time to fixation of each

mutation is small compared to the waiting time between mutations and we neglect it

in the calculations. At each simulation run we obtain a temporal series, s0, s1, s2, . . . , of

genotypes (DNA sequences of TF consensus sequence and binding sites, along with signal

sensing alleles), and a corresponding sequence of times, t0 “ 0, t1, t2, . . . , at which sub-

stitutions between consecutive genotypes occurred. Here, s0 is the initial DNA sequence

with which we start the simulation. We construct s0 by sampling a genotype from the

steady state before duplication (with only 1 TF). For every i, from ti to ti`1, the DNA

sequence of the system is si, from which there is a substitution event to si`1 at ti`1. We

obtain si`1 by appropriately sampling substitutions available from si, which can occur

via TF consensus sequence mutations, or TF sensing domain mutations, or BS sequence

mutations. We also draw ti`1 ´ ti (the waiting time) from the appropriate exponential

distribution in the Gillespie framework. For each DNA sequence si, one can obtain the

reduced-representation pM,kij, σiq. From this, we obtain, for each simulation run r, the

time trajectories of reduced-genotypes, xrptq, starting from xrpt “ 0q “ xr0. By running

multiple times and computing the fractions of runs with each reduced-genotype x at each

t, we obtain the dynamical trajectory of the probability distribution of reduced-genotypes,

P simpG, tq, and the steady state distribution, P sim
SS pGq. Grouping the reduced-genotypes

into macrostates, we also obtain the dynamical trajectory of the probability distribution

of macrostates, QsimpM, tq and steady state distribution of macrostates, Qsim
SS pMq.

The simulations enable us to compute non-trivial path-dependent quantities relating to

an ensemble of trajectories txrptqu, as well as to provide full distributions of quantities of

interest. One such example is the mean hitting time to some macrostate z, conditioned on

not hitting some other particular macrostate on the way. While it is possible in principle

to compute such a path-dependent quantity exactly, in practice this requires too much

numerical effort and Gillespie simulation becomes the method of choice.
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Figure 4.19: Example trajectory. (a) Temporal traces of TF-TF match M (top),

and TF-BS mismatches kij (middle: TF1, bottom: TF2) with the corresponding signal

specificity mutations denoted on dashed lines, for one example evolutionary trajectory

at baseline parameters. Macrostates are color-coded as in the top legend and Fig. 4.11a.

(b) Average dynamics of fitness NF (blue, left scale) and TF-TF match M (red, right

scale). For every timepoint, the dominant macrostate is denoted in color.

An example trajectory is shown in Fig. 4.19a: the two TFs start off identical (with

maximal match, M “ L “ 5) until, as a result of the loss of specificity for both signals,

TF1 starts to drift, diverging from TF2 (sharply decreasing M in One TF Lost state)

and losing interactions with both binding sites. Subsequently TF1 reacquires preference

to the red signal, which drives the reestablishment of TF1 specificity for one binding site

during a short Specialize Binding epoch, followed quickly by the specialization of TF2

for the green signal at the start of Specialize Both epoch of maximal fitness.
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Figure 4.20: Specialization is faster

through the Partial state. Snap-

shots of dominant macrostates (at in-

creasing time post-duplication as indi-

cated in the panels), shown for differ-

ent combinations of selection strength

Ns and signal correlation ρ as in

Fig. 4.11. Contours mark dwell times

in the dominant macrostates (in units

of µ´1). Red cross = baseline param-

eters.

Dynamics of the TF-TF match, M , and the scaled fitness, NF , become smooth and

gradual when discrete transitions and the consequent large jumps in fitness are averaged

over individual realizations, as in Fig. 4.19b. Importantly, we learn that the sequence of

dominant macrostates leading towards the final (and steady) state, Specialize Both,
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involves a long intermediate epoch when the system is in the One TF Lost state.

We examine this sequence of most likely macrostates in detail in Fig. 4.20, and visualize

it analogously to the map of evolutionary outcomes in steady state shown in Fig. 4.11a.

High Ns and correlation (ρ) values favor trajectories passing through the One TF Lost

state, while intermediate Ns (5 À Ns À 20) and low correlation values enable transitions

through Partial macrostate; along the latter trajectory, the binding of neither TF is

completely abolished. Typical dwell times in dominant states, indicated as contours

in Fig. 4.20, suggest that specialization via the One TF Lost state should be slower than

through the Partial state, which is best seen at t “ 1{µ, where specialization has already

occurred at intermediate Ns and low, but not high, ρ values.

It is easy to understand why pathways towards specialization via the One TF Lost state

are slow. As the example in Fig. 4.19a illustrates, so long as one TF maintains binding

to both sites and thus network function (especially when signals are strongly correlated),

the other TF’s specificity will be unconstrained to neutrally drift and lose binding to both

sites, an outcome which is entropically highly favored. After the TF’s sensory domain

specializes, however, the binding has to re-evolve essentially from scratch in a process

that is known to be slow [Tuǧrul et al., 2015] unless selection strength is very high. In

contrast to this “Slow” pathway, the “Fast” pathway via the Partial state relies on

sequential loss of “crosstalk” TF-BS interactions, with the divergence of TF consensus

sequences followed in lock-step by mutations in cognate binding sites. Specifically, the

likely intermediary of the fast pathway is a Partial configuration in which the first TF

responds to both signals but only regulates one gene, whereas the second TF is already

specialized for one signal, but still regulates both genes.

To calculate statistics over pathways, in each simulation run r, we calculate the time to

specialization, and also record the dominant transient state. By running many simula-

tions, we have a set of times to specialization that go predominantly via the fast pathway

of Partial tτfastu, and those via the slow pathway of One TF Lost tτslowu. Using these,

we obtain their means (τ̄slow “ xτslowy and τ̄fast “ xτfasty); we also record the fraction of

pathways proceeding via the slow and fast alternatives.

The fast and the slow pathways are summarized in Fig. 4.21a. A detailed analysis reveals

how different biophysical and evolutionary parameters change the relative probability

and the average duration of both pathways. In Fig. 4.22, we plot the average time

to specialization via slow and fast pathways for various values of L, rTF and rS. The

ratios of these times are plotted in Fig. 4.21b. Increasing the length, L, of the binding

sites favours the slow pathway as well as drastically increases its duration, leading to

very slow evolutionary dynamics. This is because of an increase in size of the neutral

landscape; strikingly, increasing L does not lengthen the fast pathway through Partial

states. Increasing the rate of TF-specificity-affecting mutations, rTF, has a qualitatively

similar effect, while increasing the mutation rate affecting the sensory domain, rS, favors

the fast pathway.

Indeed, in the limit when rS is much larger than the other two mutation rates, the sensing



110

domain specializes almost instantaneously, making the complete loss of binding by either

TF very deleterious and thus avoiding the One TF Lost state; the adaptation dynamics

is initially rapid, with binding sites responding to diverging TF consensus sequences, and

subsequently slow, when TF consensus sequences further minimize their match, M , in a

nearly neutral process.
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Figure 4.21: Slow and fast

pathways to TF specializa-

tion. (a) Schematic of the two

alternative pathways to spe-

cialization. τslow and τfast are

the total times to specialization

for the “slow” and the “fast”

pathway, respectively. (b) We

plot the mean times to special-

ization, τ̄slow and τ̄fast, via the

slow (left panel) and the fast

(right panel) pathways, while

varying L (grey curve, top

axis), rTF (red, bottom axis)

and rS (blue, bottom axis) sep-

arately. Other parameters re-

main at their baseline values.

We find opposite dependence

of the time to specialize on

the binding site length L in

the distinct pathways. While

for pathways going via One TF

Lost (left panel) time increases

with L due to increase in the

sequence space, it mildly de-

creases with L for pathways go-

ing via Partial. For all path-

ways specialization time de-

creases if mutation rates in-

crease.

In Fig. 4.23 we detail the different pathways to specialization. The pathways proceeding

via One TF Lost are slow compared to the pathways proceeding via Partial which are

faster. The mutation initiating the process in all pathways is neutral and hence the

ratio between rS (signal sensing domain mutations rate) and rTF (TF mutation rate)

determines which pathway is more likely to occur - see Fig. 4.24.
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Figure 4.22: Relative speed of specialization for different parameters. Relative

duration of the two pathways - slow via One TF Lost and fast via Partial, as a function

of binding site length L (gray line, top axis), TF consensus sequence mutation rate rTF

(red), and signal domain mutation rate rS (blue, bottom axis). Pie charts indicate the

fraction of slow (pink) and fast (green) pathways at each parameter value.

Along the slow One TF Lost pathway, typically, first a TF consensus sequence mutation

occurs that weakens the binding of one TF to both binding sites. Once binding is lost,

further mutations cause the TF consensus sequence to neutrally drift away. Meanwhile,

the lost TF gains a sensing mutation such that it senses only one of the two signals.

Next, a BS mutation in one of the binding sites flips its TF preference such that the sys-

tem moves into Specialize Binding macrostate. This is a beneficial mutation as one

of the signal-BS pathways becomes specific. This involves evolving a TF-BS link essen-

tially from scratch; the lost TF consensus sequence is a random number of mismatches

away from the binding site sequence, and the beneficial BS mutation can occur only

when the TF consensus sequence, by chance, becomes close enough to the BS sequence.

From Specialize Binding, another beneficial sensing mutation leads the system to full

specialization (BS and signal).

There are multiple routes in the Partial pathway. In one of the routes, first a neutral TF

consensus sequence mutation occurs such that the TF loses binding to only one of the two

binding sites resulting in Partial macrostate. This is different from the first mutation

in One TF Lost pathway where the TF loses binding to both binding sites. From here, a

sensing domain mutation specializes one of the signal-BS pathways, making this mutation

beneficial. Further, a neutral BS mutation brings the system to Specialize Binding,

from where a beneficial sensing domain mutation leads the system to specialization.
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In the second and third routes via the Partial macrostate, first a neutral sensing domain

mutation occurs. Next, either a beneficial TF consensus sequence mutation can bring the

system onto the previous route or if the sensing domain mutation rate is high, another

neutral sensing domain might occur first. From here, a beneficial TF consensus sequence

mutation and a beneficial BS mutation again lead to full specialization.
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Figure 4.23: Pathways to specialization differ in the order and nature of mu-

tations. Here we detail the various mutations occurring along the different pathways to

specialization. For each mutation, we show the type of mutation (in text on the arrows):

TF consensus sequence mutation (TF), binding site sequence mutation (BS), TF signal

sensing domain mutation (S) and whether it is beneficial, (nearly) neutral or deleterious

(style of the arrows). We also illustrate the macrostates along each pathway using the

same color code in the background as in the main text. The number of beneficial muta-

tions in each macrostate relative to the Initial macrostate is depicted by box style (see

legend). Text in red indicates the conditions on mutation rates that favor the different

pathways. Note that from the One TF Lost state marked with a star, the “lost” TF

can actually take up new functions (by sensing and binding to signals and binding sites

other than those considered in our model), leading to “neo-functionalization”. Also, the

Partial state marked with two stars acts as the initial condition in the alternative model

variant, with the TFs already specialize in signal sensing immediately post-duplication.
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Figure 4.24: The ratio between rS and rTF determines the dominant pathway.

We plot the fraction of fast Partial pathways as a function of rS (signal sensing domain

mutation rate) and rTF (TF mutation rate). Other parameters remain at their baseline

values (see Section 4.2). Color code denotes the fraction of fast pathways (specialization

is reached via ’Partial’ intermediate state).

4.7 Role of βX, the relative fitness penalty on crosstalk

Transcription factors often bind weak secondary binding sites besides their primary tar-

get(s). This can lead to spurious activity of genes – crosstalk, i.e., deleterious activation

of genes that does not happen via their primary regulatory pathway. For example, in our

model a gene can be activated even if the signal to which it should respond is absent only

because of (weak) binding of a transcription factor responding to another signal to its

binding site. Previously, in Chapter 2, we studied the effect of crosstalk interference on

gene regulation, and showed how it can place global constraints on the gene regulatory

system [Friedlander et al., 2016]. Here, we explore the potential role of such crosstalk

interactions in shaping the evolutionary trajectories of TF specialization.

The fitness of each reduced-genotype x P G depends on the difference between the actual

expression pattern the genotype generates and the ideal expression pattern as defined in
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Eq. (4.8).

F pxq “ ´s
ÿ

j

ÿ

m

αmβjmppjm ´ p˚
jmq

2. (4.27)

Here, βjm weigh the penalties on different deviations from the desired expression level

p˚
jm. In a certain environment m some genes should be active, p˚

jm “ 1, while others

should remain inactive, p˚
jm “ 0. In our model, we allow for different penalties in either

case. We penalize deviations from desired activity p˚
jm “ 1 by setting βjm “ 1. We

consider deviations from desired inactivity p˚
jm “ 0 as less crucial and penalize them to

a lesser extent βjm “ βX , βX P r0, 1s. At the two extremes, if βX “ 0, no penalty on

these crosstalk terms applies, while if βX “ 1, penalties on all deviations are equally

important. So far, we used an intermediate value of βX “ 0.5. In this section we explore

the role of βX on the steady state distribution prior to and after TF duplication and on

the evolutionary dynamics of specialization.
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Figure 4.25: Dominant macrostate at steady state before duplication depends

on βX (crosstalk interaction penalty). (a) Illustration of the different macrostates

when only a single TF exists. Macrostates before duplication are defined in terms of

the macrostate they would result in, if a duplication occurred on those genotypes. (b)

Most probable macrostate at steady state before duplication, as a function of selection

strength, Ns, and the correlation between the two external signals, ρ, for different values

of βX , the relative weight of fitness penalties corresponding to crosstalk interactions. (c)

The most probable macrostate at steady state before duplication, as a function of βX

and ρ at Ns “ 25.
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Figure 4.26: Dependence of steady state after duplication on βX , the fitness

penalty on cross-interactions. (a) The most probable macrostate at steady state

after duplication, as a function of selection strength, Ns, and the correlation between the

two external signals, ρ, is plotted for six different values of βX . (b) The most probable

macrostate at steady state after duplication, as a function of βX and ρ at Ns “ 25. An

increase in βX has a a similar effect to an increase in selection intensity on all interactions

by varying Ns.

4.7.1 Steady state before duplication

A steady state distribution is attained before duplication, when only a single TF regulates

all genes. In Fig. 4.25 we illustrate the most probable macrostate prior to duplication

for different values of cross-interaction penalties βX . The macrostates possible before

duplication are Initial (both genes regulated), No Regulation (none regulated) and

some (but not all) variants of Partial - see Fig. 4.25a for illustration. For βX » 1, the

fitness penalty on mistakenly activating a gene is comparable to the fitness penalty on not

fully inducing genes when needed, resulting in network configurations in which only one

of the two genes is regulated (corresponding to Partial macrostate immediately after

duplication for most ρ ă 0). This is because, while configurations with only one gene

regulated have one functional interaction and no crosstalk interactions, configurations

with both genes regulated have two functional interactions and two crosstalk interactions.

As βX decreases, the selection against crosstalk interactions becomes weaker, resulting in

configurations in which both genes are regulated (Initial macrostate immediately after

duplication) even when ρ ă 0.

4.7.2 Steady state after duplication

We proceed to observe the effect of varying βX on the steady state after duplication,

analogous to Fig. 3C of the main text where we assumed βX “ 0.5. In Fig. 4.26,

we show the phase plot of the most probable outcome of duplication at steady state
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for different values of βX . The qualitative features of this phase plot are invariant to

changes in βX , as long as βX ą 0. For ρ not too close to 1, we obtain transitions

from No Regulation to Partial and to Specialize Both as Ns increases. For large

enough Ns, as ρ increases, there is a shift from Specialize Both to One TF Lost, via

Specialize Binding, the width of which increases as βX decreases. This is because there

is reduced selection pressure on avoiding crosstalk interactions as βX decreases. For small

βX , as ρ increases, it is sufficient that one of the TFs senses both signals while the TFs

are still specialized in binding. As ρ increases even further, it is sufficient to have one

TF mediating both pathways, marking the shift to the One TF Lost macrostate. These

transitions occur very prominently for very small βX « 0, where One TF Lost is the most

probable outcome for all ρ values. Many models of duplication do not consider crosstalk

interactions in their fitness function, and hence deal with the case of βX “ 0, making it

important for comparison to our results. This insight that selection against crosstalk is

crucial to TF specialization can be extended to the realistic case of many regulated genes

by extending fitness to include positive selection for correct regulation of each gene in its

corresponding environment, and negative selection against all signal-gene crosstalk. We

leave a full treatment to future research.

4.7.3 Evolutionary dynamics

Specialize Both One TF Lost PartialInitialSpecialize Binding No Regulation

0 0.25 0.5 0.75 1
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β
X

Figure 4.27: Snapshots of the most probable macrostate at different time-points

post-duplication. The most probable macrostate as a function of signal correlation, ρ,

and βX , the relative weight of fitness penalties corresponding to crosstalk errors, for Ns “

25. The left-most phase plot corresponds to the time-point immediately after duplication,

and the right-most phase plot corresponds to the steady state after duplication. For other

parameters, the baseline values have been used. βX “ 1 corresponds to equal-magnitude

selection strengths on functional as well as crosstalk interactions; βX “ 0 corresponds to

no selection against crosstalk interactions. We choose βX “ 0.5 as the baseline parameter

value.

To understand how βX affects the evolutionary dynamics of specialization, we first ob-

tained the dynamics of the most probable macrostate as a function of ρ and βX for fixed

selection intensity Ns “ 25 (baseline parameters). In Fig. 4.27, we plot a few snapshots
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of the phase diagram of the most probable macrostate at different time-points after du-

plication, starting from t “ 0 (immediately after duplication), to t “ 8 (steady state

after duplication). Specialization is faster for smaller ρ because the fitness benefit of

eliminating crosstalk interactions is larger. Likewise, specialization is faster for larger βX

as the selection strength against crosstalk interactions is higher. A huge region of the

pβX , ρq plane corresponding to small βX or large ρ, most of which starts at Initial and

specializes via the slow pathway of One TF Lost.
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Figure 4.28: Specialization speeds up as βX increases. For large βX , the time to

specialization shortens for all pathways and the fraction of trajectories to specialization

taken via fast pathways (through Partial macrostate) increases. Pie charts illustrate

the fraction of slow (lavender) and fast (green) trajectories for different values of βX .

The black line (right y-axis) shows the ratio between average specialization times, which

does not significantly change with βX . For other parameters, the baseline values were

used. βX “ 1 corresponds to equal-magnitude selection strengths on functional as well as

crosstalk interactions; βX “ 0 corresponds to no selection against crosstalk interactions.

We choose βX “ 0.5 as the baseline parameter value.

Next we sought to understand which pathways are taken towards specialization for dif-

ferent βX by running many repeats of simulations at each βX . For each βX , we found
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the most probable genotype at steady state before duplication and ran many repeats of

the simulation starting from that genotype. In Fig. 4.28, we explore the dependence on

βX of fraction of the two pathways to specialization (slow via One TF Lost and fast via

Partial), and also the corresponding times to specialization. First of all, specialization

becomes quicker as βX increases from 0 to 1. This is because stronger selection against

the crosstalk interactions eliminates them faster. Secondly, the relative speed of the fast

pathway (compared to the slow pathway) depends only very weakly on βX . Thirdly,

about 80% of trajectories follow the slow pathway, and this depends only very weakly

on βX , till βX “ 0.75. In contrast, for βX “ 1, the fast pathways via Partial become

predominant. This occurs because the steady state before duplication (which acts as the

initial condition for the trajectories) flips from Initial to Partial.

4.8 Comparison with biallelic model

The gene duplication literature often studies models with a small number of discrete

alleles, for example, binary alleles informing whether TF-BS binding occurs. Through-

out this work we employ a different approach by including a biophysical description

of TF/DNA interactions. Consequently, a large number of different genotypes can of-

ten realize each functional architecture (macrostate), capturing naturally the important

effects of neutral processes (mutational entropy). Our framework reduces to biallelic

models at L “ 1 and alphabet size D “ 2 (and multiallelic version with D “ 4), so

we can directly study the relationship between the results for a biophysically realistic

fitness landscape and various common simplifications. We refer to these simpler models

with L “ 1 here as the biallelic-like model. The biallelic-like model cannot reproduce

some of the results obtained with the biophysically-realistic model of the main text. In

particular, certain important macrostates do not exist in the biallelic-like model. We

also find an opposite dependence on time to specialization for the different pathways

(One TF Lost vs. Partial). In Fig. 4.29 we plot the dominant macrostate at steady

state for two values of D. For D “ 4 (right panel of the figure), many qualitative fea-

tures are retained from the more realistic main text model: for instance, the change from

No Regulation to Partial to Specialize Both as Ns increases, and the change from

Specialize Both to Specialize Binding to One TF Lost as ρ increases. For D “ 2,

we have Partial macrostate dominating at Ns “ 0, because its entropy is larger than

that of the No Regulation macrostate. Also, at large Ns and large ρ, Partial dominates

via the genotypes in which all TF-BS links are strong but the signal sensing domain is

not specialized.

Certain variants of Partial that exist in the general model do not exist in the biallelic-

like model, as shown in Fig. 4.30. These states have intermediate fitness and they arise in

the fast Partial pathway of the main text model, where they form a bridge between the

Initial and the Specialize Both macrostates. Hence, in biallelic models, fast Partial

pathways do not exist and instead, passing through Partial entails either losing a BS

or specializing very fast in the signal sensing domain. These states have low fitness in
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Figure 4.29: Dominant macrostate at steady state for biallelic-like models. Here

we plot the dominant macrostate at steady state as a function of Ns and ρ for biallelic-

like models with alphabet size D “ 2 (left panel) and D “ 4 (right panel). Color code

used to indicate different macrostates is the same as in the main text.

Figure 4.30: This type of Partial macrostate is absent in biallelic-like models.

In biallelic-like models, strong TF-BS link means an exact match between TF and BS.

Hence, the description of Partial states of the kind shown here is impossible.

the biallelic-like model and hence Partial pathway is actually slow. This is plotted in

Fig. 4.31.

In summary, biallelic-like models and the biophysically realistic model share a few simi-

larities but also differ in certain important aspects. Biallelic-like models, while being very

simplistic, still capture a few key qualitative features of the steady state distribution, for

example, the transitions of dominant macrostates along the ρ and Ns axes. On the other

hand, biallelic-like models paint a completely different picture of evolutionary dynamics

and timescales. Because they do not consider intermediate-fitness Partial states, un-

like in the biophysically realistic model, time to specialization through Partial becomes

slower than through One TF Lost.
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Figure 4.31: Biallelic-like models reverse the relation between different path-

ways to specialization: Partial pathways are the slow ones and One TF Lost

pathways are faster, in contrast to the full model. We plot the times to special-

ization via One TF Lost (left panel) and via Partial (right panel), at Ns “ 100, while

changing rTF (red curve) and rS (blue curve) separately, keeping the other parameters

at their baseline values in each case. We also show the fraction of these pathways as pie

charts (upper pie charts refer to different rTF values; lower ones to different rS values).

4.9 Multiple target genes per TF

Typically, each TF must regulate more than one target gene. As the number of regu-

lated genes per TF (nG{nTF) increases, intuition suggests that the evolution of the TF’s

consensus sequence should become more and more constrained: while a mutation in an

individual binding site can lower the total fitness by increasing mismatch and thereby

impeding TF-BS binding, a single mutation in the TF’s consensus has the ability to si-

multaneously weaken the interaction with many binding sites, leading to a high fitness
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penalty. Here, we analyze the biophysical fitness landscape in the presence of multiple

target genes per TF, and confirm that the landscape gets progressively more frustrated

as the number of regulated genes per TF increases. This is due to the explosion of con-

straints that TFs have to satisfy to ensure the maintenance of functional regulation, and

consequently, result in extremely long times to specialization. How can it nevertheless

proceed at observable rates? We provide a possible answer to this in Section 4.10.

The steady state distribution in the case of multiple target genes is

P pM, tkiju, tσiuq “ P0pM, tkijuqP0ptσiuq expp2NF q, (4.28)

where P0 is the neutral distribution and F is the fitness of the reduced-genotype. First, we

need to account for the neutral distribution P0 (entropic factor). This is straightforward,

because for given TF consensus sequences, the probability that a particular binding site

j has mismatch values pk1j, k2jq is independent of the state of other binding sites. Thus,

we can simply factor out the probabilities for different genes:

P0pM, tkiju, tσiuq “ P0ptσiuqP0pMq
ź

j

P0pk1j, k2j|Mq, (4.29)

where j enumerates the genes. Second, we need to take care of the adaptive (energy) factor

expp2NF q in the general case. Because F “
ř

j Fj is linear in terms of contributions Fj

from each gene j, expp2NF q factorizes into
ś

j expp2NFjq. Hence, we have

P pM, tkiju, tσiuq “ P0pMqP0ptσiuq
ź

j

P0pk1j, k2j|Mq expp2NFjq. (4.30)

Now, for xMy, we have,

xMy “
ÿ

tkiju,M,tσiu

MP pM, tkiju, tσiuq

“
ÿ

tσiu

P0ptσiuq
ÿ

M

MP0pMq
ź

j

ÿ

k1j ,k2j

P0pk1j, k2j|Mq expp2NFjq

“
ÿ

tσiu

P0ptσiuq
ÿ

M

MP0pMq
ź

j

xexpp2NFjqyP0ptkiju|Mq.

(4.31)

xexpp2NFjqyP0ptkiju|Mq can be calculated for each gene j separately.

Evolutionary pathways

The pathways to specialization in the case of multiple regulated genes are more complex

than those described in Section 4.6 for nG “ 2. As each TF needs to simultaneously

regulate a subset of the genes while avoiding regulation of the remaining ones, the num-

ber of constraints are increased relative to the nG “ 2 case, and incur a diminishing

number of feasible evolutionary trajectories. The fitness change due to a TF consensus

sequence mutation is assessed according to its effect on the binding affinities of this TF

with all existing genes. Hence, for each TF, as nG increases, the number of constraints
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also increases. This limits the number of possible substitutions a TF can access via fewer

beneficial and neutral mutations. In contrast, for each binding site, the number of con-

straints does not change because it is only constrained by the two TFs and not by other

binding sites. The following are the main pathways that are depicted in Fig. 4.32. The

first proceeds via One TF Lost macrostate while the other pathways proceed only via

Partial configurations.

1. The first pathway involves the One TF Lost macrostate, where as before one TF

does not bind to any binding site. Evolving a TF-BS link to this TF entails a

random walk on a neutral landscape and essentially involves regulatory evolution

from scratch. After gaining a TF-BS link from a BS mutation, the system ends

up on a local fitness plateau (marked with a red box in Fig. 4.32) in the Partial

state. This is because the “lost” TF (second TF in the figure) has considerably

diverged from the first TF yet has specialized only for some, but not all, of the genes

associated with the green signal, but not for all of them. All of the TFs and BSs are

constrained to maintain match beyond some minimal level. Hence specialization

can only occur if one of the strong TF-BS links weakens. Such weakening decreases

the fitness, and hence incurs crossing a fitness valley. This pathway is consequently

very slow.

2. The remaining pathways do not involve One TF Lost macrostate and go only via

Partial macrostate. In the second pathway, first, a TF consensus sequence mu-

tation and a signal sensing mutation (either can occur first) lead the system to

a Partial state with some of the signal-BS pathways specialized. Then, an ad-

ditional TF consensus sequence mutation pushes the TFs further apart. This,

together with BS mutations, brings the system to the local fitness plateau (in the

Partial macrostate) described in the previous pathway. This pathway is also slow,

because of the fitness valley crossing described above.

3. In the third pathway also, first, a TF consensus sequence mutation and a signal

sensing mutation (either can occur first) lead the system to a Partial state with

some of the signal-BS pathways specialized. From here, no additional TF consensus

sequence mutations occur that push the TFs away. Hence, there are paths for the

BSs to realign their binding preferences (to the other TF) such that fitness is always

maintained and does not involving crossing any fitness valleys. Hence, this pathway

is fast.

4. In the fourth and the fifth pathways, the first two mutations are signal sensing mu-

tations that specialize the TFs’ signal sensing domains. From here, a TF mutation

and subsequent BS mutations can specialize without going through fitness valleys.

Hence, this is a fast pathway. For a given genotype (specifying the TF and BS

sequences), this fourth pathway is either possible or not. If it is not possible, then

the only resort is the fifth pathway.

5. The fifth pathway comes into play when the fourth pathway is not possible. This

happens when any TF mutation loses some signal-BS pathways, hence dropping
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the fitness considerably. The TFs cannot diverge at all, and this involves crossing

a fitness valley. Hence, this is a slow pathway.
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Figure 4.32: Different pathways to specialization vary in the order and nature of

mutations, and might have to cross a rugged fitness landscape for nG ą 2. Here

we show in detail the various mutations that occur along the different pathways (marked

with numbers inside white circles) to specialization. For each mutation, we show the type

of mutation (text on the arrows): TF consensus sequence mutation (TF) or binding site

sequence mutation (BS), TF signal sensing domain mutation (S) and whether it is ben-

eficial or (nearly) neutral or deleterious (style of the arrows, see legend). We also depict

the macrostates along each pathway graphically, and mark local fitness peaks/plateaus

with red boxes. In red dotted curved lines, we denote parts of the pathways which involve

a fitness valley and hence, are very difficult to cross. Routes not involving any fitness

valleys (numbered 3 and 4) are fast, while those involving a fitness valley (numbered 1, 2

and 5) are slow. Populations often take the slower route, slowing their overall mean time

to specialization.
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Figure 4.33: Times to specialization via different pathways for various numbers

of downstream genes. Shown are the times to specialization via different pathways as

a function of Ns for different values of nG. We plot the times for the slow One TF Lost

pathway (numbered 1, yellow), the slow Partial pathway (numbered 2 and 5, red), and

the fast Partial pathway (numbered 3 and 4, blue). Plotted as pie charts also are the

fraction of various pathways for different nG values as pie charts; these fractions depend

only very weakly on Ns. In general, the higher the nG, the larger the fraction of fast

trajectories (3 and 4) and the longer the time needed to specialize. Pathways whose

time lengths with Ns, which are the slow Partial pathway (red) and the One TF Lost

pathway (yellow) for nG ą 2, involve crossing fitness barriers.

Time to specialization

By running simulations, we calculate the time to specialization for different values of

nG ą 2 (total number of downstream genes) via the different pathways described in

the previous section. Specifically, we calculate the time to specialization, τ1, via the
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One TF Lost pathway (pathway 1), τ3`4, via the fast Partial pathways (pathways 3

and 4), and, τ2`5, via the slow Partial pathways (pathways 2 and 5). We also calculate

the fractions of these pathways. These are shown in Fig. 4.33. The slow Partial pathway

(numbered 2 and 5) is absent for nG “ 2. The fast Partial pathway (numbered 3 and 4)

does not involve crossing any fitness valleys, and hence the time to specialization via this

pathway decreases with increasing Ns for all nG. The time to specialization via the slow

One TF Lost pathway (numbered 1) decreases with increasing Ns for nG “ 2, and so

does not involve crossing fitness valleys. For nG ą 2, the time to specialization via both

the slow One TF Lost pathway and the slow Partial pathway increases as Ns increases.

Both these pathways for nG ą 2 involve crossing fitness valleys. With increasing nG, the

fractions of the fast Partial pathway and slow Partial pathway increase at the expense

of the slow One TF Lost pathway.

4.10 Promiscuity-promoting mutations

So far we considered the constant mismatch penalty model for TF-BS specificity, where

each position in the TF and the binding site contributed equally to the total binding

energy, depending on whether the position has a mismatch between the TF consensus

sequence and the BS sequence. Let the TF consensus sequence be s˚ and the binding

site sequence be s, both of length L. In general, we have

E “
ÿ

i

Ei, (4.32)

where i runs over all the positions of the binding site. For each specific position i, the

contribution is Ei “ 0 if si “ s˚
i (match) and Ei “ ϵ if si ‰ s˚

i (mismatch).

Experiments on TF-BS specificity, however, suggest that some TF (and binding site)

positions dominate while others only have minor energetic contributions. In this section

we study a simple generalization of the mismatch-energy model, where we allow for two

levels of contribution: some positions are specific (favor a unique nucleotide) and have

large energetic contribution while others are non-specific or promiscuous (all nucleotides

are equally favorable) and have a smaller energetic contribution. For each specific position

i, the contribution Ei is, as in the mismatch-energy model, ϵ if there is mismatch between

the TF consensus sequence and the BS sequence in that position, and 0 if there is a match.

On the other hand, for each promiscuous position i, the contribution is Ei “ ϵP (typically

0 ď ϵP ď ϵ), independent of si. Hence, for a TF with LP ă L promiscuous positions

in total, and k mismatches in the remaining L´ LP specific positions, the total binding

energy would be E “ ϵPLP ` kϵ. The different possible energy levels for specific and

promiscuous TFs are illustrated in Fig. 4.34.

Promiscuity entails a cost in terms of TF-BS binding. To elucidate this cost, we consider

the dependency of the free (dimensionless) concentration, C0, of a TF, on the binding

preferences of the TF.
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Figure 4.34: Total TF-DNA binding energies depend on number of mismatches

as well as on the number of promiscuous TF positions. We plot the different

energy levels depicting the TF-BS binding energy, E “ ϵPLP ` ϵk, for TFs with varying

number of promiscuous positions LP and k mismatches between the TF and BS in the

remaining L ´ LP specific positions. Note that lower E corresponds to tighter TF-BS

binding. We illustrate this for three different values of ϵP , the energy contribution per

promiscuous position (different colors). Increasing line thickness of the energy levels

represents higher mismatch values k. While promiscuity-promoting mutations increase

LP by converting a specific position to a promiscuous one, regular TF mutations that hit

a promiscuous position can convert it to be specific and decrease LP .

For a TF with no promiscuous positions, C0 can be calculated in the grand canonical

ensembl framework of Chapter 1 as

C0pLP “ 0q “
C

GSpϵ, Lq `
ÿ

n

expp´Enq
, (4.33)

where C is the copy number of the TF, G is the number of sites on the DNA where the TF

can bind in a sequence-specific manner, n enumerates other possible energy configurations
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of the TF that are sequence-independent (residing in the free solution, or nonspecific

binding to DNA), and En is the free energy in configuration n. Spϵ, Lq “ xe´ϵkyP pkq is

the similarity between binding sites defined in Chapter 2, with GSpϵ, Lq acting as the

Boltzmann factor for all possible specific binding configurations. This term captures the

sequestration of TFs on the DNA due to spurious binding. Assuming that the DNA

sequence is random, P pkq „ BpL, 3{4q is the Binomial distribution for the number of

mismatches that a random DNA sequence has with a given TF consensus sequence.

k: # of TF-TFBS mismatches
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Figure 4.35: Binding probability of the TF to DNA decreases the more promis-

cuous it is. The TF-BS binding probability is plotted as a function of the number of

TF-BS mismatches k among the L´ LP specific positions for different values of LP , the

number of promiscuous positions in the TF. We list, as an example, different sequences

that are consistent with given pLP , kq.

For a promiscuous TF with LP promiscuous positions, we have,

C0pLP q “
C

Ge´ϵPLPSpϵ, L´ LP q `
ÿ

n

expp´Enq

“ C0pLP “ 0q

GSpϵ, Lq `
ÿ

n

expp´Enq

Ge´ϵPLPSpϵ, L´ LP q `
ÿ

n

expp´Enq

“ C0pLP “ 0q
1` A

e´ϵPLP
Spϵ,L´LP q

Spϵ,LP q
` A

,

(4.34)

where A “
ř

n expp´Enq

GSpϵ,Lq
is an effective parameter that captures the relative contribution of

the Boltzmann factor corresponding to spurious specific binding on the DNA, compared

with all other Boltzmann factors. We have assumed that A “ 0.1 is fixed in our calcula-

tions, and the results we present are fairly robust to the value of A. The probability that
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a binding site is bound by a TF with LP ą 0 promiscuous positions and k mismatches

with respect to the binding site in the remaining L ´ LP positions, assuming no other

TF type is present, is

p “
C0pLP qe

´ϵk´ϵPLP

1` C0pLP qe´ϵk´ϵPLP
. (4.35)

This probability is plotted in Fig. 4.35 for various k and Lp values. While C0pLP q can be

greater or lesser than C0pLP “ 0q depending on the value of ϵP , we have C0pLP qe
´ϵPLP ă

C0pLP “ 0q. Hence, as the number of promiscuous positions, LP , in the TF increases,

the binding probability decreases.
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Figure 4.36: Promiscuity-promoting mutations speed up specialization with

multiple regulated genes per TF. (a) In the absence of promiscuity-promoting mu-

tations, a compensatory series of point mutations in the TF’s consensus (upper sequence)

and its binding site (lower sequence) is needed to maintain TF-BS specificity (top; light

red). Alternatively, in the presence of promiscuity-promoting mutations in the TF con-

sensus, a position in the TF’s recognition sequence (marked by a star) can lose and later

regain sequence specificity (middle; light yellow). Promiscuity decreases the fraction of

deleterious mutations along typical pathways to specialization (bottom, computed using

baseline parameters). (b) Time to specialization as a function of selection strength, Ns,

without (left) and with (right) promiscuity promoting mutations in the TF, for differ-

ent numbers of regulated genes per TF, nG (color). Numbers in gray (right) denote the

speedup ratio.

For instance, consider a TF with consensus sequence AAAAA (see Fig. 4.35). This TF

is specific for A’s in all five positions of the binding site sequence. Each mismatch in

the binding site sequence (green positions in the sequences in Fig. 4.35) with respect

to AAAAA decreases the binding affinity, and thereby decreases the binding probability.

Now consider a promiscuous TF with consensus sequence A ˚ AAA, where ˚ denotes a
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promiscuous position. The second position, independent of the bp in the BS sequence

(purple positions in the sequences in Fig. 4.35), decreases the binding affinity, but by a

lesser amount than a specific position mismatch (green positions). Hence, the binding

probabilities of the promiscuous TF to AAAAA, AGAAA, ATAAA or ACAAA are equal,

and higher than the binding probability of the specific TF to CAAAA or AGAAA or

other single-mismatch BS sequences.

We also introduce an additional type of mutation, called “promiscuity-promoting” mu-

tation, that occurs at rate rPµ. These mutations convert a specific TF position in the

consensus sequence to a promiscuous one. A promiscuous position can return to be

specific again if it is hit by a consensus TF mutation (regular TF mutations we consid-

ered until now, happening at rate rTFµ). Fig. 4.36a shows how TF consensus sequence

and the corresponding binding site can co-evolve using point mutations, or using the new

“promiscuity-promoting” mutation type for the TF: promiscuity-promoting mutation ren-

ders one position in the recognition sequence of the TF insensitive to the corresponding

DNA base in the binding site.

4.10.1 Steady state after duplication
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Figure 4.37: Most probable macrostate in the presense of promiscuity-

promoting mutations. We plot the most probable macrostate at steady state, z˚
SS,

for different ρ and Ns, for nG “ 2 and relative mutation rate rP “ 3, keeping other

parameters at their baseline values. We choose rP “ 3 so that at each position, a specific

bp has equal effective mutation rate towards a promiscuous state or another specific bp.

In the presence of promiscuity-promoting mutations, we obtain the steady state distribu-

tion over the genotypic space analytically, from which we obtain the dominant macrostate
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at steady state for different ρ and Ns values (Fig. 4.37). The inclusion of promiscuity-

promoting mutations does not significantly change the dominant macrostate phase plot

except for a slight increase in the range of One TF Lost macrostate.

We also plot the mean number of promiscuous positions at steady state in Fig. 4.38.

This number decreases with selection intensity, because promiscuous positions decrease

the TF binding probability (see Fig. 4.35) making them less favorable once specialization

has occurred.

4.10.2 Evolutionary dynamics
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Figure 4.38: Mean number of promiscuous TF positions at steady state de-

creases with selection intensity. We plot the mean number of promiscuous positions

at steady state, xLP y (out of L “ 5), for different values of signal correlation ρ and

selection strength Ns. Steady state values of xLP y are within a relatively small range.

As selection strength increases, xLP y decreases, yet still remains above zero. Parameter

values: nG “ 2, rP “ 3; other parameters are at their baseline values.

Evolutionary pressure on the binding sites is therefore temporarily relieved, until the

specificity of the TF is reestablished by a back mutation. Without promiscuity-promoting

mutations, TF-BS co-evolution must proceed in a tight sequence of compensatory mu-

tations; with promiscuity-promoting mutations, such a precise sequence is no longer re-

quired, although one extra mutation is needed to reestablish high TF-BS specificity. As

shown in Fig. 4.36a, with promiscuity, the fraction of deleterious mutations along the

evolutionary path towards specialization is reduced, an effect that grows stronger with

increasing L. As shown in Fig. 4.36b, this has drastic effects on the time to specializa-

tion. Without promiscuity, increasing the selection strength, Ns, decreases the required
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time when each TF regulates one gene, as expected for a landscape with large neutral

plateaus but with no fitness barriers. For nG ą 2, however, the landscape develops barri-

ers that need to be crossed, and evolutionary time starts increasing with Ns. In contrast,

promiscuity enables fast emergence of TF specialization even with multiple regulated

genes in a broad range of evolutionary parameters (although there are also costs due to

high promiscuity).

Time to specialization

A speed-up via promiscuity mutations along various different pathways is shown in Fig.

4.39. The speedup of the fast Partial pathway (3 and 4) is not very large, but the

speedup of the slow Partial (2 and 5) and the slow One TF Lost (1) pathways is con-

siderable, an effect that increases with increasing Ns (see Fig. 4.32 for details of the

pathways). Promiscuity-promoting mutations act by converting deleterious BS muta-

tions into neutral or beneficial ones. By that they effectively lower or even remove fitness

barriers. This effect is more significant with a large number of downstream genes, where

more constraints on TF evolution exist. The fraction of different pathways does not

change much if promiscuity-promoting mutations are present. Note that as a function of

Ns, the fraction of fast Partial pathways does not change considerably, but the fraction

of slow Partial pathways decreases while increasing the fraction of slow One TF Lost

pathways. A reduction in N would not have a similar effect to promiscuity-promoting

mutations, even though both flatten the fitness landscape. While promiscuity-promoting

mutations flatten certain parts of the fitness landscape, building ridges across local fitness

peaks, a reduction in N makes the overall fitness landscape flatter, making evolutionary

pathways more vulnerable to meandering on huge neutral landscapes, and effectively

slowing down specialization.

Typical trajectory

Promiscuity-promoting mutations play different roles in different phases of the evolu-

tionary trajectory. While after specialization they are less favorable (because they lower

binding affinity and potentially destabilize the specialized state), during adaptation they

can facilitate fitness valley crossing. In Fig. 4.40, we plot the trajectory of the average

number of promiscuous TF positions as a function of time. Starting with no promiscious

positions in the Initial state, the number of promiscuous positions increases during

the transient One TF Lost state, and then decreases to reach its steady state value after

reaching the Specialize Both state. The speedup of evolution is mainly during the

transient One TF Lost phase, where the number of promiscuous positions peaks.
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Figure 4.39: Promiscuity-promoting mutations accelerate specialization. We

plot the times to specialization via different pathways that are depicted in Fig. 4.32,

as a function of Ns for different values of nG (the number of downstream genes per

TF), in the absence (solid lines) and presence (dotted lines) of promiscuity-promoting

mutations. Specialization times are shown for the slow One TF Lost pathway (numbered

1, yellow), the slow Partial pathway (numbered 2 and 5, red), and the fast Partial

pathway (numbered 3 and 4, blue). In general, promiscuity-promoting mutations shorten

evolutionary specialization times. This effect is particularly marked for the slow pathways

(One TF Lost and slow Partial) and for large numbers of downstream genes nG. The

pie charts illustrate the fraction of the various pathways at each nG value. For nG “ 8,

we plot the pie charts for the different Ns values marked on the x-axis.
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Figure 4.40: Number of promiscuous positions transiently peaks during adap-

tation and relaxes after specialization to an intermediate steady state value.

We plot the average number of promiscuous positions xLP ptqy as a function of time for

L “ 5, nG “ 4, Ns “ 250 and rP “ 10; other parameters are at baseline values. Solid

black arrow indicates the increase in the number of promiscuous positions in the tran-

sient One TF Lost phase, while the dotted black arrow indicates their decrease after

specializing. The red dotted line indicates the steady state value of xLP y.

4.11 Discussion

The concept of fitness landscapes has been a dominant driving force for decades behind

framing and answering questions in population genetics. While inferring the complete

fitness landscape is impractical and has not been addressed in the field, this concept has

given rise to a large body of theoretical work into evolution on toy-model like fitness

landscapes in which interesting features have been artificially put in by hand [Kauffman

and Levin, 1987; Kryazhimskiy et al., 2009]. This has also led to recent efforts to map

out empirical fitness landscapes albeit only around the wild-type on a small scale. For

biological systems involving molecular recognition, biophysical constraints acting on these

interactions are informative enough to permit a specification of the fitness landscape, and

thereby allow us to computationally explore them. A few examples are, the secondary

structure of RNA [Schuster et al., 1994], antibody-antigen interactions [Adams et al.,

2016], protein-protein interactions [Podgornaia and Laub, 2015], and transcription factor-

DNA binding [Aguilar-Rodŕıguez et al., 2017], that we explored here.

In this chapter, we exploited this prior knowledge on the biophysics of TF-DNA binding

and gene regulation, and their connection to function and fitness, to construct a fitness
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landscape for a key evolutionary event of TF duplication by which regulatory networks

grow in size and organisms gain new TFs. In contrast to toy model landscapes, the

fitness landscape that we construct bottom-up from the underlying biophysics contains

not only the essential empirical features, but also complex features like tuneable rugged-

ness that have been only of theoretical interest so far. Other essential concepts - the

fact that specialization is driven by avoidance of regulatory crosstalk; the importance of

the mutational entropy; the dependence on number of downstream genes; the existence

of transient network configurations preceding specialization, which crucially impact dy-

namics; and the importance for evolutionary outcomes of the statistical properties of the

signals that TFs respond to - emerge naturally out of such a construction. Crucially,

this does not come at an increased modeling cost; while complex and containing many

key features of interest, the fitness landscape is determined only by a few underlying

parameters, most of which are known well. Also, the typical problem of an exponentially

large space of genotypes can be coarse-grained to a small set of functional phenotypes

that allow easy computation and biological interpretation. Moreover, this combination

of biophysical and co-evolutionary approaches is applicable generally to the evolution of

any biological system involving molecular recognition.

First, we computed the evolutionary steady state, which showed that correlation between

upstream environmental signals, and in general their presence/absence statistics, act as

a key determinant of whether the duplicate TFs specialize in their function (Fig. 4.11a-

b). We showed that one TF duplicate will be lost due to neutral drift (and mutational

entropy) unless the signals are sufficiently uncorrelated from each other. As a conse-

quence, the effective dimensionality of environmental signals dictates the complexity of

genetic regulatory networks [Friedlander et al., 2015], reminiscent of information-theoretic

tradeoffs in sensory neuroscience [Tkačik et al., 2010]; in evolutionary terms, selection to

maintain complex regulation needs to withstand the mutational flux into vastly more nu-

merous but less functional network phenotypes (“survival of the flattest”). In chapter 2, I

showed that finite biochemical specificity in molecular recognition events limits the com-

plexity of genetic regulatory networks [Friedlander et al., 2016]; an interesting direction

for future research is to understand how the balance between regulatory crosstalk, en-

vironmental signal statistics, and evolutionary constraints together ultimately determine

the number of TFs that can be stably maintained.

A clinching support for our complex biophysically realistic fitness landscape, as com-

pared to simpler allelic models that neglect the topology of the sequence space, comes

from the evolutionary dynamics towards specialized states. Timescales and pathways to

specialization are completely shaped by the properties of the biophysical fitness land-

scape, and offer us important insights into the contexts in which specialization might

occur. Specifically, we show that the fast pathway to specialization transitions through

Partial states where neither of the two TFs completely loses binding and compensate

for each other while transiting through intermediate evolutionarily transient states. In-

terestingly, some of this mutual compensation occurs due to the existence of crosstalk

interactions, hence permitting fast adaptation via these transient states, by maintaining

the network function through one TF, while the other is free to diverge in a series of
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mutations to the TF and its future binding site [Shultzaberger et al., 2012]. So while

crosstalk thus enables some amount of network plasticity during early adaptation, it is ul-

timately selected against, when TFs become fully specialized [Rowland and Deeds, 2014;

Eldar, 2011], a situation that we explored in chapter 2. In the protein-protein-interaction

literature, Partial states are sometimes referred to as promiscuous states, and they have

been suggested as evolutionarily accessible intermediaries that relieve the two interacting

molecules of the need to evolve in a tight (and likely very slow) series of compensatory

mutations [Aakre et al., 2015]. In contrast to the fast pathway, the slow pathway involves

a complete loss of TF-BS binding interactions; the long timescale emerges from long dwell

times while the TF and the binding sites evolve in a nearly neutral landscape before TF-

BS specificity is reacquired. Long binding sites and (perhaps counter-intuitively) fast TF

mutation rates favor the slow pathway, while fast sensing domain mutation rates favor

the fast pathway.

When a more realistic case of each TF regulating multiple target genes is considered,

the situation changes qualitatively [Sengupta et al., 2002]. On the one hand, entropy

makes pathways that pass through the One TF Lost state dynamically uncompetitive,

as multiple binding sites would have to emerge de novo to reestablish interactions with

a diverged TF. This would favor fast pathways through Partial states. On the other

hand, because of increased constraints on the TFs, the biophysical fitness landscape

develops frustration (or sign epistasis) as nG ą 2 and the timescales to specialization

lengthen with increasing selection strength when passing through Partial states. Such

a situation arises when one TF together with a set of binding sites (but not all) coevolve

away to regulate one pathway, leaving behind a few other BSs that now have to cross

a fitness valley to be bound by the diverged TF. We demonstrate that frustration is

relieved by promiscuity-promoting mutations in the transcription factor, which increase

the flexibility in the TF’s binding preferences letting the BS lagging behind to also catch

up, enabling fast emergence of specialization even with multiple regulated genes.

That coevolution is important to understand TF evolution has been attested by recent ex-

perimental studies that have demonstrated how a combination of cis and trans mutations

have the potential to rewire gene regulatory networks. Such a coevolution allows for the

emergence of new functions via transient and promiscuous configurations, in accordance

with our model [Pougach et al., 2014]. While we focused on a specific evolutionary sce-

nario involving TF duplication, gene regulatory networks can rewire in numerous other

ways. For example, Sayou et al. studied the evolution of TF-DNA binding specificity

while the TF remains present in a single copy [Sayou et al., 2014]. Duplicated TFs can

also be re-used in ways that are different from what we considered [Pérez et al., 2014]. Our

results do, however, make predictions for expected timescales to reach different network

configurations after gene duplication, which can be compared to bioinformatic data; alter-

natively, genomic data on TF duplication events could be used to infer selection pressures

favoring regulatory divergence.

In summary, our study suggests that TF specialization proceeds through intermediate

states that make use of crosstalk to maintain system functionality. A typical such state is
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that in which one TF has already specialized for its input signals but not yet for the target

genes, while the other TF is not yet specialized for the input signals but only regulates

one gene. In the presence of multiple target genes, these intermediate states are likely

to be inhabited by promiscuous TFs that are flexible in their BS binding preferences,

with the promiscuity vanishing at the end of specialization in the steady states. Such

a picture is qualitatively different from the accepted idea of a simple and sequential

progression of compensatory mutations in the TF and its binding sites [Poelwijk et al.,

2006; de Vos et al., 2015]. As we showed in this chapter, it depends fundamentally on

the underlying biophysical model of TF-BS interactions and gene regulation function,

predicts faster specialization times that overcome the ruggedness of the fitness landscape

coming from coevolutionary constraints, and conveys the importance of promiscuity in

TF evolution.
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Bioinformatic analysis of the

evolution of Zn-finger TFs

5.1 Introduction

In the previous chapter, we investigated the evolution of duplicate TFs in a joint frame-

work of TF-DNA based biophysical model of gene regulation and population genetics.

This rich theoretical framework, which is based only on a few assumptions about the

functional role of TFs in signal transmission and gene regulation, predicts the condi-

tions under which duplicate TFs specialize to perform different functions. Motivated by

these results, in this chapter, I will describe a preliminary bioinformatic analysis of the

evolution of a major family of transcription factors – C2H2 Zn-finger TFs.

There are close to „ 800 genes in the human genome [Lambert et al., 2018] that give

rise to proteins containing a Zn-finger DNA-binding domain (DBD). Compared to other

families of TFs, Zn-finger TFs are more modular owing to the presence of multiple DBDs

in each protein that can have different binding specificities. At a finer scale, each DBD

is very versatile in its binding modes, with mutations in a few key residues on the DBD

allowing binding to the whole range of possible DNA sequences [Najafabadi et al., 2015].

Apart from acting as transcription factors that are involved in the regulation of various

cellular processes, Zn-finger TFs are also involved in chromatin remodeling [Kim et al.,

2015] and repression of transposable elements (TEs) [Yang et al., 2017].

Among transcription factors, the Zn-finger family has undergone the most successful

duplications, to which it owes its large numbers in various animal genomes [Lambert et al.,

2018]. While reasons such as the modular nature of Zn-finger DBD composition, and
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their versatility in DNA binding have been proposed, we still lack a good understanding

of the patterns of Zn-finger TF evolution that used these features to expand rapidly in

mammalian genomes. Transposable element repression has been suggested to be a major

driving force [Yang et al., 2017] behind the recent expansion of KRAB domain containing

Zn-finger TFs (KZNFs) in primate genomes. KZNFs recognize specific TE sequences

via their Zn-finger DBDs and recruit TE repressing factors via their KRAB domains.

It has been suggested that constant invasion and expansion of new TE families drives

the retention of KZNF duplicates, and their subsequent adaptation to bind changing

TE sequences, resulting in a coevolution between TEs and KZNFs [Jacobs et al., 2014].

Further, the reuse of old KZNFs to bind new TEs, and also cooption of TEs into regulatory

sequences has been suggested as an additional mechanism for the large numbers of Zn-

finger TFs [Ecco et al., 2017; Chuong et al., 2017].

In this chapter, I will explore the recent evolution of Zn-finger TFs in terms of their

Zn-finger DBDs and KRAB domains, and also comment on KZNF coevolution with TEs.

I will first explore how various genic features like the number of Zn-finger DBDs, the

number of exons and their length in bp, chromosomal location etc. correlate with each

other for Zn-finger TFs. For instance, clustering of Zn-finger TF genes on chromosomes

reveals their origin via gene duplication, and a strong correlation between the number

of Zn-finger DBDs and length of one particular exon reveals that all DBDs are usually

coded in a single exon.

Then I will turn to the major question that I will attempt to answer: what are the patterns

of positive selection that drive the divergence of initially identical Zn-finger paralog TFs

(immediately after duplication)? To answer this, I will compute dN and dS, the rates

of non-synonymous and synonymous changes in the coding sequences of Zn-finger TF

paralogs, and use dN{dS ratio as a signal to detect the pattern of selection. First, I

will describe models that consider that all sites in the protein sequences of the Zn-finger

TF paralogs have the same dN{dS ratio. While this assumption of similar selection

pressure on all sites of a protein is empirically incorrect, it still offers first insights into

how selection has operated on Zn-finger TF paralogs of various ages. By computing

dN{dS ratios for specific domains like KRAB and Zn-finger DBDs, we obtain additional

insights into varying patterns of selection on different domains across time. I will show

that Zn-finger DBDs perhaps initially experience selection to diverge and bind different

sequences, with KRAB domains undergoing positive selection in older paralogs.

To overcome the shortcomings of site-averaged models, I next consider site-specific models

of dN{dS computation. By comparing pairs of nested models that account for evolution

without positive selection (purifying + neutral) and evolution with positive selection

(purifying + neutral + positive), I will show that for a few sets of KZNF TFs, a strong

signal of positive selection can be observed at key residues on the DBDs, which are amino

acids that contact nucleotides on the DNA via hydrogen bonds to establish sequence-

specific binding. Finally, I will show that paralog KZNFs bind TEs of often similar

typical ages, and that the paralogs (dated by the age of duplication) often arise at the

same time as the younger among the typical ages of TEs bound by them. This indicates
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that KZNF TFs are retained after duplication to immediately adapt to bind to TEs that

arise newly. However, some paralogs have arisen before the younger among the typical

ages of TEs, which indicates that some old KZNFs are reused from before to repress new

TEs.

While this treatment of TF-TE coevolution is different from the gene regulation model

developed in the previous chapter, we choose to investigate this first as there are a

significant number of KZNF paralogs that seem to be involved in TE repression. The

question of whether some of them become co-opted for gene regulation is one that will

subsequently ask in future research. Also, the dynamics of TF-TE coevolution is different

as there is no stationary state, and is always out-of-equilibrium with the invasion of new

TEs and the expansion of various TE families.

5.2 Bioinformatics pipeline

Extract Zn-finger TF genes 

from EnsEMBL (v93) and 

clean to remove 

run-through genes, 

clone-based genes etc.

Obtain paralogs of cleaned 

list of Zn-finger TF genes

Master list of Zn-finger TF 

genes and their paralogs, 

along with their proteins 

from primary transcripts

Extract various genomic 

features like #Zn-finger DBDs, 

exon lengths, chromosome, 

presence of KRAB etc.

Run dN/dS analysis of whole 

proteins, only DBDs, and only KRAB 

domains, along with genomic 

features of paralog pairs

From ChIP-data, obtain TEs 

bound and infer TE ages 

from RepeatMasker data

Select few KZNFs based on 

#Zn-finger DBDs and 

sequence similarity to run 

site-specific dN/dS analysis

PAML analysis using various 

models like M0, M1a, M2a, M3, 

M7, M8, M8a to infer sites of 

positive selection
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correlation 

among various 

genomic features

dN/dS plots, 

genomic feature

 comparison between 

paralogs

LRT tests on 

site-specific

positive selection,

overlap of these sites

with key residues

on DBDs

TE ages between

paralogs, comparison

with paralog age

Figure 5.1: (Caption next page.)

The bioinformatics pipeline employed in this chapter is described in Fig 5.1. We use

EnsEMBL Release 93 (July 2018, [Cunningham et al.]) RepeatMasker [Smith et al.,

2016], and Imbeault 2017 [Imbeault et al., 2017] as the sources of genomic data, repeat
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Figure 5.1: (Previous page.) Bioinformatics pipeline followed to extract and an-

alyze Zn-finger TF evolution. First, we extract Zn-finger TF genes in the human

genome from EnsEMBL (v93) [Cunningham et al.] and then remove spurious cases like

run-through genes, clone-based genes etc., to obtain a cleaned list of Zn-finger TF genes.

Then, we obtain a list of paralogs of the cleaned list of Zn-finger TF genes, together

with the taxonomical age of each duplication event. From the paralog pairs, we obtain a

master list of Zn-finger TF genes and a few other non Zn-finger TF gene paralogs, along

with the proteins corresponding to their primary transcripts. Using this master list of

genes, we extract from EnsEMBL various genomic features of each gene like presence

of a KRAB domain (KZNF gene), number of Zn-finger DBDs in each protein, length of

exon coding for Zn-finger DBDs (if they are in the same exon), chromosomal location,

domain architecture of proteins etc. Apart from teasing apart the correlations among

these genomic features, we use them and the paralog pair list to compute dN{dS and dS

using the “MS” (model selection) method from KaKs Calculator [Zhang et al., 2006], for

pairwise alignments of whole proteins, only Zn-finger DBDs and KRAB domains. From

this we obtain dN{dS vs dS plots, when a single dN{dS ratio is assumed to hold across

all sites in the aligned proteins of interest. To overcome the dampening of the dN{dS

signal because of averaging across sites, we select a few KZNFs based on their sequence

similarity and perform site-specific dN{dS analysis using various maximum likelihood

models of neutrality and selection from PAML [Yang, 2007]. Apart from this, we also

obtain, from ChIP-exo data on KZNFs [Imbeault et al., 2017] and from TE data [Smith

et al., 2016], the typical ages of the TEs bound by various KZNFs, and compare the age

of TEs with the age of the duplication event.

data (for TEs) and ChIP-exo data. First, from EnsEMBL, we extract a raw list of Zn-

finger TF genes by using the criterion that one of the gene’s proteins should have an

annotated SMART domain “SM00355”, which corresponds to a Zn-finger DBD [Schultz

et al., 2000]. Then, we clean this raw list to remove spurious cases like read-through genes

and clone-based genes (allelic genes) to obtain a clean list of Zn-finger TF genes.

We query EnsEMBL for paralogs of these genes, and after cleaning the paralog list to

account for spurious cases, we now have a master list of paralogs in which at least one copy

comes from the cleaned list of Zn-finger TF genes. We also have the primary transcript

corresponding to each of the genes from this paralog list; note that not all Zn-finger TF

genes from the master list are annotated to have at least one paralog (for instance, due

to large sequence divergence), and that non Zn-finger TF genes are also present in the

the paralog pairs (for instance, due to loss of all Zn-finger DBDs after duplication). For

this master list of all genes – Zn-finger TF genes with annotated paralogs, Zn-finger TF

genes without annotated paralogs, and non Zn-finger TF genes that are annotated as Zn-

finger TF gene paralogs – we extract their various genomic features like the chromosomal

location of the gene, protein domain architecture – which domains are present and at what

locations on the protein, number of Zn-finger DBDs, exon containing Zn-finger DBDs (if

they occur on the same exon, as happens for a majority), the length of this exon, the
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length of the coding part of the exon, the length of intron immediately preceding the Zn-

finger exon, the peptide sequence of the proteins, the raw intronic and exonic sequences,

and a few other features. We compute how correlated these features are across the whole

set of genes involved to get first clues about the features that evolve as part of Zn-finger

TF evolution.

Next, we use these features, primarily the identities and locations of various domains on

the proteins, and the peptide and coding DNA sequences, to compute the dN{dS and

dS values of each paralog pair for pairwise alignment of the whole protein sequences, of

only the Zn-finger DBD sequences, and of only KRAB (SMART domain “SM00349”)

sequences. We use the “MS” (model selection) method from KaKs Calculator [Zhang

et al., 2006] that uses maximum likelihood techniques and AIC to infer the best underlying

DNA and codon evolution model. After understanding a few broad patterns of Zn-finger

TF evolution from dN{dS rations, to overcome the shortcomings of averaging across all

the sites – MS model assumes that dN{dS is same across all sites of the protein chunk

considered, we then employ site-specific models of dN{dS computation.

We first select a few KZNF (Zn-finger TFs with a KRAB domain) that share medium

to large sequence similarity based on dS values and share the same number of Zn-finger

DBDs to form four different sets of KZNF genes. Then on each set, we first run ClustalW2

multiple sequence alignment [Thompson et al., 1994] and use PAL2NAL [Suyama et al.,

2006] to construct a multiple codon alignment from the protein alignment. Then we run

maximum likelihood models M0, M1a, M2a, M3, M7, M8 and M8a from PAML [Yang,

2007], corresponding to various scenarios of nearly neutrality and positive selection, to

obtain likelihoods and information on which specific sites are positively selected for. As

various pairs of these models are nested, we use likelihood ratio tests on these likelihoods

to infer whether rejecting the null model of (near) neutrality against the alternative model

of positive selection is statistically significant.

We also compare the sites inferred to be positively selected in each set with the key

residues on the DBDs (those amino acids that contact nucleotides on the DNA via hy-

drogen bonds) of the underlying KZNF TFs, and infer that KZNFs have undergone

selection at key residues that change their binding specificities towards DNA.

Next, motivated by evidence that a major function of KZNFs is TE repression [Najafabadi

et al., 2015; Yang et al., 2017], and that they have coevolved with TE sequences [Jacobs

et al., 2014], we query RepeatMasker for the copy numbers of various families of TEs

in representative species from a set of hierarchical taxonomical nodes (based on Homo

sapiens) starting from Homininae (subfamily comprising humans, chimpanzees and bono-

bos) through the order Primates, to the class Mammalia comprising mammals, and the

clade Amniota comprising reptiles, birds and mammals. From these we obtain a rough

estimate of the age of various TEs of interest on a taxonomical scale. We then compare

the typical ages of the TEs bound by the paralogs, and also ask if TE ages are correlated

with paralog age, which we consider to be the taxonomical age of the duplication event

inferred from a reconciliation of gene trees with the reference species tree.
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Figure 5.2: Zn-finger TF genes are distributed heterogeneously on the human

chromosomes, and are often present in clusters. The spatial positions of the Zn-

finger TF gene repertoire, classified by the absence (violet, ZNF genes) and presence

(orange, KZNF genes) of a KRAB domain, from the human genome are marked on the

human chromosomes. Also, in the inset, we show a histogram of the the ZNF genes on

the various chromosomes. Both ZNF and KZNF genes are distributed heterogeneously

on the various chromosomes, and are often found in clusters, which probably originate via

gene duplication events. Many of these clusters are found on chromosome 19. Pearson’s

correlation indicated that there is no significant correlation between chromosome lengths

and the number of either ZNFs, KZNFs, or all Zn-finger TFs on them – p-values p “

0.4511 for ZNFs, p “ 0.1899 for KZNFs and p “ 0.5303 for all Zn-finger TFs.
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5.3 Genomic features and their correlation
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Figure 5.3: Zn-finger TFs have varying numbers of Zn-finger DBDs. Different

Zn-finger TFs have varying number of Zn-finger DBDs in their proteins. Zn-finger TFs

whose Zn-finger DBDs are in the same exon (orange) have a larger number of DBDs –

mean 10.9, compared to those whose Zn-finger DBDs are in different exons (violet) – mean

7.31 (means significantly different according to Mann-Whitney U test, p ă 2.2e´16) The

mean number of Zn-finger DBDs in all Zn-finger TFs is 9.97. Also, the spatial positions of

these two classes of Zn-finger TFs are marked on chromosome 19 in the inset . Zn-finger

TFs whose DBDs are on different exons tend to cluster less and are located separately

from those whose DBDs are in the same exon.

In Fig. 5.2, we mark the chromosomal positions (no strand information) of the various Zn-

finger TF genes, colored according to the presence (orange, KZNF) and absence (violet,

ZNF) of a KRAB domain in the protein product of the gene. Both ZNFs and KZNFs,

each of which make up about 50% each of the repertoire of Zn-finger TFs, occur in clusters

on the various chromosomes, with chromosome 19 inhabiting a major fraction of these

clusters. This further indicates the gene duplication origin of ZNFs and KZNFs.

Next, we probe the distribution of the number of Zn-finger DBDs in different Zn-finger

TFs. We plot empirical density plots (Gaussian kernel on histograms) of the number of

Zn-finger DBDs, grouped by their presence in the same exon (orange: same exon, violet:
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different exons, green: all Zn-finger TFs together) in Fig. 5.3. Zn-finger TFs with all their

DBDs in the same exon tend to have a larger number of DBDs (mean 10.9), compared

to those that have DBDs in different exons (mean 7.31) – means significantly different

according to Mann-Whitney U test, p ă 2.2e ´ 16. Overall, the average number of Zn-

finger DBDs per protein is close to 10, with a large variance. The maximum number of

DBDs in a Zn-finger protein is 37. Each DBD contacts about 3 nucleotides on the DNA

with a large affinity, meaning the average length of DNA sequences bound by Zn-finger

TFs is 30bp. Such large binding site sequences allow Zn-finger TFs to specifically target

locations on the DNA, and reduces spurious binding to off-target sites. This, together

with the modularity offered via the chopping and changing of each DBD separately,

make the Zn-finger TF family versatile and flexible compared to other major families of

TFs.

We then ask how the number of exons and number of coding exons compare with each

other among Zn-finger TF genes. As shown in Fig. 5.4, where we plot the total count

of Zn-finger TFs with different numbers of exons and coding exons, these are strongly

correlated (Kendall’s tau coefficient, τb “ 0.79, p ă 2.2e ´ 16) with each other, meaning

that most exons in Zn-finger TF genes act as coding exons. We use Kendall’s tau because

the underling data is not normally distributed (Multivariate Shapiro-Wilk test, p ă 2.2e´

16). We also see that there are 70 ZNF (no KRAB) and 3 KZNF genes that have only 1

coding exon, even though many of them have more than 1 exon. These might have arisen

either by losing exons, for instance, by losing the KRAB-coding exons, leading to only

the Zn-finger DBD coding exon – ZNF gene Ñ KZNF gene, or by retro-transposition

based duplication.

We already saw in Fig. 5.3 that in a majority of Zn-finger TFs, all the DBDs are coded

in the same exon. This might imply that the number of Zn-finger DBDs might have little

to do with the total number of exons (and thereby the number of coding exons), which

is what we observe (Kendall’s tau coefficient, τb “ ´0.02, p ą 0.05) in Fig. 5.5.

Next, we summarize all correlations among various genomic features in Fig. 5.6. The

strand on which the Zn-finger TF genes are found does not correlate with any of the

other features, as expected. Notice that the number of exons and coding exons are highly

correlated pτb “ 0.96, p ă 2.2e ´ 16q, as observed in Fig. 5.4. The number of Zn-finger

DBDs does not share a significant correlation with the either the number of exons or

the number of coding exons, but is highly correlated with the length of the coding part

of the exon containing DBDs pτb “ 0.53, p ă 2.2e ´ 16q. This is because all the DBDs

are often placed on the same exon, and make up a significant fraction of the coding part

of the exon. The loss of a few DBDs by degenerate mutations and/or the lack of their

annotation, or the presence of other domains in the same exon, might be the reasons

behind a correlation of τb “ 0.53 and not higher. The number of Zn-finger DBDs shares

a smaller but significant correlation pτb “ 0.16, p ă 0.001q with the total exon length,

because of the presence of 31 UTRs in the exon.
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Figure 5.4: The number of exons and the number of coding exons in Zn-finger

TF genes are strongly correlated. Here we plot the numbers (counts) of Zn-finger

TF genes (ZNF and KZNF genes together) that have different numbers of exons (x-axis)

and coding exons (y-axis) in them. The number of exons and the number of coding

exons are very strongly correlated (Kendall’s tau coefficient, τb “ 0.79, p ă 2.2e ´ 16),

meaning that most exons in Zn-finger TF genes are coding exons. In blue, we plot a local

regression curve. There are 70 ZNF genes and 3 KZNF genes with only 1 coding exon

(even though many of them have more than 1 exon). It is possible that these arose either

by losing exons (loss of KRAB-coding exons, leading to ZNF genes from KZNF genes) or

via a retro-transposition based duplication. Also, there are 14 ZNF genes and no KZNF

genes with only 1 exon in total.
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Figure 5.5: The number of Zn-finger DBDs has no significant correlation with

the number of exons in Zn-finger TF genes. Here we plot the numbers (counts) of

Zn-finger TF genes (ZNF and KZNF genes together) that have different numbers of exons

(x-axis) and Zn-finger DBDs (y-axis) in them. The number of exons and the number of

Zn-finger DBDs do not have any significant correlation (Kendall’s tau coefficient, τb “

´0.02, p ą 0.05), meaning that a larger number of exons does not mean a larger number

of Zn-finger DBDs. This is also because all the Zn-finger DBDs are usually packed in a

single exon. We plot in blue a linear regression curve that verifies this independence.



147

length of intron preceding 

Zn-finger DBD exon

length of exon cds

#Zn-finger DBDs

strand

total exon length

−1.0

−0.5

0

0.5

1.0

τ
b

#Zn-finger D
BDs

stra
nd

length of e
xon cds

#coding exons

#exons

length of in
tro

n preceding 

Zn-finger D
BD exon

0.13 0.29 0.16 −0.02 −0.02 −0.08

0.19 0.17 −0.01 −0.04 −0.05

0.53 −0.07 −0.1 −0.14

0.01 −0.02 −0.03

−0.03 −0.01

0.79

#exons

Figure 5.6: Correlations among various features of Zn-finger TF genes inform us

of their intron-exon-DBD structure. We plot Kendall’s tau coefficients, τb, among

various features of the Zn-finger TF genes, and also mark with a “x” (cross) those pairs

that do not share a significant correlation (significance level 0.05), The following features

are considered – “#coding exons”: the number of coding exons, “#exons”: the number

of exons, “strand”: directionality of the DNA strand (+1 or -1), “#Zn-finger DBDs”:

the number of Zn-finger DBDs, “length of exon cds”: the length of the coding part of the

exon (without the UTRs), “total exon length”: the total length of the exon, including

possible UTRs, “length of intron preceding Zn-finger DBD exon”: length of the intron

immediately before the exon that codes for the Zn-finger DBD. None of the other genomic

features are significantly correlated with “strand”. As pointed out in Fig. 5.4, “#exons”

and “#coding exons” significantly strongly correlated, τb “ 0.79. Also, as pointed out in

Fig. 5.5, “#exons” and “#Zn-finger DBDs” are not significantly correlated. However,

“#Zn-finger DBDs” is strongly correlated with “length of exon cds”, indicating that all

DBDs are placed on a single exon, and they make up a significant fraction of the coding

part of the exon. The loss of a few DBDs by degenerate mutations and/or the lack of

their annotation might be the reason behind a correlation of τb “ 0.53 and not higher.
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5.4 Paralogs: genomic features and averaged dN{dS
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Figure 5.7: Zn-finger TF genes lose (and gain) Zn-finger DBDs over time. Along

paralogous pairs of Zn-finger TF genes, there is often a difference in the number of Zn-

finger DBDs. Let us say that x and y are the numbers of Zn-finger DBDs in the paralogs,

and let us assume that x ď y wlg. Here, we show how |x´ y| depends on x for paralogs

that are young (violet, dS ď 0.15) and of medium age (orange, 0.15 ă dS ď 0.3). For

younger paralogs, x ranges across from low to high, but |x´y| is typically low (regression

line: violet, dashed), meaning that the younger paralogs share a similar number of Zn-

finger DBDs. On the other hand, for paralogs of medium age, |x ´ y| decreases as x

increases (regression line: orange, dashed). While there exist TFs with higher number

of Zn-finger DBDs that tend to have a paralog partner with a higher number of DBDs,

there are many pairs in which one TF has a low number of DBDs with the other TF

having a large number of them. This implies that DBDs are lost over time from TFs

with a large number of them. If the number of Zn-finger DBDs between paralogs are

correlated, we expect |x´ y| to not be correlated with x, which is what we observe from

a non-significant Kendal’s tau coefficient of τb “ 0.29, p ą 0.05 for young paralogs. On

the other hand, if the numbers of Zn-finger DBDs are not correlated between paralogs,

we expect |x ´ y| to be negatively correlated with x, which is what we observe from a

significantly negative Kendall’s tau coefficient, τb “ ´0.42, p ă 3.353e´ 15.

Next, we use the master paralog list obtained by querying EnsEMBL and subsequent

cleaning to remove spurious gene annotations, to compute site-independent dN{dS ratios

and dS values for all the paralog pairs. We use the “MS” (Model Selection) method
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from KaKs Calculator [Zhang et al., 2006] which compares various maximum likelihood

models of underlying DNA and codon evolution, to pick the best model according to AIC.

We perform these calculations for pairwise alignment of whole proteins of the paralogs,

and also compute domain-specific dN{dS ratios by using information about the domain

architecture of proteins (Zn-finger DBDs and KRAB domains’ locations on the protein)

to form a domain-specific pairwise alignment of the corresponding protein chunks.

Before describing dN{dS ratios, I will describe how various genomic features compare

across different paralog pairs. First, we focus on the relationship between the number

of Zn-finger DBDs in paralogs, say x and y. As x and y are not bivariate normal, we

use the Kendall’s tau coefficient to check for correlations between x and y. When the

number of data points are not large, any biases (for instance, if x ă y always) in the

ordering of x and y might affect these coefficients. Hence, we randomized the data to

overcome this bias and generated multiple datasets (Nperm “ 300 in total), on each of

which we computed Kendall’s tau coefficient. For young paralogs pdS ă“ 0.15q, over

these permuted datasets, we obtain a mean Kendall’s tau coefficient of xτby “ 0.77, with

all of them significant at p ă 0.0001. On the other hand, for paralogs of medium age

p0.15 ă dS ď 0.3q, we find no significant correlation pp ą 0.05q for all the datasets.

We also use another approach to check the correlation between the number of Zn-finger

DBDs between paralogs, and understand any particular patterns that might exist. We

reorder the data for each paralog pair such that, x ă y always, and use the absolute

difference in the number of Zn-finger DBDs (|x´ y|) and the minimum number of DBDs

(x) in either of the paralog TF as the variables of interest. Such an approach does not

have the biases that raw data might have as described in the previous paragraph.

In Fig. 5.7, we plot |x ´ y| vs x and the linear regression lines for each age group –

young and medium – separately. Note that there is often a difference in the number

of Zn-finger DBDs between paralogs (|x ´ y| sometimes large), meaning that Zn-finger

paralogs diverge by the loss/gain of DBDs. For young paralogs (violet, dS ď 0.15), while

x varies across a broad range of values, |x´y| is usually low (seen also from the regression

curve, violet dashed line). But for paralogs of medium age (orange, 0.15 ă dS ď 0.3),

|x´ y| is large at small x, but low at large x (seen also from the regression curve, orange

dashed line). Moreover, when one considers the maximum number of DBDs, maxpx, yq,

for each paralog pair, maxpx, yq has a smaller variance for medium age paralogs than for

younger paralogs. This paints a picture in which paralog pairs with large number of DBDs

diverge such that one of the TF in the pair loses a few DBDs over time. This is a mode

of evolution that complements evolution via point mutations at specific sites. We also

compute Kendall’s tau coefficient between |x´y| and x to check if these relationships are

significant. If the number of Zn-finger DBDs between paralogs are correlated, we expect

|x ´ y| to not be correlated with x, which we verify from a non-significant Kendal’s tau

coefficient of τb “ 0.29, p ą 0.05 for young paralogs. On the other hand, if the numbers of

Zn-finger DBDs between paralogs are not correlated, we expect |x ´ y| to be negatively

correlated with x. For paralogs of medium age, we find a significantly negative Kendall’s

tau coefficient, τb “ ´0.42, p ă 3.353e´15, verifying that the numbers of Zn-finger DBDs
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between medium age paralogs are largely uncorrelated.

Next, as shown in Fig. 5.8, we find that, between paralogs, there is no significant correla-

tion between the absolute difference in the number of Zn-finger DBDs and the absolute

difference in the total length of exon sequences that contain the DBD (Kendall’s tau,

p ą 0.05 for both age groups). However, for both young and medium age paralogs, we

find a significant strong correlation pτb “ 0.77, p ă 0.0001q between the absolute differ-

ence in the number of Zn-finger DBDs and the absolute difference in the lengths of the

coding part of the exons that contain the DBD. This indicates changes in the coding part

of the exons are the primary cause for the difference in the number of Zn-finger DBDs.

A few possible mechanisms behind this could be recombination, shifts in intron-exon

boundaries, or premature stop codons.
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Figure 5.8: Between paralog pairs, difference in the number of Zn-finger DBDs

correlates well with the difference in the length of the coding part of exon

sequences, while being uncorrelated with the difference in the total length

of exon sequences. For various paralog pairs, we show how the absolute difference

in the number of Zn-finger DBDs between the two paralogs (x-axis), varies with the

absolute difference in the (a) total lengths of the exons that contain the DBD, and (b)

lengths of the coding part of the exons that contain the DBD. For both young (violet,

dS ď 0.15) and medium age paralogs (orange, 0.15 ă dS ď 0.3), we find that there is no

significant correlation between the absolute difference in the number of Zn-finger DBDs

and the absolute difference in the total length of exon sequences that contain the DBD

(p ą 0.05 for both, Kendall’s tau). On the other hand, we find a significant positive

correlation between the absolute difference in the number of Zn-finger DBDs and the

absolute difference in the lengths of the coding part of the exons that contain the DBD

(τb “ 0.77, p ă 0.0001 for both young and medium age).

Next, in Fig. 5.9, we compare the lengths of the exon coding for the DBDs (if they all are

on the same exon) between the two paralog Zn-finger TFs, using the total exon lengths

in Fig. 5.9a and only the length of the coding part of the exon in Fig. 5.9b. We use
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the same method of permuting pNperm “ 300q to randomize any bias in the data, and

compute mean Kendall’s tau coefficient, xτby. The total exon lengths between paralogs

are not significantly correlated for both age groups (young: xτby “ 0.02, p ą 0.05 for

all permuted datasets, medium age: xτby “ 0.13, p ą 0.05 for all permuted datasets).

However, the length of the coding part of the exons is strongly correlated between young

paralogs (xτby “ 0.82, p ă 0.00001 for all permuted datasets), with those in medium

age group not significantly correlated (xτby “ 0.005, p ą 0.05 for all permuted datasets).

Again, this suggests evolution by gain and loss of DBDs.

The overall picture conveyed by the above analysis is that of an interplay between evolu-

tion by the loss of DBDs, and evolution via point mutations (as described next). Dupli-

cation of a TF with many DBDs results in two copies, and one of the TF copy often loses

DBDs by mutational/recombination mechanisms different from point mutations. This

results in more flexibility with respect to the TF’s binding and allows a quicker evolution

to find a new target. In future research, we will investigate this interplay further, ask

questions about the processes that shape the distribution of the number of DBDs, and

also infer the phylogenetic trees connecting various DBDs.
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Figure 5.9: Exon lengths between paralogs are typically only weakly correlated,

but coding sequence exon lengths between paralogs have a higher correlation

at younger ages. In (a), we plot the exon (that containing Zn-finger DBDs) lengths of

the two paralogs for various paralog pairs, and in (b), we plot the lengths of the coding

parts of the exons of the two paralogs for various paralog pairs, colored according to

their ages (young – violet, dS ď 0.15, medium age – orange, 0.15 ă dS ď 0.3). While

the total exon lengths are not significantly correlated across both the age groups (young:

xτby “ 0.02, p ą 0.05 for all permuted datasets, medium age: xτby “ 0.13, p ą 0.05 for

all permuted datasets), lengths of the coding parts of the exon are strongly correlated

for younger pairs (xτby “ 0.82, p ă 0.00001 for all permuted datasets), with the medium

pairs uncorrelated (xτby “ 0.005, p ą 0.05 for all permuted datasets).

Finally, we turn our attention to dN{dS measures. We compute this by using the “MS”
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(Model Selection) model from the KaKs Calculator package, which selects best maximum

likelihood model based on AIC, from a set of underlying DNA and codon evolution mod-

els. A crucial assumption in this model is that all sites of the proteins considered have the

same value of dN{dS. While this assumption is very often violated empirically, it is nev-

ertheless a powerful tool to gain insights into patterns of selection. Starting from the time

of duplication, dN{dS, as a single number, measures the relative cumulative rate (over

time) of non-synonymous changes, compared to synonymous changes. Non-synonymous

changes, even though they change amino acid make up of the proteins, can often vary in

terms of their effect – they can be neutral, deleterious or advantageous. In addition, this

might, and often does, depend on the particular site in the protein. Heterogenous pat-

terns of selective forces on different sites, and heterogenous patterns across sites, might

both be averaged out in the final single dN{dS value, masking out interesting patterns.

If all sites are evolving neutrally continuously, one would expect dN{dS to be close to 1,

and dN{dS to be negatively correlated with dS. If sites are continuously under purifying

selection, then dN{dS would be very low, and if sites are continuously under positive se-

lection, dN{dS ą 1, with dN{dS largely uncorrelated with dS in both cases. A mixture

of positive and purifying selection on different sites would result in dN{dS values around

or less than 1, making the distinction with neutral evolution difficult [Hahn, 2018]. While

we perform a domain-specific analysis, current available softwares of maximum likelihood

analysis do not let the user fix the divergence time and calculate conditional dN/dS ratios,

which would make a domain-specific analysis complete. We will perform this in future

research.

In Fig. 5.10, we plot dN{dS against dS across different age groups (young – violet,

dS ď 0.15, medium age – orange, 0.15 ă dS ď 0.3, and old – green, 0.3 ă dS ď

0.5) for whole-protein alignments (Fig. 5.10a) and domain-specific alignments (KRAB –

Fig. 5.10b, DBDs – Fig. 5.10c). Also, in Fig. 5.10d, we plot Kendall’s tau (in color) be-

tween dN{dS and dS for paralogs of different age classes, for alignments of while proteins,

KRAB domains and Zn-finger DBDs, in a 3 ˆ 3 cell grid, and also show average values

xdN{dSy, averaged over all paralog pairs inside the age class, inside each cell. For young

paralogs (first column, Fig. 5.10d), dN{dS and dS are significantly negatively correlated

for whole protein alignment pτb “ ´0.38, p ă 0.005q (which could also result from dS in

the denominator) but the negative correlations are not significant for KRAB alignment

pτb “ ´0.27, p “ 0.07q and DBD alignment pτb “ ´0.2, p “ 0.124q. This indicates that

the KRAB domain and the DBD are probably under purifying or positive selection, while

the rest of the protein is under neutral selection. A quick look at xdN{dSy reveals that

for whole and DBD alignments, xdN{dSy « 1, and is less than 1 for KRAB.

So together, for young paralogs, this points to neutral evolution at some sites in both the

DBDs and KRAB, mixed with positive selection at some sites in the DBDs, and purifying

selection on some sites in the KRAB domain.
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Figure 5.10: dN{dS vs dS reveals possible selection on Zn-finger DBDs and

KRAB domains at different time points. Here we plot dN{dS ratios vs dS, com-

puted for various paralog pairs using the “MS” (model selection) method that uses a

AIC criterion to select the best underlying DNA and codon evolution model, using (a)

a whole protein pairwise alignment, (b) an alignment of only KRAB domains of the

paralog pair, whenever both TFs have a KRAB domain, and (c) an alignment of the

sets of Zn-finger DBDs in both the TFs. We classify different paralog pairs by their age:

young – violet, dS ď 0.15, medium age – orange, 0.15 ă dS ď 0.3, and old – green,

0.3 ă dS ď 0.5. (d) We plot Kendall’s tau coefficient (in color) between dN{dS and dS

for whole protein alignment, KRAB alignment and DBD alignment, for young, medium

and old paralogs in a 3 ˆ 3 cell grid. Correlations that are not significant are marked

with a “x” (cross) in the cells. Average values xdN{dSy, averaged over all pairs in the

age class, are written inside each cell. In general, xdN{dSy is high for young paralogs,

and drops as the paralog age increases, indicating either a mixture of positive+purifying

selection, or neutral evolution initially, with purifying selection and neutral evolution in

the later stages. This negative relation is also an artefact of dS in the denominator. A

larger xdN{dSy for DBDs compared to KRAB for young paralogs points to an initial

adaptation of the DBD, while an increase in xdN{dSy for KRAB from medium to old

paralogs indicates a selection on KRAB in the later stages.

Note that xdN{dSy decreases for medium age paralogs (second column, compared with

the first, Fig. 5.10d), compared to their younger counterparts, marking an increase in

the number of sites under purifying selection. Paralogs in this age group perhaps al-
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ready diverged to perform specific functions, requiring their amino acids to be main-

tained. While for KRAB alignment, correlation between dN{dS and dS is not sig-

nificant pτb “ ´0.06, p “ 0.22q, for whole protein pτb “ ´0.12, p ă 0.05q and DBD

alignments pτb “ ´0.12, p ă 0.05q, the negative correlations, though weak, are signifi-

cant pτb “ ´0.13, p ă 0.01q. xdN{dSy ă 1 is low. Also, xdN{dSy is lower for KRAB,

compared to DBDs, pointing to purifying selection on most sites in KRAB, with a mix-

ture of purifying selection and neutral evolution on most sites in DBDs. However, note

that a few pairs of medium age group have large dN{dS values greater than 1 for the

DBD alignment (black dashed ellipse in Fig. 5.10c), indicating that some pairs might be

under positive selection. On the other hand, for old paralogs, while for whole protein

pτb “ ´0.15, p ă 0.05q and DBD alignments pτb “ ´0.16, p ă 0.05q, there are weak but

significant negative correlations, for KRAB alignment, the correlation is weakly positive

and significant pτb “ 0.07, p ă 0.05q. This, together with an increase in xdN{dSy for

KRAB from medium to old paralogs, perhaps points to a selective phase for the KRAB

domain in the older paralogs. This could related to the cooption of old KZNF TFs from

transposable element repression to transcriptional regulation.

While such conclusions can be drawn from the site-averaged dN{dS analysis, this might

still drown signals of positive selection on a few sites in the sea of numerous other residues

that are either under neutral evolution or purifying selection. Hence, we consider site-

specific models next.

5.5 Site-specific dN{dS ratios using PAML

To detect positive selection signals from specific functional sites on the Zn-finger proteins,

we used site-specific models from the PAML package [Yang, 2007]. First, we selected a

few sets of KZNFs based on sequence similarity and the numbers of Zn-finger DBDs.

Set 1 with 12 Zn-finger DBDs in each – ZNF695, ZNF723, ZNF626, ZNF117, ZNF430,

ZNF431, ZNF479, and ZNF680; Set 2 with 11 Zn-finger DBDs in each – ZNF682, ZNF253,

ZNF730, ZNF100, ZNF718, and ZNF141; Set 3 with 13 Zn-finger DBDs in each – ZNF714,

ZNF257, ZNF92, ZNF273, ZNF492, ZNF98, ZNF727, and ZNF675; and Set 4 with 15

Zn-finger DBDs in each – ZNF267, ZNF732, ZNF726, ZNF254, ZNF85, ZNF429, ZNF90,

and ZNF66. On each set, we first ran ClustalW2 multiple sequence alignment [Thompson

et al., 1994] and used PAL2NAL [Suyama et al., 2006] to construct a multiple codon

alignment from the protein alignment. We also construct NJ (neighbour-joining) trees

from the dS values obtained from KaKs Calculator analysis.

Using the program “codeml” from PAML, and the multiple alignments and NJ trees, we

compute site-specific dN{dS ratios using various underlying models M0, M1a, M2a, M3,

M7, M8 and M8a, and also compute the likelihoods of the each model. These models

assume that sites belong to various categories, with sites in each category being assigned

a single ω “ dN{dS ratio to be estimated. The models differ in the number of categories

considered and the constraints on the ω in various categories.
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M0 is a basic model that considers that the dN{dS ratio is the same across all sites,

M1a is a nearly neutral model with two categories – ω1 ă 1, ω2 “ 1. M2a is a selection

model with three categories – ω1 ă 1, ω2 “ 1, ω3 ą 1. M3 is a discrete model with three

different categories – ω1, ω2, ω3 with no other constraints. M7 is a nearly neutral model

with ten categories ωi „ Betapα, βq. M8 is a selection model with eleven categories, ten

following beta distribution like in M7, ωi „ Betapα, βq, with another category ω ą 1.

M8a is nearly neutral model with eleven categories, with then following beta distribution,

ωi „ Betapα, βq, with the last category fixed at ω “ 1. Various pairs of these models

are nested and hence a likelihood ratio test can be used to reject the null hypothesis of

neutrality over alternative hypothesis of selection – M0 vs M3, M1a vs M2a, M7 vs M8

and M8a vs M8. In each of these two-model comparisons, the model on the left (M0,

M1a, M7 and M8a) assumes neutrality (no selection) while the model on the right (M3,

M2a, and M8) additionally allows for positive selection. Because of the nested nature

of these pairs of model, we use the test statistic, ´2plnλq, where λ is the likelihood

ratio, and compare it with chi-squared distribution pχ2q with degrees of freedom equal to

the additional number of parameters in the model on the right. We show these results

in Table 5.1. In all the four sets, for all four model comparisons, we reject the null

hypothesis of neutrality in favor of selection with a very low p-value p ă 0.0001. Further,

a modified version of the Empirical Bayes method, called the Bayes Empirical Bayes

method [Yang et al., 2005], reveals the specific sites under selection along with their

statistical significance. Also, in Figures 5.11 and 5.13, we plot the multiple alignments of

the different sets of genes, together with information on the KRAB and Zn-finger DBD

domains. We also mark key residues, which are those that contact nucleotides on the

DNA via hydrogen bonds to establish specific binding, on the DBDs. A major fraction

of positively selected sites inferred from the positive selection model M8 overlap with key

residues, signifying that these KZNFs have undergone positive selection to alter DNA

binding preferences.

KRAB
Zn-finger DBD***

(7/12 sites)
(15/17 sites)

alignment
gap

Zn-finger DBD 
with key residues

ZNF680

ZNF479

ZNF431

ZNF430

ZNF117

ZNF626

ZNF723

ZNF695

Figure 5.11: (Caption next page.)
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Figure 5.11: (Previous page.) Key amino acid residues on the DBDs, which

contact nucleotides on DNA, have undergone positive selection. Multiple align-

ments of a few (K)ZNF proteins are shown, together with their domain architecture,

indicating the identities and locations of the KRAB and Zn-finger DBD domains. On

each Zn-finger DBD, we also show the key amino residues (in blue) that contact the

nucleotides on the DNA to establish TF-DNA binding. Site-specific maximum likelihood

estimation of dN{dS ratios reveals that a few sites underwent positive selection in their

recent evolutionary history, and that a large majority of these sites overlap with the key

residues on the Zn-finger DBDs. Significance levels of positively selected sites from Bayes

Empirical Bayes analysis [Yang et al., 2005] (“˚” : P ą 95% (black solid); “˚˚” : P ą 99%

(red dashed)) are also shown. Out of the 12 positively selected sites at P ą 95%, 7 sites

exactly overlap with key residues on DBDs (green stars), and out of the 17 positively

selected sites at P ą 99%, 15 sites exactly overlap with key residues on DBDs (green

stars).
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Figure 5.12: The number of TEs bound is not correlated with the number of

Zn-finger DBDs in the TFs. For a set of KZNF and ZNF TFs, we plot the number

of TEs (of various types) bound against the number of Zn-finger DBDs. Somewhat

surprisingly, there is no significant correlation between them (Kendall’s tau coefficient,

τb “ ´0.05, p ą 0.05). A possible reason is a strong dependence on the evolutionary

history of different sets of TF-TE family pairs.
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Data set

Comparison –

´2plnλq d.f.
Sites under selection

according to M8

H0: purifying+neutral vs χ2

H1: purifying+neutral

+positive selection

M0 vs M3 332.96 4 Ñ multiple-alignment: 29

sites positively selected

Set 1

(ZNF695)

Fig. 5.11

M1a vs M2a 90.60 2
p ă 10´4,

reject H0:

only neutral

Ñ 7 key residues out of 12

with significance p ă 0.05

M7 vs M8 114.75 2 Ñ 15 key residues out of 17

with significance p ă 0.001

M8a vs M8 85.78 1 Ñ ZNF267: 23/515 (4.47%)

selected sites

M0 vs M3 161.98 4 Ñ multiple-alignment: 13

sites positively selected

Set 2

(ZNF682)

Fig. 5.13a

M1a vs M2a 29.30 2
p ă 10´4,

reject H0:

only neutral

Ñ 8 key residues out of 10

with significance p ă 0.05

M7 vs M8 33.85 2 Ñ 2 key residues out of 3

with significance p ă 0.001

M8a vs M8 28.89 1 Ñ ZNF267: 13/498 (2.6%)

selected sites

M0 vs M3 337.74 4 Ñ multiple-alignment: 23

sites positively selected

Set 3

(ZNF714)

Fig. 5.13b

M1a vs M2a 105.87 2
p ă 10´4,

reject H0:

only neutral

Ñ 6 key residues out of 10

with significance p ă 0.05

M7 vs M8 125.17 2 Ñ 12 key residues out of 13

with significance p ă 0.001

M8a vs M8 107.42 1 Ñ ZNF714: 23/555 (4.14%)

selected sites

Table 5.1: (Continued in the next page.)
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M0 vs M3 388.45 4 Ñ multiple-alignment: 25

sites positively selected

Set 4

(ZNF267)

Fig. 5.13c

M1a vs M2a 86.58 2
p ă 10´4,

reject H0:

only neutral

Ñ 10 key residues out of 16

with significance p ă 0.05

M7 vs M8 112.14 2 Ñ 7 key residues out of 9

with significance p ă 0.001

M8a vs M8 87.24 1 Ñ ZNF267: 25/743 (3.36%)

selected sites

Table 5.1: Summary of site-specific dN{dS analysis on four different sets of

KZNF genes. M0 is a basic model that considers that the dN{dS ratio is the same

across all sites, M1a is a nearly neutral model with two categories – ω1 ă 1, ω2 “ 1.

M2a is a selection model with three categories – ω1 ă 1, ω2 “ 1, ω3 ą 1. M3 is a

discrete model with three different categories – ω1, ω2, ω3 with no other constraints. M7

is a nearly neutral model with ten categories ωi „ Betapα, βq. M8 is a selection model

with eleven categories, ten following beta distribution like in M7, ωi „ Betapα, βq, with

another category ω ą 1. M8a is nearly neutral model with eleven categories, with then

following beta distribution, ωi „ Betapα, βq, with the last category fixed at ω “ 1.

While M0, M1a, M7 and M8a are null models, which assume purifying selection and

neutrality (no positive selection), their partners M3, M2a and M8 are the alternative

models, additionally allowing for positive selection. Various pairs of these models are

nested and hence a likelihood ratio test, by comparing ´2plnλq with a χ2 distribution (λ

is the likelihood ratio), can be used to reject the null hypothesis H0 of neutrality (M0,

M1a, M7, M8a) over alternative hypothesis H1 of selection (M3, M2a, M8) – M0 vs M3,

M1a vs M2a, M7 vs M8 and M8a vs M8. Further, a modified version of the Empirical

Bayes method, called the Bayes Empirical Bayes method [Yang et al., 2005], reveals the

specific sites under selection along with their statistical significance. In all the four sets,

for all four model comparisons, we reject the null hypothesis of neutrality in favour of

selection with a very low p-value p ă 0.0001. Further, a major fraction of positively

selected sites overlap with key residues, signifying that these KZNFs have undergone

positive selection to alter DNA binding preferences.
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Figure 5.13: (Caption next page.)
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Figure 5.13: (Previous page.) A few other groups of (K)ZNF proteins also reveal

a picture of significant positive selection at a few sites, primarily on the key

amino acid residues on the DBDs. Multiple alignments of a few other sets of (K)ZNF

proteins are shown in a, b and c, together with their domain architecture, indicating the

identities and locations of the KRAB and Zn-finger DBD domains. On each Zn-finger

DBD, we also show the key amino residues (in blue) that contact the nucleotides on

the DNA to establish TF-DNA binding. Site-specific maximum likelihood estimation of

dN{dS ratios reveals that a few sites underwent positive selection in their recent evolu-

tionary history, and that a large majority of these sites overlap with the key residues on

the Zn-finger DBDs. Significance levels of positively selected sites from Bayes Empirical

Bayes analysis [Yang et al., 2005] (“ ˚ ” : P ą 95% (black solid); “ ˚ ˚” : P ą 99% (red

dashed)) are also shown. Positively selected sites overlapping with key residues on the

DBDs are marked by green stars. (a) Out of the 10 positively selected sites at P ą 95%,

8 sites exactly overlap with key residues on DBDs, and out of the 3 positively selected

sites at P ą 99%, 2 sites exactly overlap with key residues on DBDs. (b) Out of the 10

positively selected sites at P ą 95%, 6 sites exactly overlap with key residues on DBDs,

and out of the 13 positively selected sites at P ą 99%, 12 sites exactly overlap with

key residues on DBDs. (c) Out of the 16 positively selected sites at P ą 95%, 10 sites

exactly overlap with key residues on DBDs, and out of the 9 positively selected sites at

P ą 99%, 7 sites exactly overlap with key residues on DBDs, with a few of the other

positively selected sites occurring just adjacent to key residues on the DBDs.

5.6 KZNFs and TEs

A few studies have pointed out that KZNFs, Zn-finger TFs with a KRAB domain, are

involved in repression of transposable elements [Yang et al., 2017], and that they have

coevolved together with TEs [Jacobs et al., 2014]. We investigate this possibility by

obtaining the TEs bound by various KZNFs using ChIP-exo data from Imbeault 2017

[Imbeault et al., 2017], and estimating their age by querying from RepeatMasker, the

copy number data of TEs in various representative species from different taxonomical

nodes. While such an ageing of TEs is not very fine-grained and might contain errors as

we use only representative species that might have specially gained or lost a TE family,

we undertake it as a first step in discerning KZNF-TE coevolutionary patterns.

First, in Fig. 5.12, we ask if the number of TEs (of different types) bound by KZNFs

depend on the number of DBDs in them. It might be the case that KZNFs with smaller

number of DBDs bind to more variety of TEs. Somewhat surprisingly, we find that it is

not the case, and that there is no significant correlation (Kendall’s tau, τb “ ´0.05, p ą

0.05) between the number of TEs bound and the number of DBDs. One possible reason

for this counter-intuitive finding is a strong dependence on the evolutionary histories

of KZNF-TE binding patterns, restricting the usage of a new KZNF to a related TE,

independent of whether it has lost or gained a few DBDs.
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On the diagonal Upper triangle Lower triangle

Data 43 17 57

Expected 9.75 49.56 49.56

Table 5.2: Age of duplication is rarely older than the age of the typical new

TE to which the TFs adapted. In this table, we show the number of paralog pairs in

Fig. 5.15 that fall exactly on the diagonal, in the upper triangle and in the lower triangle.

In the first row “Data”, we show the empirically observed paralog counts, and in the

second row “Expected”, we show the expected numbers if there was no relation at all.

Diagonal corresponds to the situation where the age of duplication (age of TF) coincides

with the age of the typical new TE on the taxonomic scale. Upper triangle corresponds

to the situation in which the typical new TE is older than the TFs, and the lower triangle

corresponds to the situation in which the typical new TE is younger than the TFs. The

diagonal is over-represented in the data, while the upper triangle is under-represented,

with the lower triangle being slightly over-represented.

Next, in Fig. 5.14, we compare the typical ages of the TEs bound by the pairs of paralo-

gous KZNFs. These typical ages of TEs very often fall close to the diagonal, meaning that

paralogous pairs share binding to TEs of a similar age. A Fisher’s Exact Test indicates

that the typical ages of the TEs bound by paralogs are related to each other pp ă 0.001q.

However, as the ages are ranked, we also compute Kendall’s tau (τb “ 0.28, p ă 0.001),

which reveals a strong correlation between the typical ages of TEs bound by paralogs,

meaning they adapted to TE binding on similar timescales. However, there are some

pairs of paralogs that are off-diagonal, perhaps pointing to KZNF adaptation to newer

TEs. Out of 117 pairs, 43 exactly fall on the diagonal (36.75%, compared to expected

8.33%).

In Fig. 5.15, we compare the typical TE ages with the age of the duplication event (paralog

age), obtained from a reconciliation of the gene tree with the species tree. We consider

the younger among the typical ages of the TEs bound by the two paralogs, and compare

it with paralog age. The younger among the typical ages of the TEs often denotes a

major set of new TEs. First, a Fisher’s Exact Test reveals that the younger among the

typical ages of the TEs is related to the age of duplication pp ă 0.0001q. Again, as the

ages are ranked, we also compute Kendall’s tau coefficient, (τb “ 0.19, p ă 0.05), from

which we see that the younger among the typical ages of the TEs is mostly either of

a similar age or is newer compared to the paralog age. This points strongly to KZNF

adaptation to bind new novel TFs that arise in organisms, both by using new paralogs

(close to the diagonal), as well as by reusing old TFs (lower triangle). See Table 5.2 for

actual numbers.
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Figure 5.14: The typical ages of TEs bound by paralog TFs are positively

correlated. For various pairs of paralog KZNF TFs, we plot the typical ages of TEs

bound by each of the TFs against each other. We use a taxonomical scale for the age of

TEs, estimated by the species that they are found in. A significant number of paralog

pairs fall on and around the diagonal (within the grey small dashed lines around the thick

black dashed diagonal) – the typical ages of the TEs bound by paralog TFs is similar

(Kendall’s tau, τb “ 0.28, p ă 0.001). However, there are some paralog pairs that are

located off the diagonal, meaning that one (or both) of the paralogs underwent adaptation

to bind different TEs than its partner. A few pairs from the sets considered in Sec. 5.5

are pointed out in red.

5.7 Discussion

The question of the relative importance of transcription factor evolution in comparison

with regulatory sequence evolution, towards phenotypic divergence, is a long-standing one

that has attracted diverse views [King and Wilson, 1975; Gilad et al., 2006; Carroll, 2005;

Wray et al., 2003]. Recent studies have painted a picture of coevolution of transcription

factors and regulatory sequences as the correct framework to resolve this problem [Gordon

and Ruvinsky, 2012; Friedlander et al., 2017]. In Chapter 4, we explored a theoretical

framework of the evolution of a simple regulatory network that involves transcription

factors sensing specific upstream signals and responding by activating specific required

target genes. In particular, we focused on the evolution of such a network after a dupli-

cation event of the gene coding for the transcription factor, and uncovered the evolution-

ary steady states reached by the system under various conditions, and the evolutionary
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Figure 5.15: Paralog KZNF TFs adapt to bind TEs that newly arose. For various

pairs of paralog KZNF TFs, we plot the younger among the typical ages of TEs (y-axis)

bound by each of the TFs against the age of the duplication event (x-axis). We use a

taxonomical scale for both the age of TEs, estimated by the species that they are found in,

and for the age of duplication, obtained by comparing the gene-tree with the species-tree.

A significant number of paralog pairs fall around the diagonal and below it. Kendall’s

tau has a value of τb “ 0.19 (p ă 0.05). This signifies that duplication age is at least

older than the age of the typical new TE, pointing to KZNF adaptation to bind novel

TEs that arise in organisms, and a potential reuse of old TFs to repress new TEs. A few

pairs from the sets considered in Sec. 5.5 are pointed out in red.

pathways involved and their timescales. This particular question of transcription factor

evolution after duplication is biologically relevant because in all organisms, the repertoire

of transcription factors is comprised in a few families of paralogous transcription factors

(those that arose by gene duplication). As the fraction of space occupied by functional

proteins (and DNA sequences in general) is infinitesimally small in the entire space of

possible proteins (DNA sequences), gene duplication has been a dominant force in, not

just the expansion of transcription factor families, but also the expansion of the genetic

repertoire of organisms in general. Gene duplication provides the organism with new

genetic material that is already shaped to be functionally relevant, and because of the

redundancy with two copies of the genes, the organism can now evolve a new gene with

different functions.

It is this advantage with the mechanism of gene duplication that has led to an expansion

in many families of transcription factors, resulting in a complex network of gene regula-

tory interactions that result in rich phenotypes. A paradigmatic example is the Hox gene



164

family, which codes for homeodomain transcription factors that control the body plan

of metazoan embryos. The largest family of transcription factors in humans and other

animals is the C2H2 Zn-finger family of transcription factors [Lambert et al., 2018]. They

are involved in various gene regulatory pathways, chromatin remodeling [Kim et al., 2015]

and repression of transposable elements (TEs) [Yang et al., 2017]. Each Zn-finger TF

contains an array of variable number of Zn-finger DNA-binding domains, each of which

has a certain binding specificity towards DNA sequences depending on its amino acid

composition. Studies have also shown that by changing certain amino acids in the DBD,

Zn-finger DBDs can be tuned to bind the whole range of possible DNA sequences [Na-

jafabadi et al., 2015]. However, the process by which new Zn-finger TFs arise, and take

up their functions, is not well understood. What are the selective pressures that act

on duplicated Zn-finger TFs and how do they undergo selection to evolve towards their

new functions? In the case of KZNFs, what are the selection pressures acting on their

DBDs and KRAB domains, that enable them to adapt to the constantly changing TE

landscape? Do old KZNFs along with their dormant TE partners get coopted to involve

in transcriptional regulation?

In this chapter, we used a bioinformatics approach to scratch the surface of such questions.

By using sources like EnsEMBL v93 [Cunningham et al.], RepeatMasker [Smith et al.,

2016], ChIP-exo data [Imbeault et al., 2017], and softwares such as KaKs Calculator

[Zhang et al., 2006], ClustalW2 [Thompson et al., 1994], PAL2NAL [Suyama et al., 2006]

and PAML [Yang, 2007], we built a pipeline (Fig. 5.1) to probe the evolution of Zn-finger

TFs in humans, with a focus on pairs of annotated paralog TFs. After teasing apart

the correlations among various genomic features of Zn-finger TFs, we computed dN{dS

ratios to infer selection patterns on the paralogs. Finally, by connecting the ages of TEs

and TFs, we discovered signs of KZNFs being retained after duplication to bind to new

TEs.

First, we extracted a list of annotated Zn-finger TF genes and their proteins from En-

sEMBL, along with various genomic features like their chromosomal location, number of

Zn-finger DBDs etc. and looked at the correlations among these genomic features. We

found that Zn-finger TFs are present in clusters on chromosomes, and that chromoso-

mal lengths have no significant correlation with the number of Zn-finger genes on them

(Fig. 5.2), pointing out their origin via gene duplication. We found that Zn-finger TFs

have a variable number of DBDs in them (Fig. 5.3), starting from only 1 DBD till a

maximum of 37 (which would bind DNA sequences longer than 100bp), with a mean of

10 DBDs (average DNA sequence bound „ 30bp) per protein. We then found a strong

correlation between the number of exons and the number of coding exons (Fig. 5.4),

indicating that most exons act as coding exons in Zn-finger TFs. We also found that

a sizeable number of Zn-finger TFs have only 1 coding exon, some of which could have

arise by retrotransposition-based duplication. Next, we found no significant correlation

between the number of exons and the number of DBDs (Fig. 5.5), meaning that DBDs

are most often coded in a single exon. All pairs of correlations are depicted in Fig. 5.6,

which also indicates that the number of DBDs correlates strongly with the length of the

coding part of the exon that codes for the DBDs. Further, we found that young paralogs
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have similar number of DBDs, but paralogs of medium age differ in the number of DBDs

(Fig. 5.7). However, the maximum number of DBDs in the pair of paralogs, has a smaller

variance for medium age paralogs than young paralogs, implying evolution by the loss of

DBDs. Further evidence is seen in Fig. 5.8b, where the difference in number of DBDs

between paralogs is strongly correlated with the difference in lengths of the coding regions

of the exons. In summary, this paints a picture of evolution not only by point mutations

in the DBDs that alter DNA binding preferences, but also by loss (or sometimes gain)

of DBDs by their removal from the coding part of the exon. The molecular mechanistic

pathways by which this is achieved is not clear; a few possibilities are recombination,

premature stop codons and shifting of intron-exon boundaries.

Next, we computed dN{dS, together with dS for various paralog pairs of different age

groups, using alignments of whole proteins, only DBDs, and only KRAB domains. We

used “MS” (Model Selection) method from KaKs Calculator to select the best maximum

likelihood model (AIC) of underlying DNA and codon evolution. Correlations between

dN{dS and dS for paralogs of different age groups, and the average values xdN{dSy point

to an initial (after duplication) selection on the Zn-finger DBDs, followed by a period of

purifying selection, before a possible selection on the KRAB domain (Fig. 5.10). The

initial adaptation of the DBD helps the new TF copy to bind to its new regulatory

sequence, and in the case of a KZNF, allows it to coevolve with a new TE and repress

it successfully. The later selection on KRAB could be related to the cooption of the

KZNF-TE (if dormant) pair to act as a transcriptional regulatory link. As these models

assume that all sites across the protein subsequence aligned have the same dN{dS, they

miss any further heterogenous selection patterns that might exist between sites.

Hence, we then used site-specific models from the PAML package on a few KZNF sets,

and found (a) that there is significant evidence of selection acting on KZNF TFs, and

(b) that positive selection primarily acted on the key residues (amino acids contacting

DNA to establish sequence-specificity) on the DBD, implying a quick adaptation to bind

new sequences, possibly TEs. To check for this latter possibility, we inferred taxonomic

ages of various TE types from their copy number data in various representative species

at various taxonomical levels. By combining ChIP-exo data, TE age data and paralog

age data (dS, as well as taxonomic age from EnsEMBL via reconciliation of gene trees

and the reference species tree), we inferred (a) that the typical ages of TEs bound by

paralog KZNFs are correlated with each other, and (b) that the paralogs are at least as

old as the younger among the typical ages of the TE bound by them. This implies that

often new KZNF TFs are often retained after duplication to immediately adapt to bind

to new TEs, but that old KZNFs are also sometimes reused to repress new TEs.

Together, this informs us that Zn-finger TFs that are retained as functional copies in the

human genome, have undergone specific changes that played a role in their retention.

They evolve, apart from loss (and gain) of DBDs, but also probably by an early selection

in their DBDs to bind new sequences. In particular, KZNFs have undergone bursts of

positive selection at key residues on the DBDs, presumably to track and coevolve with

the constantly changing landscape of TEs. There is also evidence for reuse of old KZNF
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TEs in repression of new TEs, and also possible cooption of older KZNFs in roles other

than TE repression by a late selection on the KRAB domain.

In future research, we will undertake multiple directions from this preliminary analysis.

First, while most recent ZNF paralogs in the form of KZNF paralogs seem to be involved

in TE repression, we will form bridges between a TF-TE coevolutionary analysis with

a gene regulation based TF-BS coevolutionary analysis to relate to the predictions from

the coevolutionary theory of the previous chapters. We will investigate the interplay

between TF evolution via DBD loss and point mutations to elucidate the possibility of

promiscuous pathways as lower number of DBDs might result in more promiscuous TFs.

Further, we will use ChIP-seq to infer DBD divergence, and RNA-seq data to understand

upstream expression, to test specific predictions of the TF-BS coevolutionary model and

to understand genome-wide crosstalk?
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Coevolution of transcription factors

and their binding sites in sequence

space

In this final chapter, I will summarize the main questions tackled and the main findings

of this thesis. This chapter is written in such a way as to allow two kinds of readers

understand the thesis better - (a) those who do not have enough time to read the entire

thesis on its own, and hence are looking for a concise version that refers to particular

important results, and (b) those who prefer reading a concise and compact version of the

thesis first, with a focus on the main results, before jumping into the little details and

further sub-results. In fact, as I wrote in the introductory Chapter 0, any reader might

be benefitted maximally by choosing to read this chapter after the introductory chapter,

occasionally referring to particular results if necessary, and then going through the thesis

in detail, starting from Chapter 1.

6.1 TFs recognize specific DNA sequences

The biological cell is an extremely crowded dynamic environment with atoms and molecules

of multiple types moving around inside the cell and constantly interacting with each other.

However, the cell’s functioning and survival depend on precise biochemical pathways that

result from some of these interactions. How do we reconcile the picture of a crowded cell

with these precise schemes of biochemical reactions? Biological molecules use “molecu-

lar recognition” to ensure that only correct pairs of biological molecules (cognate pairs)

interact to result in successful outcomes, while ensuring that numerous possible incor-
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rect pairs of biological molecules (non-cognate pairs) result in unsuccessful interactions.

Cognate pairs of molecules recognize each other using structural and biochemical features

that result in hydrogen bonds, hydrophobic forces, van der Waals forces, π–π interactions

and electrostatic interactions – much like a lock and its correct key that “fit” together

well. Molecular recognition is ubiquitous, and plays an important role in conceivably

every cellular process. For instance, molecular recognition is present at all levels in a

typical signalling pathway: ligand–receptor interactions at the cell membrane that help

the cell sense correct signals when needed, protein-protein interactions between signalling

molecules in the cytoplasm that help the cell transmit signalling information to specific

parts of the cell, protein-protein and protein-DNA interactions inside the nucleus that

help integrate these various signals and regulate gene expression.

A particular class of DNA-binding proteins called transcription factors (TFs) recognize

specific sequences of DNA, and upon binding to genomic loci containing these specific

sequences, regulate the expression of nearby associated genes (intuitively, switching ON

or OFF of genes). TFs are crucial players in transcription, the conversion of genetic

information from DNA to RNA. RNAs often get translated into proteins when the tran-

scribed loci correspond to genes; these RNAs and protein products are used by the cell

in various cellular processes. Some of these protein products are themselves TFs, result-

ing in a set of complex interactions among various genes. Hence, TFs, via these sets of

complex interactions among themselves and with other genes, help the cell control the

spatiotemporal expression of various genes. These complex interactions can be pictured

as a gene regulatory network (GRN) – a network of genetic interactions in which “nodes”

correspond to various genes, a subset of which result in TF proteins, and “edges” between

nodes are defined by genetic interactions. If two genes are connected by an edge, then

the TF protein product of one gene is involved in the regulation of the expression of the

other gene.

Transcription factors contain special protein domains called DNA-binding domains (DBDs)

that establish sequence-specific DNA-binding via the specificity of hydrogen bonds be-

tween particular amino acids in the DBD and the nucleotides on the DNA. Each tran-

scription factor, depending on the set of amino acids in its DBD, makes maximal hydrogen

bonds with a specific DNA sequence, called the consensus sequence. Different TFs, de-

pending on the amino acids in their DBDs, have different consensus sequences. Also,

each TF is not perfectly specific in DNA-sequence binding – apart from the consensus

sequence, each TF binds a variety of other DNA sequences with varying affinities, with

the affinities roughly depending on the similarity of the DNA sequence with the consensus

sequence. Given these properties of TF-DNA binding, different TFs can often bind to

the same DNA sequence with non-negligible affinities – the consensus sequences of dif-

ferent TFs can be similar to each other, TFs can be less specific in their DNA-sequence

preference. ChIP data has shown that TFs in vivo bind to a large number of DNA se-

quences at various loci with varying affinities. The few strongly bound DNA sequences

tend to be transcribed and are present in known regulatory loci, while a massive number

of weakly bound DNA sequences tend to be present in closed chromatin and are not

transcribed. However, this can lead to segregation of TF molecules at non-functional
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sites and hence prevent their binding to functional loci. On the other hand, a substantial

number of weakly bound DNA sequences are often weakly transcribed, leading to substan-

tial spurious transcription. These spuriously transcribed RNA can interfere with cellular

functions, and get translated into unwanted proteins if they happen to be transcribed

from the coding region of an unwanted gene.

Such non-cognate binding of TFs to DNA sequences is termed crosstalk, and can often

result in the expression of unwanted genes, leading to interference with cellular processes.

Even if unwanted genes are not expressed, such non-cognate binding of TFs can result

in spurious RNA from other DNA loci, and also alter the chromatin state of the genome

by recruiting chromatin remodelers to spurious loci. Analytical analysis (Chapter 1)

reveals that the fraction of long DNA sequences that do not contain spurious binding

sites within them is indeed very low, and decreases as both the length of DNA sequence

and the number of TFs to be avoided increase (Fig. 1.6). To understand the role of

crosstalk in transcriptional regulation, we used the thermodynamic mismatch model of

TF-DNA binding to quantify such crosstalk between TFs and binding sites of target

genes, and investigated the limits it places on the design of gene regulatory networks in

Chapter 2.

In our basic setup, we have M genes in total, each of which is associated with a binding

site corresponding to a particular TF. In different environments faced by the cell, different

sets of Q out of these M genes are required to be ON, with the corresponding particular

Q TF regulators present in each of these environments. Over time, the cell faces different

environments, and in each environment, it deploys the correct set of Q TFs that are

required to switch the necessary genes ON, thereby ensuring that the cell navigates into

the correct cellular state (Fig. 4.1). However, in each of these environments, because of

two factors – the limited specificity of TFs and the similarity of consensus sequences of

different TFs, there is often non-cognate binding between TFs and binding sites, leading

to crosstalk. By defining crosstalk states (Fig. 2.4a) as those in which (a) the binding sites

of required genes are not bound by their cognate TF (either due to being unbound, or

being bound by one of the Q´1 non-cognate TFs), and (b) the binding sites of unwanted

genes are bound by one of Q non-cognate TFs, we use the thermodynamic model of

TF-DNA binding, and a mean-field like assumption over various possible environments

(Sec. 2.4), to compute the overall crosstalk, X (Eq. 2.8) – average fraction of time a

randomly selected binding site in the cell is in a crosstalk state.

Our formulation of the model allows us to compute crosstalk, X, as a function of various

parameters that have biological relevance, like binding site length L, total number of

genes M , number of genes to be ON Q, energetic mismatch penalty (TF specificity) ϵ,

and TF concentration C. We compute optimal crosstalk, X˚, which is defined as crosstalk

at optimal TF concentration C˚ obtained by minimizing X over C, as the latter is hard to

estimate empirically and is highly variable (Eq. 2.10-2.12). By doing this, we establish a

lower bound on crosstalk as a function of the other parameters. For a fixed total number

of genes M , we find that optimal crosstalk, X˚, depends on two important parameters –

the number of genes to be ON, Q, and the binding site similarity, S. The latter parameter,
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S, is an effective parameter that captures how similar the various binding sites in the

genome are with each other. Binding site similarity S depends on L and ϵ (Fig. 2.2),

and on how the binding site sequences are arranged in the sequence space – with random

arrangement leading to higher similarity than optimal arrangements that ensure binding

site sequences are sufficiently dissimilar from each other (Fig. 2.12).

The phase diagram of X˚ against Q and S (Fig. 2.4b, c) shows three distinct phases,

depending on whether C˚ is 0 (phase I), 8 (phase II) or finite (phase III). By focusing on

phase III, we see that X˚ increases as binding site similarity S increases. This is intuitive

as the non-cognate binding increases as S increases, leading to larger crosstalk. This

also means that, for a given L and ϵ, optimal arrangement of binding site sequences in

sequence space results in lesser crosstalk than a random arrangement. On the other hand,

X˚, as a function of Q, exhibits more complex behaviour, by taking a maximum at some

intermediate value of Q. We see that crosstalk is larger when there are many TF molecules

available and many unwanted binding sites present, resulting in extensive non-cognate

binding. This does not occur at both small and large Q, but occurs at intermediate

Q, resulting in a maximum at some intermediate value. Further, we considered complex

variants of the basic model in which regulation is not 1-to-1 (1 TF for 1 gene), but is 1-to-

many – every TF regulates Θ genes (Sec. 2.9), or is either many-to-many (combinatorial)

– different combinations of TFs regulate different genes (Sec. 2.8, Fig. 2.18). Because

of reduced number of TF regulators in both these models, there is often a significant

reduction in crosstalk.

Where do real organisms fall on this phase diagram? By assuming random arrangement of

binding site sequences, we empirically estimated binding site similarities of the genomes

of various organisms (Fig. 2.16) by using available position-weight matrices (PWMs).

The overall picture conveyed by this basic model is that crosstalk is high in eukaryotes,

often exceeding 0.25, meaning that a randomly selected binding site is in crosstalk states

at least 25% of the time. However, as shown by the comparison between random arrange-

ment of binding sites and their optimal arrangement, evolution can fine-tune TF binding

preferences and binding site sequences to ensure that they are sufficiently dissimilar to

result in reduced crosstalk. Motivated by this, by building on a general model of TF-

BS coevolution from Chapter 3, we investigated a model that corresponds to a typical

occurrence of such co-evolution of TFs and binding sites in Chapter 4.

We considered the following scenario to investigate TF-BS coevolution, and the role of

crosstalk in the corresponding evolutionary dynamics. Motivated by the presence of

TFs in paralogous families, we considered the coevolution of TFs and their binding sites

after a gene duplication event of gene coding for the transcription factor. We consider

a framework in which TFs transmit information from upstream signals to downstream

target genes (Fig. 4.1a), by sensing the presence of particular signals via their signal

sensing domain, and binding to specific binding site sequences via their DNA binding

domains. We have two upstream signals, whose individual presence requires the switching

ON of two specific target genes respectively. Initially, we have a single TF gene whose

TF protein product senses both the signals and by binding to the binding sites of the
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target genes, switches ON both the genes. After a gene duplication event, there are now

two identical copies of the TF, both of which sense both signals and regulate both genes

(Fig. 4.1b). Subsequent mutations occur either in the binding sites, the TF consensus

sequences, or the TF signal sensing domains (Fig. 4.1c), and selection acts to ensure

correct signalling transmission between upstream signals and downstream target genes

(Fig. 4.2). The main question we asked is how the evolutionary dynamics proceed after

duplication as the two copies of the TFs and the binding sites coevolve together, and in

particular, when and how quickly the two TFs specialize in function – with each regulating

one of the two signalling pathways separately.

We consider the coevolution problem in sequence space (Fig. 4.1d). By specifying as

the genotype – the binding site sequences, TF consensus sequences, and the TF signal

sensing preferences via discrete alleles, we end up with a huge state space that presents

computational challenges. However, the thermodynamic mismatch model of TF-DNA

binding allows us to coarse-grain (Fig. 4.3) and treat the coevolution problem in the space

of mismatches (between TFs and BSs, and between TFs). To answer questions about the

probability and timescales of evolutionary outcomes like TF specialization, we also map

the whole set of genotypes onto a few functional “macrostates”, depending on how the

TFs jointly transmit information from the upstream signals to downstream target genes

(Sec. 4.2.5 and (Fig. 4.10a). Each of these macrostates is composed of different numbers

of underlying genotypes, and vary in fitness across different environments (Fig. 4.10b).

Note that successful specialization involves the coordinated coevolution of both TFs, in

both their signal sensing domains and their DNA binding domains.

At evolutionary steady state, we find that the dominant evolutionary outcome (macrostate)

varies as a function of overall selection strength to maintain regulation, Ns, and signal

correlation, ρ, which quantifies how correlated the signals are in the set of environments

the cell faces over its lifetime (Fig. 4.11a). At low selection strength, the cell fails to evolve

a working regulatory network and no information is passed from the signals to genes. As

selection strength increases, the dominant macrostate is that of partial regulation – net-

works in which information is partially transmitted correctly between signals and genes.

At strong selection strength, TFs specialize in information transmission – one TF per one

signalling pathway, with no crosstalk. However, whether specialization is the dominant

macrostate also depends on the signal correlation ρ, with specialization occurring as long

as the signals are not too strongly correlated. At strong signal correlations, networks in

which one TF “is lost” evolve – only one TF transmits information from signals to genes,

like in the pre-duplicated state. This is because at the strong signal correlations, either

both signals are only rarely present individually, the need for two specialized pathways

does not arise. In summary, specialization occurs at strong selection strengths when sig-

nals are not too strongly correlated – the evolutionary outcome depends on the effective

dimensionality of the signal space. Further, importantly, we found that specialization

depends crucially on selection against crosstalk – it occurs only when there is strong se-

lection against crosstalk. In the absence of any selection against crosstalk, networks with

only one functioning TF evolve (Sec. 4.7 and Fig. 4.26).
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An investigation into the evolutionary pathways (Sec. 4.6) taken up from the post-

duplicated state to specialized states reveals the presence of two predominant pathways

(Fig. 4.21). The slower pathway involves a transition through those networks in which

one TF is transiently lost – meaning that specialization from those states effectively

involves evolving a regulatory link from scratch. This is slow, and in terms of fitness

landscape intuition, this corresponds to meandering on a huge neutral landscape. The

faster pathway involves transition through networks implementing partial regulation –

the two TFs partially compensate for each other, with one TF specializing in signal sens-

ing, with the other specializing in DNA binding (Fig. 4.23). In our construction of the

model, we consider the signal sensing domain to be modular – the parts of the signal

sensing domain that result in a sensitivity for each signal are separate. However, the

DNA-binding domain is not modular – there is no uncoupling of the components that

“tell” the TF which binding site to bind to. While this assumption might not always

be realistic, it reveals to us that the more modular part of the TF drives specialization

– specialization often occurs faster when the first mutation is a signal sensing mutation,

and often occurs slower when the first mutation is a DNA-binding mutation (Fig. 4.22

and Fig. 4.24).

Considering a more realistic scenario of multiple target genes per signal, we found that

the fitness landscape becomes more rugged, and hence, often results in extremely long

specialization times (Fig. 4.33) – the population is stuck at a local fitness peak that does

not correspond to complete specialization (Fig. 4.32). Motivated by recent experimental

findings [Pougach et al., 2014; Sayou et al., 2014; Aakre et al., 2015], we introduced a

new type of TF mutation, called “promiscuity-promoting” mutation in its DNA-binding

domain, that makes the TF less specific at one of its nucleotide positions – it does not

prefer any particular nucleotide on the binding site after this mutation (Fig. 4.34 and

Fig. 4.35). This mutation relieves the frustration of the fitness landscape, and helps the

population escape local fitness peaks more easily, drastically reducing specialization times

(Fig. 4.39).

Motivated by these theoretical findings, we looked towards bioinformatics data (Chap-

ter 5) on TF duplication to understand TF coevolution after gene duplication in real

organisms. We sought to validate our model by looking for bioinformatics data that fol-

lows some predictions of the model. We considered the largest paralogous family in the

human genome – the C2H2 Zn-finger TFs, as the focus of our attention. Site-independent

dN/dS analysis (Fig. 5.10) of paralogous pairs does not reveal a lot of information about

evolutionary patterns and selection strengths, mainly because of the spatial averaging

over all protein sites. However, we do see some weak signatures of positive selection in

the DNA-binding domains in medium age paralogs, and in the KRAB domains in older

paralogs. Site-specific selection models (Fig. 5.11) significantly reveal that among many

paralog sets, DNA-contacting amino acid residues in the DNA-binding domains have un-

dergone positive selection more often than other amino acids, indicating strong selection

pressure on paralogs to diverge in DNA-binding. Apart from this point-mutation based

evolution, we also found that Zn-finger paralogs differentially lose entire DNA-binding

domains and evolve on this DBD-level indicating their modular nature (Fig. 5.7). Such a
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joint evolution by using both point mutations and DBD loss is probably a strong reason

behind the prevalence of C2H2 Zn-finger TFs, a feature that is not present in other TF

families. While further investigation into the mechanism behind DBD loss, the phyloge-

netic trees of DBDs in paralogs, and their interplay with point mutations is needed to gain

a fuller picture of Zn-finger TF evolution, such a picture corresponds to the promiscuous

pathway of the theoretical model of TF duplication coevolution. Loss of DBDs means

binding shorter sequences, and hence might correspond to binding a larger repertoire

of binding sites, a scenario that we will investigate in future research. KRAB-domain

containing Zn-finger TFs (KZNFs) have been implicated in transposable element (TE)

repression, but their coevolutionary dynamics is not well understood yet, and it is not

known how paralogous KZNFs evolve and adapt to bind new TEs. We found promising

preliminary results in this context – that paralogous KZNFs are retained and adapt to

bind new TEs, and are sometimes again reused to bind new TEs (Fig. 5.15). This is

another direction of future research we plan to undertake – the coevolution of Zn-finger

TFs together with transposable elements.
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José C. Marugán, Thomas Maurel, Aoife C. McMahon, Benjamin Moore, Joannella

Morales, Jonathan M. Mudge, Michael Nuhn, Denye Ogeh, Anne Parker, Andrew

Parton, Mateus Patricio, Ahamed Imran Abdul Salam, Bianca M. Schmitt, Helen

Schuilenburg, Dan Sheppard, Helen Sparrow, Eloise Stapleton, Marek Szuba, Kieron

Taylor, Glen Threadgold, Anja Thormann, Alessandro Vullo, Brandon Walts, Andrea

Winterbottom, Amonida Zadissa, Marc Chakiachvili, Adam Frankish, Sarah E. Hunt,

Myrto Kostadima, Nick Langridge, Fergal J. Martin, Matthieu Muffato, Emily Perry,

Magali Ruffier, Daniel M. Staines, Stephen J. Trevanion, Bronwen L. Aken, Andrew D.

Yates, Daniel R. Zerbino, and Paul Flicek, “Ensembl 2019,” Nucleic Acids Research.

[de Vos et al., 2015] Marjon G. J. de Vos, Alexandre Dawid, Vanda Sunderlikova, and

Sander J. Tans, “Breaking evolutionary constraint with a tradeoff ratchet,” Proceedings

of the National Academy of Sciences, 112(48):14906–14911, December 2015.

[Desai and Fisher, 2007] Michael M. Desai and Daniel S. Fisher, “Beneficial Mutation-

Selection Balance and the Effect of Linkage on Positive Selection,” Genetics,

176(3):1759–1798, July 2007.

[Dubuis et al., 2013] Julien O. Dubuis, Gašper Tkačik, Eric F. Wieschaus, Thomas Gre-
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[Pérez et al., 2014] J. Christian Pérez, Polly M. Fordyce, Matthew B. Lohse, Victor

Hanson-Smith, Joseph L. DeRisi, and Alexander D. Johnson, “How duplicated tran-

scription regulators can diversify to govern the expression of nonoverlapping sets of

genes,” Genes & Development, 28(12):1272–1277, June 2014.

[Phillips, 2015] Rob Phillips, “Napoleon is in equilibrium,” Annual Review of Condensed

Matter Physics, 6(1):85–111, 2015.

[Podgornaia and Laub, 2015] Anna I. Podgornaia and Michael T. Laub, “Pervasive de-

generacy and epistasis in a protein-protein interface,” Science, 347(6222):673–677,

February 2015.

[Poelwijk et al., 2006] Frank J. Poelwijk, Daniel J. Kiviet, and Sander J. Tans, “Evolu-

tionary potential of a duplicated repressor-operator pair: simulating pathways using

mutation data,” PLoS computational biology, 2(5):e58, 2006.

[Pougach et al., 2014] Ksenia Pougach, Arnout Voet, Fyodor A. Kondrashov, Karin Vo-

ordeckers, Joaquin F. Christiaens, Bianka Baying, Vladimir Benes, Ryo Sakai, Jan

Aerts, Bo Zhu, Patrick Van Dijck, and Kevin J. Verstrepen, “Duplication of a promis-

cuous transcription factor drives the emergence of a new regulatory network,” Nature

Communications, 5:4868, September 2014.

[Proulx, 2012] Stephen R. Proulx, “Multiple Routes to Subfunctionalization and Gene

Duplicate Specialization,” Genetics, 190(2):737–751, February 2012.



185
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