
CEGAR for Qualitative Analysis of Probabilistic
Systems

Krishnendu Chatterjee, Martin Chmelı́k, and Przemysław Daca

IST Austria

Abstract. We consider Markov decision processes (MDPs) which are a standard
model for probabilistic systems. We focus on qualitative properties for MDPs that
can express that desired behaviors of the system arise almost-surely (with prob-
ability 1) or with positive probability. We introduce a new simulation relation to
capture the refinement relation of MDPs with respect to qualitative properties, and
present discrete graph theoretic algorithms with quadratic complexity to compute
the simulation relation. We present an automated technique for assume-guarantee
style reasoning for compositional analysis of MDPs with qualitative properties by
giving a counter-example guided abstraction-refinement approach to compute our
new simulation relation. We have implemented our algorithms and show that the
compositional analysis leads to significant improvements.

1 Introduction

Markov decision processes. Markov decision processes (MDPs) are standard mod-
els for analysis of probabilistic systems that exhibit both probabilistic and non-
deterministic behavior [30,23]. In verification of probabilistic systems, MDPs have been
adopted as models for concurrent probabilistic systems [18], probabilistic systems oper-
ating in open environments [42], under-specified probabilistic systems [7], and applied
in diverse domains [5,35] such as analysis of randomized communication and security
protocols, stochastic distributed systems, biological systems, etc.

Compositional analysis and CEGAR. One of the key challenges in analysis of prob-
abilistic systems (as in the case of non-probabilistic systems) is the state explosion
problem [16], as the size of concurrent systems grows exponentially in the number of
components. One key technique to combat the state explosion problem is the assume-
guarantee style composition reasoning [40], where the analysis problem is decomposed
into components and the results for components are used to reason about the whole sys-
tem, instead of verifying the whole system directly. For a system with two components,
the compositional reasoning can be captured as the following simple rule: consider a
system with two components G1 and G2, and a specification G′ to be satisfied by the
system; if A is an abstraction of G2 (i.e., G2 refines A) and G1 in composition with A
satisfies G′, then the composite systems of G1 and G2 also satisfies G′. Intuitively, A is
an assumption onG1’s environment that can be ensured byG2. This simple, yet elegant
asymmetric rule is very effective in practice, specially with a counter-example guided
abstraction-refinement (CEGAR) loop [17]. There are many symmetric [38] as well
as circular compositional reasoning [19,38,36] rules; however the simple asymmetric

rule is most effective in practice and extensively studied, mostly for non-probabilistic
systems [38,22,10,28].
Compositional analysis for probabilistic systems. There are many works that have
studied the abstraction-refinement and compositional analysis for probabilistic sys-
tems [9,29,34,21]. Our work is most closely related to and inspired by [33] where a
CEGAR approach was presented for analysis of MDPs (or labeled probabilistic transi-
tion systems); and the refinement relation was captured by strong simulation that cap-
tures the logical relation induced by safe-pCTL [25,4,7].
Qualitative analysis and its importance. In this work we consider the fragment of
pCTL∗ [25,4,7] that is relevant for qualitative analysis, and refer to this fragment as
QCTL∗. The qualitative analysis for probabilistic systems refers to almost-sure (resp.
positive) properties that are satisfied with probability 1 (resp. positive probability). The
qualitative analysis for probabilistic systems is an important problem in verification that
is of interest independent of the quantitative analysis problem. There are many appli-
cations where we need to know whether the correct behavior arises with probability 1.
For instance, when analyzing a randomized embedded scheduler, we are interested in
whether every thread progresses with probability 1 [13]. Even in settings where it suf-
fices to satisfy certain specifications with probability λ < 1, the correct choice of λ is a
challenging problem, due to the simplifications introduced during modeling. For exam-
ple, in the analysis of randomized distributed algorithms it is quite common to require
correctness with probability 1 (see, e.g., [41,44]). Furthermore, in contrast to quanti-
tative analysis, qualitative analysis is robust to numerical perturbations and modeling
errors in the transition probabilities.
Our contributions. In this work we focus on the compositional reasoning of proba-
bilistic systems with respect to qualitative properties, and our main contribution is a
CEGAR approach for qualitative analysis of probabilistic systems. The details of our
contributions are as follows:

1. To establish the logical relation induced by QCTL∗ we consider the logic ATL∗

for two-player games and the two-player game interpretation of an MDP where
the probabilistic choices are resolved by an adversary. In case of non-probabilistic
systems and games there are two classical notions for refinement, namely, sim-
ulation [37] and alternating-simulation [1]. We first show that the logical relation
induced by QCTL∗ is finer than the intersection of simulation and alternating simu-
lation. We then introduce a new notion of simulation, namely, combined simulation,
and show that it captures the logical relation induced by QCTL∗.

2. We show that our new notion of simulation, which captures the logic relation of
QCTL∗, can be computed using discrete graph theoretic algorithms in quadratic
time. In contrast, the current best known algorithm for strong simulation is poly-
nomial of degree seven and requires numerical algorithms. The other advantage of
our approach is that it can be applied uniformly both to qualitative analysis of prob-
abilistic systems as well as analysis of two-player games (that are standard models
for open non-probabilistic systems).

3. We present a CEGAR approach for the computation of combined simulation, and
the counter-example analysis and abstraction refinement is achieved using the ideas
of [27] proposed for abstraction-refinement for games.

2

4. We have implemented our approach both for qualitative analysis of MDPs as well
as games, and experimented on a number of well-known examples of MDPs and
games. Our experimental results show that our method achieves significantly better
performance as compared to the non-compositional verification as well as compo-
sitional analysis of MDPs with strong simulation.

Related works. Compositional and assume-guarantee style reasoning has been ex-
tensively studied mostly in the context of non-probabilistic systems [38,22,10,28].
Game-based abstraction refinement has been studied in the context of probabilistic sys-
tems [34]. The CEGAR approach has been adapted to probabilistic systems for reacha-
bility [29] and safe-pCTL [9] under monolithic (non-compositional) abstraction refine-
ment. The work of [33] considers CEGAR for compositional analysis of probabilistic
system with strong simulation. Our work focuses on CEGAR for compositional analy-
sis of probabilistic systems for qualitative analysis: we characterize the required simula-
tion relation; present a CEGAR approach for the computation of the simulation relation;
and show the effectiveness of our approach both for qualitative analysis of MDPs and
games.
Organization of the paper. In Section 2 we present the basic definitions of games and
logic for games. In Section 3 we introduce a new simulation relation for games, show
that it is finer than both simulation and alternating simulation, and present algorithms
to compute the relation. In Section 4 we present the definitions of MDPs and qualitative
logics, and in Section 5 show that the logical relation induced by the qualitative log-
ics on MDPs can be obtained through our simulation relation introduced in Section 3.
In Section 6 we present a CEGAR approach for our simulation relation and present
experimental results in Section 7.

2 Game Graphs and Alternating-time Temporal Logics

Notations. Let AP denote a non-empty finite set of atomic propositions. Given a finite
set S we will denote by S∗ (respectively Sω) the set of finite (resp. infinite) sequences
of elements from S, and let S+ = S∗ \ {ε}, where ε is the empty string.

2.1 Two-player Games

Two-player games. A two-player game is a tuple G = (S,A,Av, δ,L, s0), where

– S is a finite set of states.
– A is a finite set of actions.
– Av : S → 2A \ ∅ is an action-available function that assigns to every state s ∈ S

the set Av(s) of actions available in s.
– δ : S × A → 2S \ ∅ is a non-deterministic transition function that given a state
s ∈ S and an action a ∈ Av(s) gives the set δ(s, a) of successors of s given action
a.

– L : S → 2AP is a labeling function that labels the states s ∈ S with the set L(s) of
atomic propositions true at s.

3

– s0 ∈ S is an initial state.

Alternating games. A two-player gameG is alternating if in every state either Player 1
or Player 2 can make choices. Formally, for all s ∈ S we have either (i) |Av(s)| = 1
(then we refer to s as a Player-2 state); or (ii) for all a ∈ Av(s) we have |δ(s, a)| = 1
(then we refer to s as a Player-1 state). For technical convenience we consider that in
the case of alternating games, there is an atomic proposition turn ∈ AP such that for
every Player-1 state s we have turn ∈ L(s), and for every Player 2 state s′ we have
turn 6∈ L(s′).
Plays. A two-player game is played for infinitely many rounds as follows: the game
starts at the initial state, and in every round Player 1 chooses an available action from
the current state and then Player 2 chooses a successor state, and the game proceeds
to the successor state for the next round. Formally, a play in a two-player game is an
infinite sequence ω = s0a0s1a1s2a2 · · · of states and actions such that for all i ≥ 0 we
have that ai ∈ Av(si) and si+1 ∈ δ(si, ai). We denote by Ω the set of all plays.
Strategies. Strategies are recipes that describe how to extend finite prefixes of plays.
Formally, a strategy for Player 1 is a function σ : (S × A)∗ × S → A, that given a
finite history w · s ∈ (S × A)∗ × S of the game gives an action from Av(s) to be
played next. We write Σ for the set of all Player-1 strategies. A strategy for Player 2
is a function θ : (S × A)+ → S, that given a finite history w · s · a of a play selects
a successor state from the set δ(s, a). We write Θ for the set of all Player-2 strategies.
Memoryless strategies are independent of the history, but depend only on the current
state for Player 1 (resp. the current state and action for Player 2) and hence can be
represented as functions S → A for Player 1 (resp. as functions S × A → S for
Player 2).
Outcomes. Given a strategy σ for Player 1 and θ for Player 2 the outcome is a unique
play, denoted as Plays(s, σ, θ) = s0a0s1a1 · · · , which is defined as follows: (i) s0 = s;
and (ii) for all i ≥ 0 we have ai = σ(s0a0 . . . si) and si+1 = θ(s0a0 . . . siai). Given a
state s ∈ S we denote by Plays(s, σ) (resp. Plays(s, θ)) the set of possible plays given
σ (resp. θ), i.e.,

⋃
θ′∈Θ Plays(s, σ, θ′) (resp.

⋃
σ′∈Σ Plays(s, σ′, θ)).

Parallel composition of two-player games. Given games G = (S,A,Av, δ,L, s0)
and G′ = (S′, A,Av′, δ′,L′, s′0) the parallel composition of the games G ‖ G′ =
(S,A,Av, δ,L, s0) is defined as follows:

– The states of the composition are S = S × S′.
– The set of actions does not change with the composition.
– For all (s, s′) we have Av((s, s′)) = Av(s) ∩ Av′(s′).
– The transition function for a state (s, s′) ∈ S and an action a ∈ Av((s, s′)) is

defined as δ((s, s′), a) = {(t, t′) | t ∈ δ(s, a) ∧ t′ ∈ δ′(s′, a)}.
– The labeling function L((s, s′)) is defined as L(s) ∪ L′(s′).
– The initial state is s0 = (s0, s

′
0).

Remark 1. For simplicity we assume that the set of actions in both components is iden-
tical, and for every pair of states the intersection of their available actions is non-empty.
The definition of parallel composition can be extended to cases where the sets of actions
are different [2].

4

2.2 Alternating-time Temporal Logic

We consider the Alternating-time Temporal Logic (ATL∗) [3] as a logic to specify
properties for two-player games.

Syntax. The syntax of the logic is given in positive normal form by defining the set of
path formulas (ϕ) and state formulas (ψ) according to the following grammar:

state formulas: ψ ::= q | ¬q | ψ ∨ ψ | ψ ∧ ψ | PQ(ϕ)

path formulas: ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ |,ϕ | ϕUϕ | ϕWϕ;

where q ∈ AP is an atomic proposition and PQ is a path quantifier. The operators ,
(next), U (until), andW (weak until) are the temporal operators. We will use true as a
shorthand for q∨¬q and false for q∧¬q for some q ∈ AP. The path quantifiers PQ are
as follows:

ATL∗ path quantifiers: 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉.

Semantics. Given a play ω = s0a0s1a1 · · · we denote by ω[i] the suffix starting at the
i-th state element of the play ω, i.e., ω[i] = siaisi+1ai+1 · · · . The semantics of path
formulas is defined inductively as follows:

ω |= ψ iff ω[0] |= ψ
ω |= ϕ1 ∨ ϕ2 iff ω |= ϕ1 or ω |= ϕ2

ω |= ϕ1 ∧ ϕ2 iff ω |= ϕ1 and ω |= ϕ2

ω |= ,ϕ iff ω[1] |= ϕ
ω |= ϕ1 Uϕ2 iff ∃j ∈ N : ω[j] |= ϕ2 and ∀0 ≤ i < j : ω[i] |= ϕ1

ω |= ϕ1Wϕ2 iff ϕ1 Uϕ2 or ∀j ∈ N : ω[j] |= ϕ1.

Given a path formula ϕ, we denote by JϕKG the set of plays ω such that ω |= ϕ. We
omit the G lower script when the game is clear from context. The semantics of state
formulas for ATL∗ is defined as follows:

s |= q iff q ∈ L(s)
s |= ¬q iff q 6∈ L(s)
s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2

s |= 〈〈1〉〉(ϕ) iff ∃σ ∈ Σ,∀θ ∈ Θ : Plays(s, σ, θ) ∈ JϕK
s |= 〈〈2〉〉(ϕ) iff ∃θ ∈ Θ,∀σ ∈ Σ : Plays(s, σ, θ) ∈ JϕK
s |= 〈〈1, 2〉〉(ϕ) iff ∃σ ∈ Σ,∃θ ∈ Θ : Plays(s, σ, θ) ∈ JϕK
s |= 〈〈∅〉〉(ϕ) iff ∀σ ∈ Σ,∀θ ∈ Θ : Plays(s, σ, θ) ∈ JϕK;

where s ∈ S and q ∈ AP. Given an ATL∗ state formula ψ and a two-player game G,
we denote by JψKG = {s ∈ S | s |= ψ} the set of states that satisfy the formula ψ. We
omit the G lower script when the game is clear from context.

Logic fragments. We define several fragments of the logic ATL∗:

– Restricted temporal operator use. An important fragment of ATL∗ is ATL where
every temporal operator is immediately preceded by a path quantifier.

5

– Restricting path quantifiers. We also consider fragments of ATL∗ (resp. ATL)
where the path quantifiers are restricted. We consider (i) 1-fragment (denoted
1-ATL∗) where only 〈〈1〉〉 path quantifier is used; (ii) the (1, 2)-fragment (denoted
(1, 2)-ATL

∗) where only 〈〈1, 2〉〉 path quantifier is used; and (iii) the combined frag-
ment (denoted C-ATL∗) where both 〈〈1〉〉 and 〈〈1, 2〉〉 path quantifiers are used. We
use a similar notation for the respective fragments of ATL formulas.

Logical characterization of states. Given two games G and G′, and a logic fragment
F of ATL∗, we consider the following relations on the state space induced by the logic
fragment F :

4F (G,G′) = {(s, s′) ∈ S × S′ | ∀ψ ∈ F : if s |= ψ then s′ |= ψ};

and when the games are clear from context we simply write 4F for 4F (G,G′). We
will use the following notations for the relation induced by the logic fragments we con-
sider: (i)4∗1 (resp.41) for the relation induced by the 1-ATL∗ (resp. 1-ATL) fragment;
(ii) 4∗1,2 (resp. 41,2) for the relation induced by the (1, 2)-ATL

∗ (resp. (1, 2)-ATL)
fragment; and (iii) 4∗C (resp. 4C) for the relation induced by the C-ATL∗ (resp.
C-ATL) fragment. GivenG andG′ we can also considerG′′ which is the disjoint union
of the two games, and consider the relations on G′′; and hence we will often consider a
single game as input for the relations.

3 Combined Simulation Relation Computation

In this section we first recall the notion of simulation [37] and alternating simulation [1];
and then present a new notion of combined simulation.

Simulation. Given two-player games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation S ⊆ S × S′ is a simulation from G to G′ if for
all (s, s′) ∈ S the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ S.

We denote by SG,G′

max the largest simulation relation between the two games (we write
Smax instead of SG,G′

max when G and G′ are clear from the context). We write G ∼S G′
when (s0, s

′
0) ∈ Smax. The largest simulation relation characterizes the logic relation of

(1, 2)-ATL and (1, 2)-ATL
∗: the (1, 2)-ATL-fragment interprets a game as a transition

system and the formulas coincide with existential CTL, and hence the logic character-
ization follows from the classical results on simulation and CTL [37,2].

Proposition 1. For all games G and G′ we have Smax =4∗1,2=41,2.

Alternating simulation. Given two games G = (S,A,Av, δ,L, s0) and G′ =
(S′, A′,Av′, δ′,L′, s′0), a relation A ⊆ S × S′ is an alternating simulation from G
to G′ if for all (s, s′) ∈ A the following conditions hold:

6

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ A.

We denote by AG,G′

max the largest alternating-simulation relation between the two games
(we write Amax instead of AG,G′

max when G and G′ are clear from the context). We
write G ∼A G′ when (s0, s

′
0) ∈ Amax. The largest alternating-simulation relation

characterizes the logic relation of 1-ATL and 1-ATL∗ [1].

Proposition 2. For all games G and G′ we have Amax =4∗1=41.

Combined simulation. We present a new notion of combined simulation that extends
both simulation and alternating simulation, and we show how the combined simulation
characterizes the logic relation induced by C-ATL∗ and C-ATL. Intuitively, the re-
quirements on the combined-simulation relation combine the requirements imposed by
alternating simulation and simulation in a step-wise fashion. Given two-player games
G = (S,A,Av, δ,L, s0) and G′ = (S′, A′,Av′, δ′,L′, s′0), a relation C ⊆ S × S is a
combined simulation from G to G′ if for all (s, s′) ∈ C the following conditions hold:

1. Proposition match: The atomic propositions match, i.e., L(s) = L′(s′).
2. Step-wise simulation condition: For all actions a ∈ Av(s) and states t ∈ δ(s, a)

there exists an action a′ ∈ Av′(s′) and a state t′ ∈ δ(s′, a′) such that (t, t′) ∈ C.
3. Step-wise alternating-simulation condition: For all actions a ∈ Av(s) there exists

an action a′ ∈ Av′(s′) such that for all states t′ ∈ δ′(s′, a′) there exists a state
t ∈ δ(s, a) such that (t, t′) ∈ C.

We denote by CG,G′

max the largest combined-simulation relation between the two games
(and write Cmax when G and G′ are clear from the context). We also write G ∼C G′
when (s0, s

′
0) ∈ Cmax. We first illustrate with an example that the logic relation 4C in-

duced by C-ATL is finer than the intersection of simulation and alternating-simulation
relation; then present a game theoretic characterization of Cmax; and finally show that
Cmax gives the relations 4∗C and 4C .

s0 s1

G

t2 t0 t1

G′

a2 a3
a1

a2
a3

a2
a1

Fig. 1. Games G,G′ such that G ∼S G
′ and G ∼A G′, but G 6∼C G

′.

Example 1. Consider the games G and G′ shown in Figure 1. White nodes are la-
beled by an atomic proposition p and gray nodes by an atomic proposition q. The
largest simulation and alternating-simulation relations between G and G′ are: Smax =

7

{(s0, t0), (s1, t1)},Amax = {(s0, t0), (s0, t2), (s1, t1)}. However, consider the for-
mula ψ = 〈〈1〉〉(,(p∧ 〈〈1, 2〉〉(,q))). We have that s0 |= ψ, but t0 6|= ψ. It follows that
(s0, t0) 6∈4C . ut

Combined-simulation games. The simulation and the alternating-simulation rela-
tion can be obtained by solving two-player safety games [26,1,11]. We now define a
two-player game for the combined-simulation relation characterization. The game is
played on the synchronized product of the two input games. Given a state (s, s′), first
Player 2 decides whether to check for the step-wise simulation condition or the step-
wise alternating-simulation condition. The step-wise simulation condition is checked
by playing a two-step game, and the step-wise alternating-simulation condition is
checked by playing a four-step game. Consider two games G = (S,A,Av, δ,L, s0)
and G′ = (S′, A′,Av′, δ′,L′, s′0). We construct the combined-simulation game GC =
(SC , AC ,AvC , δC ,LC , sC0) as follows:

– The set of states. The set of states SC is:

SC = (S × S′) ∪ (S × S′ × {Sim} × {1, 2}) ∪ (S × S′ × {Alt} × {2})
∪ (S × S′ × {Alt} ×A× {1}) ∪ (S × S′ × {Alt} ×A×A′ × {1, 2})

Intuitively, in states in S × S′ and in states where the last component is 2 it is
Player 2’s turn to make the choice of successors, and in all other states Player 1
makes the choice of actions.

– The set of actions. The set of actions is as follows: AC = {⊥} ∪ S ∪ S′ ∪A′.
– The transition function and the action-available function.

1. Choice of simulation or alternating-simulation. For a state (s, s′) we have
only one action ⊥ available for Player 1 and we have δC((s, s′),⊥) =
{(s, s′,Alt, 2), (s, s′,Sim, 2)}, i.e., Player 2 decides whether to check for step-
wise simulation or step-wise alternating-simulation conditions.

2. Checking step-wise simulation conditions. We describe the transitions for
checking the simulation conditions:
(a) For a state (s, s′,Sim, 2) we have only one action ⊥ available for Player 1

and we have δC((s, s′,Sim, 2),⊥) = {(t, s′,Sim, 1) | ∃a ∈ Av(s) : t ∈
δ(s, a)}.

(b) For a state s = (t, s′,Sim, 1) we have AvC(s) = {t′ | ∃a′ ∈ Av(s′) : t′ ∈
δ′(s′, a′)} and δC(s, t′) = {(t, t′)}.

Intuitively, first Player 2 chooses an action a ∈ Av(s) and a successor t ∈
δ(s, a) and challenges Player 1 to match, and Player 1 responds with an action
a′ ∈ Av′(s′) and a state t′ ∈ δ′(s′, a′).

3. Checking step-wise alternating-simulation conditions. We describe the transi-
tions for checking the alternating-simulation conditions:
(a) For a state (s, s′,Alt, 2) we have only one action ⊥ available for Player 1

and we have δC((s, s′,Alt, 2),⊥) = {(s, s′,Alt, a, 1) | a ∈ Av(s)}.
(b) For a state s = (s, s′,Alt, a, 1) we have AvC(s) = Av′(s′) and δC(s, a′) =
{(s, s′,Alt, a, a′, 2)}.

8

(c) For a state (s, s′,Alt, a, a′, 2) we have only one action ⊥ available for
Player 1 and we have δC((s, s′,Alt, a, a′, 2),⊥) = {(s, t′,Alt, a, a′, 1) |
t′ ∈ δ′(s′, a′)}.

(d) For a state s = (s, t′,Alt, a, a′, 1) we have AvC(s) = δ(s, a) and
δC(s, t) = {(t, t′)}.

Intuitively, first Player 2 chooses an action a from Av(s) and Player 1 responds
with an action a′ ∈ Av′(s′) (in the first two-steps); then Player 2 chooses a
successor t′ from δ′(s′, a′) and Player 1 responds by choosing a successor t in
δ(s, a).

– The labeling function. The set of atomic proposition AP contains a single proposi-
tion p ∈ AP. The labeling function LC given a state s ∈ SC is defined as follows:
LC(s) = p iff s = (s, s′) and L(s) 6= L′(s′). Intuitively, Player 2’s goal is to reach
a state (s, s′) where the propositional labeling of the original games do not match,
i.e., to reach a state labeled p by LC .

– The initial state. The state sC0 is (s0, s′0).

In the combined simulation game we refer to Player 1 as the proponent (trying to es-
tablish the combined simulation) and Player 2 as the adversary (trying to violate the
combined simulation).

(s0, t0)(s0, t0,Alt, 2) (s0, t0, Sim, 2)

(s0, t0,Alt, a1, 1) (s0, t0,Alt, a2, 1)

. . . (s0, t0,Alt, a2, a1, 2)(s0, t0,Alt, a2, a2, 2) (s0, t0, Sim, 1)(s1, t0, Sim, 1)

. . .(s0, t2,Alt, a2, a2, 1) . . .

(s0, t2) (s1, t0) (s1, t1) (s1, t2)

.

⊥⊥ ⊥

a1a2

⊥

s0

t0 t1 t2

Fig. 2. Part of the combined-simulation game of G and G′ from Figure 1.

Example 2. A part of the combined-simulation game of G and G′ from Figure 1 is
shown in Figure 2. Dashed arrows indicate that the successors of a given state are omit-
ted in the figure. Gray states are labeled by an atomic proposition p, hence are the goal
states for the adversary. ut

Shorthand for safety objectives. We will use the following shorthand for safety objec-
tives: � ϕ ≡ ϕW false; i.e., the formula �ϕ is satisfied by paths where ϕ is always
true.

9

Theorem 1. For all games G and G′ we have Cmax = J〈〈1〉〉(�¬p)KGC ∩ (S × S′).

Proof. The statement follows directly from the definition of combined simulation, and
the fact that the game construction mimics the definition of combined simulation (as in
the case of simulation and alternating simulation [26,1,11]). ut

Winning strategies. Given a combined-simulation game GC we say that a strategy σ
for the proponent is winning from a state s if for all strategies θ of the adversary we
have Plays(s, σ, θ) |= �(¬p). A strategy θ for the adversary is winning from state s if
for all strategies σ of the proponent we have Plays(s, σ, θ) |= trueUp. Whenever the
proponent (resp. adversary) has a winning strategy, the proponent (resp. adversary) also
has memoryless winning strategy [24].
Combined simulation logical characterization. Our next goal is to establish that com-
bined simulation gives the logical characterization of C-ATL∗ and C-ATL. To prove
the result we first introduce the notion of equivalence between plays: Given two plays
ω = s0a0s1a1s2 · · · and ω′ = s′0a

′
0s
′
1a
′
1s
′
2 · · · we write ω ∼C ω′ if for all i ≥ 0 we

have (si, s
′
i) ∈ Cmax.

Lemma 1. Given two games G and G′, let Cmax be the combined simulation. For all
(s, s′) ∈ Cmax the following assertions hold:

– For all Player 1 strategies σ in G, there exists a Player 1 strategy σ′ in G′ such
that for every play ω′ ∈ Plays(s′, σ′) there exists a play ω ∈ Plays(s, σ) such that
ω ∼C ω′.

– For all pair of strategies σ and θ in G, there exists a pair of strategies σ′ and θ′ in
G′ such that Plays(s, σ, θ) ∼C Plays(s′, σ′, θ′),

Proof. We present the details of the first item.

– Consider a winning strategy σC for the proponent in GC such that for all (s, s′) ∈
Cmax and against all strategies θC we have Plays(s, σC , θC) ∈ J�(¬p)K. Given the
Player 1 strategy σ in G we construct σ′ in G′ using the strategy σC . Consider a
history w · s in G and w′ · s′ ∈ G′ such that (s, s′) ∈ Cmax. Let σ(w · s) = a.
We define σ′(w′ · s′) as follows. Let h be an arbitrary history in GC that only visits
state in Cmax and ends in (s, s′). Let a′ = σC(h · (s, s′,Alt, 2) · (s, s′,Alt, a, 2));
(i.e., the action played by the strategy σC in response to the choice of checking
alternating simulation and the action a by Player 2 in GC). Then the strategy σ′

plays accordingly, i.e., σ′(w′ · s′) = a′. In the next step for every choice t′ of
the adversary there exists a choice t of the proponent such that L(t) = L′(t′) and
(t, t′) ∈ Cmax and the matching can proceed.

– The proof is similar to the first item, and instead of using the step-wise alternating-
simulation gadget for strategy construction (of the first item) we use the step-wise
simulation gadget from GC to construct the strategy pairs.

The desired result follows. ut

In the following theorem we establish the relation between combined simulation
and the C-ATL∗ fragment of ATL∗.

10

Theorem 2. For all games G and G′ we have Cmax =4∗C=4C .

Proof. First implication. We first prove the implication Cmax ⊆4∗C . We will show the
following assertions:

– For all states s and s′ such that (s, s′) ∈ Cmax, we have that every C-ATL∗ state
formula satisfied in s is also satisfied in s′.

– For all plays ω and ω′ such that ω ∼C ω′, we have that every C-ATL∗ path formula
satisfied in ω is also satisfied in ω′.

We will prove the theorem by induction on the structure of the formulas. The interesting
cases for the induction step are formulas 〈〈1〉〉(ϕ) and 〈〈1, 2〉〉(ϕ), where ϕ is a path
formula.

– Assume s |= 〈〈1〉〉(ϕ) and (s, s′) ∈ Cmax. It follows that there exists a strategy
σ ∈ Σ that ensures the path formula ϕ from state s against any strategy θ ∈ Θ.
We want to show that s′ |= 〈〈1〉〉(ϕ). By Lemma 1(item 1) we have that there exists
a strategy σ′ for Player 1 from s′ such that for every play ω′ ∈ Plays(s′, σ′) there
exists a play ω ∈ Plays(s, σ) such that ω ∼C ω′. By inductive hypothesis we have
that s′ |= 〈〈1〉〉(ϕ).

– Assume s |= 〈〈1, 2〉〉(ϕ) and C(s, s′). It follows that there exist strategies σ ∈
Σ, θ ∈ Θ that ensure the path formula ϕ from state s. By Lemma 1(item 2) we have
that there exist strategies σ′ and θ′ such that the two plays ω′ = Plays(s′, σ′, θ′)
and ω = Plays(s, σ, θ) satisfy ω ∼C ω′. By inductive hypothesis we have that
s′ |= 〈〈1, 2〉〉(ϕ).

– Consider a path formula ϕ. If ω ∼C ω′, then by inductive hypothesis for every sub-
formula ϕ′ of ϕ we have that if ω |= ϕ′ then ω′ |= ϕ′. It follows that if ω |= ϕ then
ω′ |= ϕ.

Second implication. It remains to prove the second implication 4∗C⊆4C⊆ Cmax. As-
sume that given states s and s′ we have that (s, s′) 6∈ Cmax, then there exists a win-
ning strategy in the corresponding combined-simulation game for the adversary from
state (s, s′), i.e., there exists a strategy θC such that against all strategies σC we have
Plays((s, s′), σC , θC) reaches a state labeled p. As memoryless strategies are sufficient
for both players inGC [24], there also exists a bound i ∈ N, such that the proponent fails
to match the choice of the adversary in at most i turns. We sketch the inductive proof
that there exists a formula with i nested operators 〈〈1〉〉, or 〈〈1, 2〉〉, that is satisfied in
s but not in s′. For i equal to 0 the states can be distinguished by atomic propositions.
For the inductive step one can express the simulation turns by a 〈〈1, 2〉〉(, . . .) formula
and alternating simulation turns by a 〈〈1〉〉(, . . .) formula. It follows that (s, s′) 6∈4C .
The result follows. ut

Remark 2. Lemma 1 and Theorem 2 also hold for alternating games. Note that in most
cases the action set is constant and the state space of the games are huge. Then the
combined simulation game construction is quadratic, and solving safety games on them
can be achieved in linear time (on the size of the game) using discrete graph theoretic
algorithms [31,6].

Theorem 3. Given two-player games G and G′, the Cmax, 4∗C , and 4C relations can
be computed in quadratic time using discrete graph theoretic algorithms.

11

4 MDPs and Qualitative Logics

In this section we consider Markov decisions processes (MDPs) and logics to reason
qualitatively about them. We consider MDPs which can be viewed as a variant of two-
player games defined in Section 2. First, we fix some notation: a probability distribution
f on a finite set X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1, and we

denote by D(X) the set of all probability distributions on X . For f ∈ D(X) we denote
by Supp(f) = {x ∈ X | f(x) > 0} the support of f .

4.1 MDPs

A Markov decision process (MDP) is a tuple G = (S, (S1, SP), A,Av, δ1, δP ,L, s0);
where (i) S is a finite set of states with a partition of S into Player-1 states S1 and
probabilistic states SP ; (ii) A is a finite set of actions; (iii) Av : S1 → 2A \ ∅ is an
action-available function that assigns to every Player-1 state the non-empty set Av(s)
of actions available in s; (iv) δ1 : S1 × A → S is a deterministic transition function
that given a Player-1 state and an action gives the next state; (v) δP : SP → D(S)
is a probabilistic transition function that given a probabilistic state gives a probability
distribution over the successor states (i.e., δP (s)(s′) is the transition probability from s
to s′); (vi) the function L is the proposition labeling function as for two-player games;
and (vii) s0 is the initial state. Strategies for Player 1 are defined as for games.

Interpretations. We interpret an MDP in two distinct ways: (i) as a 1 1
2 -player game

and (ii) as an alternating two-player game. In the 1 1
2 -player setting in a state s ∈ S1,

Player 1 chooses an action a ∈ Av(s) and the MDP moves to a unique successor s′. In
probabilistic states sp ∈ SP the successor is chosen according to the probability distri-
bution δP (sp). In the alternating two-player interpretation, we regard the probabilistic
states as Player-2 states, i.e., in a state sp ∈ SP , Player 2 chooses a successor state s′

from the support of the probability distribution δP (s). The 1 1
2 -player interpretation is

the classical definition of MDPs. We will use the two-player interpretation to relate log-
ical characterizations of MDPs and logical characterization of two-player games with
fragments of ATL∗.

1 1
2 -Player Interpretation. Once a strategy σ ∈ Σ for Player 1 is fixed, the outcome of

the MDP is a random walk for which the probabilities of events are uniquely defined,
where an event Φ ⊆ Ω is a measurable set of plays [24]. For a state s ∈ S and an event
Φ ⊆ Ω, we write Prσs (Φ) for the probability that a play belongs to Φ if the game starts
from the state s and Player 1 follows the strategy σ.

Two-player Interpretation. The two-player interpretation corresponds to alter-
nating two-player games introduced in Section 2, where the probabilistic aspect
of the MDP is replaced by a second player. Formally, given an MDP G =
(S, (S1, SP), A,Av, δ1, δP ,L, s0) we define an alternating two-player game Ĝ =

(Ŝ, Â, Âv, δ̂, L̂, ŝ0) as follows: (i) the states are Ŝ = S1 ∪ SP ; (ii) the set of actions
contains a new action ⊥ not present in A, i.e., Â = A ∪ {⊥}; (iii) the action-available
function for states s ∈ S1 is defined as Âv(s) = Av(s) and for states sp ∈ SP as
Âv(sp) = {⊥}; (iv) for s ∈ S1 and a in Âv(s) we have δ̂(s, a) = {δ1(s, a)}, and for

12

sp ∈ SP we have δ̂(sp,⊥) = Supp(δp(sp)); (v) the labeling function for a Player-
1 state s is L̂(s) = L(s) ∪ {turn} and for a Player-2 state s′ coincides with L(s′);
and (vi) the initial state is the same ŝ0 = s0. Given an MDP G we denote by Ĝ the
two-player interpretation of the MDP. Note that for all Player-1 states s ∈ S1 we have
|δ̂(s)| = 1 and for all Player-2 states sp ∈ SP we have |Av(sp)| = 1. Therefore for any
MDP the corresponding two-player interpretation is an alternating game.

Parallel composition of MDPs. An MDP is said to be strictly alternating if
the initial state is a Player-1 state and all the successors of Player-1 states are
probabilistic states, and vice versa. Given two strictly alternating MDPs G =
(S, (S1, SP), A,Av, δ1, δP ,L, s0) and G′ = (S′, (S′1, S

′
P), A,Av

′, δ′1, δ
′
P ,L′, s′0), the

parallel composition is an MDP G ‖ G′ = (S, (S1, SP), A,Av, δ1, δP ,L, s0) defined
as follows: (i) the states are S = S1 ∪ SP , where S1 = S1 × S′1 and SP = SP × S′P ;
(ii) for a state (s, s′) ∈ S1 we have Av((s, s′)) = Av(s) ∩ Av′(s′); (iii) for a state
(s, s′) ∈ S1 and an action a ∈ Av((s, s′)) we have δ1((s, s′), a) = (δ1(s, a), δ

′
1(s
′, a));

(iv) for a state (sp, s′p) ∈ SP we have δ((sp, s′p))(t, t
′) = δP (sp)(t)·δ′P (s′p)(t′); (v) for

a state (s, s′) ∈ S we have L((s, s′)) = L(s) ∪ L′(s′), and (vi) the initial state is
(s0, s

′
0).

Example 3. In Figure 3 we present three MDPs G1, G2, and G′ that we use as running
examples. We thoroughly describe only MDP G′ = (S, (S1, SP), A,Av, δ1, δP ,L, s0).
Player-1 states, depicted as circles, are S1 = {s′0, s′2, s′3} and probabilistic states, de-
picted as rectangles, are SP = {s′1, s′4}. The set of actions is A = {a, b}. Action a is
available in states s′0, s

′
2 and action b is available only in states s′0, s

′
3. The determin-

istic transition function is δ1(s′0, a) = s′1, δ1(s
′
0, b) = s′4, δ1(s

′
2, a) = s′4, δ1(s

′
2, b) =

s′4, δ1(s
′
3, b) = s′4. The probabilistic transition function δP gives the following prob-

ability distributions over possible successor states: δP (s′1)(s
′
2) = 1

2 , δP (s
′
1)(s

′
3) =

1
2 , δP (s

′
4)(s

′
3) = 1. There is a single atomic proposition p ∈ AP and the states la-

beled by p are depicted in gray. The initial state is s′0. ut

s10

s11

G1

a, b1

s20

s22 s21

s25

s23

s24s26

G2

a
1
4

1
4

a, b
1
2a, b

1

b

1

b

s′0

s′1 s′2

s′3 s′4

G′

a
1
2

1
2 a, b

b

1

b

Fig. 3. Examples of MDPs.

13

4.2 Qualitative Logics for MDPs

We consider the qualitative fragment of pCTL∗ [25,4,7] and refer to the logic as quali-
tative pCTL∗ (denoted as QCTL∗) as it can express qualitative properties of MDPs.

Syntax and semantics. The syntax of the logic is given in positive normal form and is
similar to the syntax of ATL∗. It has the same state and path formulas as ATL∗ with
the exception of path quantifiers. The logic QCTL∗ comes with two path quantifiers
(PQ), namely 〈Almost〉 and 〈Positive〉 (instead of 〈〈1〉〉, 〈〈2〉〉, 〈〈1, 2〉〉, and 〈〈∅〉〉).

QCTL∗ path quantifiers: 〈Almost〉, 〈Positive〉.

The semantics of the logic QCTL∗ is the same for the fragment shared with ATL∗,
therefore we only give semantics for the new path quantifiers. Given a path formula ϕ,
we denote by JϕKG the set of plays ω such that ω |= ϕ. For a state s and a path formula
ϕ we have:

s |= 〈Almost〉(ϕ) iff ∃σ ∈ Σ : Prσs (JϕK) = 1

s |= 〈Positive〉(ϕ) iff ∃σ ∈ Σ : Prσs (JϕK) > 0.

As before, we denote by QCTL the fragment of QCTL∗ where every temporal operator
is immediately preceded by a path quantifier, and for a state formula ψ the set JψKG
denotes the set of states in G that satisfy the formula ψ.

Logical relation induced by QCTL and QCTL∗. Given two MDPs G and G′, the
logical relation induced by QCTL∗, denoted as 4∗Q, (resp. by QCTL, denoted as 4Q),
is defined as follows:

4∗Q= {(s, s′) ∈ S × S′ | ∀ψ ∈ QCTL∗ : if s |= ψ then s′ |= ψ}

(resp. ∀ψ ∈ QCTL).

5 Characterization of Qualitative Simulation for MDPs

In this section we establish the equivalence of the 4∗Q relation on MDPs with the 4∗C
relation on the two-player interpretation of MDPs, i.e., we prove that for all MDPs G
and G′ we have 4∗Q (G,G′) =4C (Ĝ, Ĝ′), where Ĝ (resp. Ĝ′) is the two-player inter-
pretation of the MDPG (resp.G′). In the first step we show how to translate some of the
QCTL formulas into C-ATL formulas. We only need to translate the path quantifiers
due to the similarity of path formulas in the logics.

Lemma 2. For all atomic propositions q, r and for all MDPs, we have:

J〈Almost〉(,q)K = J〈〈1〉〉(,q)K (1)
J〈Almost〉(qWr)K = J〈〈1〉〉(qWr)K (2)
J〈Positive〉(,q)K = J〈〈1, 2〉〉(,q)K (3)

J〈Positive〉(q Ur)K = J〈〈1, 2〉〉(q Ur)K (4)

14

Proof. Point 1. The inclusion J〈Almost〉(,q)K ⊇ J〈〈1〉〉(,q)K follows from the fact
that there exists a strategy for Player 1 such that for all strategies of Player 2 the next
state reached satisfies q. It follows that the same strategy for Player 1 ensures the for-
mula with probability 1. For the second inclusion J〈Almost〉(,q)K ⊆ J〈〈1〉〉(,q)K we
consider two cases: (i) let s ∈ J〈Almost〉(,q)K be a Player-1 state. Then there exists an
available action a that leads to a state that satisfies formula q. As s is a Player-1 state, the
transition function under a has a unique successor. Therefore, playing the same action
ensures q also in the two-player interpretation. The second case is that s is a probabilis-
tic states. In that case all the successors in the support of the probabilistic transition
function satisfy q. Therefore formula q is also satisfied in the two-player interpretation.

Point 2. As for the previous point the inclusion J〈Almost〉(qWr)K ⊇ J〈〈1〉〉(qWr)K
follows easily from the definition. For the second inclusion assume towards contradic-
tion that for every strategy σ for Player 1 there exists a strategy θ for Player 2 such that
the play Plays(s, σ, θ) violates qWr. It follows that for every strategy σ for Player 1
there exists a strategy θ for Player 2 such that play Plays(s, σ, θ) satisfies ¬r U¬q. This
is possible only if there exists a finite path to a ¬q state that uses only ¬r states, and
the finite path has a positive probability in the 1 1

2 -player interpretation of the MDP. It
follows that for every strategy of Player 1 there is a positive probability of violating
qWr and the contradiction follows.

Point 3. and 4. Point 3 follows similarly to Point 1, and Point 4 follows the same
arguments as in Point 2. ut

Lemma 3. For all atomic propositions r and for all MDPs we have:
J〈Positive〉(� r)K = J〈Positive〉(r U〈Almost〉(� r))K.

Proof. The result follows from [15, Lemma 1] (shown even for a more general class of
partially observable MDPs). ut

Lemma 4. For all atomic propositions q, r and for all MDPs, we have:
J〈Positive〉(qWr)K = J〈〈1, 2〉〉(q Ur)K ∪ J〈〈1, 2〉〉(q U(〈〈1〉〉(qWfalse)))K.

Proof. By definition we have that J〈Positive〉(qWr)K = J〈Positive〉((q Ur) ∨
(�q))K. We write the formula as follows: J〈Positive〉((q Ur) ∨ (�q))K =
J〈Positive〉(q Ur)K ∪ J〈Positive〉(�q)K. By Lemma 3 we have that J〈Positive〉(�q)K =
J〈Positive〉(q U〈Almost〉(�q))K. Note that�q ≡ qWfalse. All these facts together with
the already established translations presented in Lemma 2 give us the desired result. ut

To complete the translation of temporal operators it remains to express the QCTL
formula J〈Almost〉(q Ur)K in terms of C-ATL. We first introduce the Apre function:
Apre. Given two sets of states X ⊆ Y ⊆ S we define the predecessor operator Apre as
follows:

Apre(Y,X) = {s ∈ S1 | ∃a ∈ Av(s) : δ1(s, a) ∈ X} ∪
{sp ∈ SP | Supp(δP (sp)) ⊆ Y ∧ Supp(δP (sp)) ∩X 6= ∅}.

As is shown in [20] we can express the states J〈Almost〉(q Ur)K using the following
µ-calculus notation, where µ (resp. ν) denotes the least (resp. greatest) fixpoint:

J〈Almost〉(q Ur)K = νY.µX.(JrK ∪ (JqK ∩ Apre(Y,X))). (5)

15

The fixpoint computation on an MDP with n states can be described as follows: Y0 is
initialized to all states, and in each iteration i the set Xi,0 is initialized to the empty set;
and Xi,j+1 is obtained from Xi,j applying the one step operators, and Yi is set as the
fixpoint of iteration i. Formally, for 1 ≤ i ≤ n and 0 ≤ j ≤ n− 1 we have

Y0 = JtrueK; Xi,0 = JfalseK; Xi,j+1 = (JrK∪(JqK∩Apre(Yi−1, Xi,j))); Yi = Xi,n;

and then Yn = J〈Almost〉(q Ur)K. Next we show that the Apre function can be ex-
pressed in C-ATL. For C-ATL formulas ψ1, ψ2 such that Jψ1K ⊆ Jψ2K we define:

FApre(ψ1, ψ2) = 〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,ψ2)

Lemma 5. For C-ATL state formulas ψ1, ψ2 such that Jψ1K ⊆ Jψ2K we have:
JFApre(ψ1, ψ2)K = Apre(Jψ1K, Jψ2K).

Proof. We prove the two inclusions. We start with Apre(Jψ1K, Jψ2K) ⊆
JFApre(ψ1, ψ2)K. Let s be a state in Apre(Jψ1K, Jψ2K), we consider two cases: (i) s ∈
S1; and (ii) s ∈ SP . For the case (i) it follows from the definition of Apre that there
exists an action a ∈ Av(s) such that the unique state δ1(s, a) satisfies ψ1 ∧ ψ2. It fol-
lows that s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,ψ2)K and therefore s ∈ JFApre(ψ1, ψ2)K. In case
(ii) we have s ∈ SP , Supp(δP (s)) ⊆ Jψ1K, and Supp(δP (s)) ∩ Jψ2K 6= ∅. It follows
that s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,ψ2)K and therefore s ∈ JFApre(ψ1, ψ2)K.

We continue with the second inclusion JFApre(ψ1, ψ2)K ⊆ Apre(Jψ1K, Jψ2K). Let s
be a state in JFApre(ψ1, ψ2)K, we again consider two cases: (i) s ∈ S1; and (ii) s ∈ SP .
For case (i) assume s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,ψ2)K, it follows that there exists an
available action a ∈ Av(s) such that the state δ1(s, a) is in Jψ2K and as we have Jψ2K ⊆
Jψ1K, we have that there exists an action a ∈ Av(s) such that δ1(s, a) ∈ Jψ1K∩Jψ2K. For
the second case (ii) when s ∈ SP we again assume s ∈ J〈〈1〉〉(,ψ1) ∧ 〈〈1, 2〉〉(,ψ2)K.
The first part of the formula ensures that δP (s) ⊆ Jψ1K and the second part ensures that
δP (s) ∩ Jψ2K 6= ∅. The desired result follows. ut

The following lemma shows the first of the two inclusions:

Lemma 6. For an MDP we have 4C ⊆4Q.

Proof. We prove the counter-positive, i.e., we construct a mapping of formulas f :
QCTL → C-ATL such that given two states s, s′ and a QCTL formula ψ we have
that if s |= ψ and s′ 6|= ψ then the C-ATL formula f(ψ) is true in s and not true in
s′. We proceed by structural induction on the QCTL formula and replace parts that are
in scope of a path quantifier by their C-ATL version. The cases where ψ is an atomic
proposition or a Boolean combination of formulas are straightforward. It remains to
translate the formulas 〈Almost〉(,ϕ1), 〈Almost〉(ϕ1Wϕ2), and 〈Almost〉(ϕ1 Uϕ2) for
QCTL formulas ϕ1, ϕ2. The translation of the first two follows directly from Lemma 2,
therefore it remains to translate the QCTL formula 〈Almost〉(ϕ1 Uϕ2). We proceed
by encoding the fixpoint computation of the 〈Almost〉(ϕ1 Uϕ2) formula into nested
C-ATL formulas. Let n be the number of states of the MDP. Let {φ̃i, φi,j | 0 ≤ i, j ≤

16

n} be a set of formulas defined by the following clauses:

φ̃0 = true;

∀1 ≤ i ≤ n : φi,0 = false

∀1 ≤ i ≤ n.∀0 ≤ j ≤ n− 1 : φi,j+1 = f(ϕ2) ∨ (f(ϕ1) ∧ FApre(φ̃i−1, φi,j))

∀1 ≤ i ≤ n : φ̃i = φi,n;

By Lemma 5 the set of nested formulas φi,j represents the computation of Xi,j and
φ̃i the computation of Yi (for the computation of the fixpoint formula). It follows that
we have J〈Almost〉(ϕ1 Uϕ2)K = Jφ̃nK and concludes the translation. The translation
for formulas 〈Positive〉(,ϕ1), 〈Positive〉(ϕ1Wϕ2), and 〈Positive〉(ϕ1 Uϕ2) to C-ATL
formulas follows from Lemma 2 and Lemma 4. The desired result follows. ut

Lemma 7. For an MDP G we have 4Q ⊆4C .

Proof. Given an MDP with n states, it follows from the proof of Theorem 2 for the
combined-simulation game that the n-step approximation 4nC is exactly the same as
4C . We define a sequence Ψ0, Ψ1, . . . , Ψn of sets of formulas of QCTL with the
property that s 4iC t iff every formula ψ ∈ Ψi that is true in s is also true in
t. We denote by BoolC(Ψ) all the formulas that consist of disjunctions and con-
junctions of formulas in Ψ . We assume that BoolC(Ψ) does not contain repeated el-
ements, therefore from finiteness of Ψ follows finiteness of BoolC(Ψ). We define
Ψ0 = BoolC({q,¬q | q ∈ AP}), and for all 0 ≤ i < n we define Ψi+1 = BoolC({Ψi ∪
{〈Positive〉(,ψ), 〈Almost〉(,ψ) | ψ ∈ Ψi}}). The formulas in Ψ0, Ψ1, . . . , Ψn pro-
vide witnesses that for all 0 ≤ i ≤ n we have that 4Q⊆4iC , in particular we have that
4Q⊆4C . ut

Theorem 4. For all MDPs G and G′ we have 4Q =4C .

Theorem 5. For all MDPs G and G′ we have 4∗Q =4Q

Proof. (Sketch). We need to show that if a QCTL∗ formula distinguishes two states,
then there is a QCTL formula that also distinguishes them. The basic idea is similar
to the proof of [12, Theorem 7.1, assertion 2]. We first construct a deterministic parity
automata given the formula in QCTL∗, and the almost-sure or positive solutions for
MDPs with parity objectives can be encoded as a µ-calculus formula [14]. The transla-
tion of µ-calculus formulas to a QCTL formula is done as in Lemma 6. ut

Theorem 6. Given an MDP the relation 4∗Q can be computed in quadratic time using
discrete graph theoretic algorithms.

Proof. Follows directly from Theorems 3, 4, and 5. ut

6 CEGAR for Combined Simulation

In this section we present a CEGAR approach for the computation of combined simu-
lation.

17

6.1 Simulation Abstraction and Alternating-Simulation Abstraction

Abstraction. An abstraction of a game consists of a partition of the game graph such
that in each partition the atomic proposition labeling match for all states. Given an
abstraction of a game, the abstract game can be defined by collapsing states of each
partition and redefining the action-available and transition functions. The redefinition
of the action-available and transition functions can either increase or decrease the power
of the players. If we increase the power of Player 1 and decrease the power of Player 2,
then the abstract game will be in alternating simulation with the original game, and if
we increase the power of both players, then the abstract game will simulate the original
game. We now formally define the partitions, and the two abstractions.

Partitions for abstraction. A partition of a game G = (S,A,Av, δ,L, s0) is an
equivalence relation Π = {π1, π2, . . . , πk} on S such that: (i) for all 1 ≤ i ≤ k
we have πi ⊆ S and for all s, s′ ∈ πi we have L(s) = L(s′) (labeling match);
(ii)

⋃
1≤i≤k πi = S (covers the state space); and (iii) for all 1 ≤ i, j ≤ k, such that i 6= j

we have πi ∩ πj = ∅ (disjoint). Note that in alternating games Player 1 and Player 2
states are distinguished by proposition turn, so they belong to different partitions.

Simulation abstraction. Given a two-player game G = (S,A,Av, δ,L, s0) and a
partition Π of G, we define the simulation abstraction of G as a two-player game
AbsΠS (G) = (S,A,Av, δ,L, s0), where

– S = Π: the partitions in Π are the states of the abstract game.
– For all πi ∈ Π we have Av(πi) =

⋃
s∈πi Av(s): the set of available actions is

the union of the actions available to the states in the partition, and this gives more
power to Player 1.

– For all πi ∈ Π and a ∈ Av(πi) we have δ(πi, a) = {πj | ∃s ∈ πi : (a ∈
Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a transition from a partition πi given
an action a to a partition πj if some state s ∈ πi can make an a-transition to some
state in s′ ∈ πj , and this gives more power to Player 2.

– For all πi ∈ Π we haveL(πi) = L(s) for some s ∈ πi: the abstract labeling is well-
defined, since all states in a partition are labeled by the same atomic propositions.

– s0 is the partition in Π that contains state s0.

Alternating-simulation abstraction. Given a two-player game G =
(S,A,Av, δ,L, s0) and a partition Π of G, we define the alternating-simulation
abstraction of G as a two-player game AbsΠA(G) = (S̃, A, Ãv, δ̃, L̃, s̃0), where

– (i) S̃ = Π; (ii) for all πi ∈ Π we have Ãv(πi) =
⋃
s∈πi Av(s); (iii) for all πi ∈ Π

we have L̃(πi) = L(s) for some s ∈ πi; (iv) s̃0 is the partition in Π that contains
state s0 (as in the case of simulation abstraction).

– For all πi ∈ Π and a ∈ Ãv(πi) we have δ̃(πi, a) = {πj | ∀s ∈ πi : (a ∈
Av(s) ∧ ∃s′ ∈ πj : s′ ∈ δ(s, a))}: there is a transition from a partition πi given
an action a to a partition πj if all states s ∈ πi can make an a-transition to some
state in s′ ∈ πj , and this gives less power to Player 2. For technical convenience
we assume δ̃(πi, a) is non-empty.

18

The following proposition states that (alternating-)simulation abstraction of a game G
is in (alternating-)simulation with G.

Proposition 3. For all partitions Π of a two-player game G we have: (1) G ∼A
AbsΠA(G); and (2) G ∼S AbsΠS (G).

Example 4. Consider a two-player interpretation of the MDP G2 from Figure 3. The
coarsest partition of G2 is Π = {π0, π1, π2}, where π0 = {s20, s21, s23}, π1 =
{s22, s24, s26}, π2 = {s25}. The alternating-simulation abstraction and the simulation ab-
straction of Π are depicted in Figure 4. ut

π0 π1 π2AbsΠA(G2)
a, b

⊥

b

π0 π1 π2AbsΠS (G2)
⊥

a, b b

Fig. 4. Alternating-simulation and simulation abstractions of G2 from Figure 3.

6.2 Sound Assume-Guarantee Rule

In this section we present the sound assume-guarantee rule for the combined-simulation
problem. To achieve this we first need an extension of the notion of combined-
simulation game.
Modified combined-simulation games. Consider games GAlt =
(S,A, δAlt,AvAlt,L, s0), GSim = (S,A, δSim,AvSim,L, s0) and
G′ = (S′, A, δ′,Av′,L′, s′0). The modified simulation game GM =
(SM, AM,AvM, δM,LM, sM0) is defined exactly like the combined simulation
game given GAlt and G′, with the exception that the step-wise simulation gadget
is defined using the transitions of GSim instead of GAlt. Formally, we change the
transitions as follows:

– Checking step-wise simulation conditions. Transition (a) is redefined: for a state
(s, s′,Sim, 2) we have only one action ⊥ available for Player 1 and we have
δM((s, s′,Sim, 2),⊥) = {(t, s′,Sim, 1) | ∃a ∈ AvSim(s) : t ∈ δSim(s, a)}.

We write (GAlt ⊗GSim) ∼M G′ if and only if (s0, s′0) ∈ J〈〈1〉〉(�¬p)KGM .

Proposition 4. Let G,G′, GAlt, GSim be games such that G ∼A GAlt and G ∼S GSim.
Then (GAlt ⊗GSim) ∼M G′ implies G ∼C G′.

The key proof idea for the above proposition is as follows: if G ∼A GAlt and
G ∼S GSim, then in the modified combined-simulation game GM the adversary
(Player 2) is stronger than in the combined-simulation game GC . Hence winning in
GM for the proponent (Player 1) implies winning in GC and gives the desired result of
the proposition.

19

Sound assume-guarantee method. Given two games G1 and G2, checking whether
their parallel composition G1 ‖ G2 is in combined simulation with a game G′ can
be done explicitly by constructing the synchronized product. The composition, how-
ever, may be much larger than the components and thus make the method ineffective
in practical cases. We present an alternative method that proves combined simulation
in a compositional manner, by abstracting G2 with some partition Π and then com-
posing it with G1. The sound assume-guarantee rule follows from Proposition 3 and
Proposition 4.

Proposition 5 (Sound assume-guarantee rule). Given games G1, G2, G
′, and a par-

titionΠ ofG2, let A = G1 ‖ AbsΠA(G2) and S = G1 ‖ AbsΠS (G2). If (A⊗S) ∼M G′,
then (G1 ‖ G2) ∼C G′, i.e.,

A = G1 ‖ AbsΠA(G2); S = G1 ‖ AbsΠS (G2); (A⊗ S) ∼M G′

(G1 ‖ G2) ∼C G′ (6)

If the partition Π is coarse, then the abstractions in the assume-guarantee rule can be
smaller than G2 and also their composition with G1. As a consequence, combined sim-
ulation can be proved faster as compared to explicitly computing the composition. In
Section 6.4 we describe how to effectively compute the partitions Π and refine them
using CEGAR approach.

6.3 Counter-examples Analysis

If the premise (A ⊗ S) ∼M G′ of the assume-guarantee rule (6) is not satisfied, then
the adversary (Player 2) has a memoryless winning strategy in GM, and the memory-
less strategy is the counter-example. To use the sound assume-guarantee rule (6) in a
CEGAR loop, we need analysis of counter-examples.

Representation of counter-examples. A counter-example is a memoryless winning strat-
egy for Player 2 inGM. Note that inGM Player 2 has a reachability objective, and thus
a winning strategy ensures that the target set is always reached from the starting state,
and hence no cycle can be formed without reaching the target state once the memory-
less winning strategy is fixed. Hence we represent counter-examples as directed-acyclic
graphs (DAG), where the leafs are the target states and every non-leaf state has a single
successor chosen by the strategy of Player 2 and has all available actions for Player 1.

Abstract, concrete, and spurious counter-examples. Given two-player games G1 and
G2, let G = (G1 ‖ G2) be the parallel composition. Given G and G′, let GC be
the combined-simulation game of G and G′. The abstract game GM is the modified
combined-simulation game of (A ⊗ S) and G′, where A = G1 ‖ AbsΠA(G2) and
S = G1 ‖ AbsΠS (G2). We refer to a counter-example θabs in GM as abstract, and to
a counter-example θcon in GC as concrete. An abstract counter-example is feasible if
we can substitute partitions in A and S with states of G2 to obtain a concrete counter-
example. An abstract counter-example is spurious if it is not feasible.

Concretization of counter-examples. We follow the approach of [27] to check the fea-
sibility of a counter-example by finding a concretization function Conc from states in

20

GM to a set of states in G2 that witness a concrete strategy from the abstract strategy.
A state in GM has a component which is a partition for G2, and the concretization con-
structs a subset of the partition. Intuitively, for a state s of GM in the counter-example
DAG, the concretization represents the subset of states of G2 in the partition where
a concrete winning strategy exists using the strategy represented by the DAG below
the state s. Informally, the witness concrete strategy is constructed inductively, going
bottom-up in the DAG as follows: (i) the leaves already represents winning states and
hence their concretization is the entire partition; (ii) for non-leaf states in the DAG of
the abstract counter-example, the concretization represents the set of states of G2 of
the partition which lead to a successor state that belongs to the concretization of the
successor in the DAG. An abstract counter-example is feasible, if the concretization of
the root of the DAG contains the initial state of G2.
Computation of the concretization. Given an abstract counter-example θabs and a state
s in GM, let Succ(s) be the set of all successor of s in GM given θabs is fixed by
Player 2. The formal description of the concretization is given in Figure 5, where the
concretization of a state s in the abstract counter-example is computed from its succes-
sors in the DAG. We use the notation Av1, Av2, and δ2 to represent the action-available
functions of G1 and G2, and the transition function of G2, respectively.
Illustrative examples. We present intuitive description of two representative cases of
concretization from Figure 5: (1) Consider a state s = ((s1, π2), s

′,Alt, 2) where the
abstract counter-example chooses the successor s′ = ((s1, π2), s

′,Alt, a, 1) (intuitively
this corresponds to choice of action a). The concretization Conc(s) = {s ∈ π2 | a ∈
Av2(s) ∧ s ∈ Conc(s′)} is the subset of states in π2 where the action a is available
and s also belongs to the concretization of the successor state s′. (2) For a state s =
((s1, π2), s

′,Alt, a, a′, 1), the concretization is the set of states where action a is not
available or all successors given action a belong to the concretization of the successors
of s.

Example 5. Consider MDPs G1, G2, G
′ in Figure 3 interpreted as games and the ab-

stract games AbsΠA(Ĝ2), AbsΠS (Ĝ2) in Figure 4. Let A = Ĝ1 ‖ AbsΠA(Ĝ2) and
S = Ĝ1 ‖ AbsΠS (Ĝ2). Figure 6 shows part of an abstract counter-example to the
modified combined-simulation game of (A ⊗ S) and G′. In this counter-example the
adversary first plays in the simulation gadget and the proponent responds by moving to
a state ((s11, π1), s

′
1) or a state ((s11, π1), s

′
4) (their successors are not depicted in Fig-

ure 6). From the state ((s11, π1), s
′
1) the adversary has a winning strategy by playing in

the alternating-simulation gadget, and from ((s11, π1), s
′
4) by playing in the simulation

gadget. The dashed shows assign the concretization of states in the abstract counter-
example. The counter-example is spurious, since the initial state of G2 does not belong
to the concretization of the initial state of the counter-example. ut

6.4 CEGAR

The counter-example analysis presented in the previous section allows us to automat-
ically refine abstractions using the CEGAR paradigm [17]. The code of the CEGAR
algorithm for the assume-guarantee combined simulation is shown in Algorithm 1. The

21

s = ((s1, π2), s
′) : Conc(s) =

{
π2 s is a leaf
Conc(s′) otherwise, where Succ(s) = {s′}

s = ((s1, π2), s
′,Sim, 2) : Conc(s) = {s ∈ π2 | ∃a ∈ Av1(s1) ∩ Av2(s) : δ2(s, a) ∩ Conc(s′) 6= ∅}

where Succ(s) = {s′}

s = ((s1, π2), s
′,Sim, 1) : Conc(s) =

⋂
s′∈Succ(s)

Conc(s′)

s = ((s1, π2), s
′,Alt, 2) : Conc(s) = {s ∈ π2 | a ∈ Av2(s) ∧ s ∈ Conc(s′), } where

Succ(s) = {s′} and s′ = ((s1, π2), s
′,Alt, 2, a)

s = ((s1, π2), s
′,Alt, a, 1) : Conc(s) =

⋂
s′∈Succ(s)

Conc(s′)

s = ((s1, π2), s
′,Alt, a, a′, 2) : Conc(s) = Conc(s′), where Succ(s) = {s′}

s = ((s1, π2), s
′,Alt, a, a′, 1) : Conc(s) = {s ∈ π2 | a 6∈ Av2(s) ∨ δ2(s, a) ⊆

⋃
s′∈Succ(s)

Conc(s′)}

Fig. 5. Concretization function; s is a state in an abstract counter-example.

((s10, π0), s′0)

((s10, π0), s′0, Sim, 2)

((s11, π1), s′0, Sim, 1)

((s11, π1), s′1)

. . .

((s11, π1), s′4)

. . .

∅

∅

∅

{s24, s26}{s22}

⊥

⊥

s′1

⊥

s′4

⊥

Conc

Conc

Conc

ConcConc

Fig. 6. Abstract counter-example to the modified combined-simulation game of (A⊗ S) and G′,
where A = Ĝ1 ‖ AbsΠA(Ĝ2) and S = Ĝ1 ‖ AbsΠS (Ĝ2).

algorithm takesG1, G2, G
′ as arguments and answers whether (G1 ‖ G2) ∼C G′ holds.

Initially, the algorithms computes the coarsest partition Π of G2. Then, it executes the
CEGAR loop: in every iteration the algorithm constructs A (resp. S) as the parallel
composition of G1 and the alternating-simulation abstraction (resp. simulation abstrac-
tion) of G2. Let GM be the modified combined-simulation game of (A ⊗ S) and G′.
If Player 1 has a winning strategy in GM then the algorithm returns YES; otherwise it
finds an abstract counter-example Cex in GM. In case the counter-example is feasible,
then it corresponds to a concrete counter-example, and the algorithm returns NO. If Cex
is spurious, the algorithm calls a refinement procedure that uses the concretization of
Cex to return a partition Π ′ finer than partition Π .

Refinement procedure. Given a partition Π and a spurious counter-example Cex to-
gether with its concretization function Conc we describe how to compute the refined
partition Π ′. Consider a partition π ∈ Π and let Sπ = {s1, s2, . . . , sm} denote the
states of the abstract counter-example Cex that contain π as its component. Every state

22

Algorithm 1 Assume-guarantee CEGAR for ∼C .
Input: Two-player games G1, G2, G

′.
Output: yes if G1 ‖ G2 ∼C G

′, otherwise no
Π ← coarsest partitioning of G2

loop
A← G1 ‖ AbsΠA(G2); S← G1 ‖ AbsΠS (G2)
GM ← modified combined simulation game of (A⊗ S) and G′

if Player 1 wins in GM then return yes
else

Cex←abstract counter-example in GM

if Feasible(Cex) then return no
else Π ← Refine(Cex, Π)

si splits π into at most two sets Conc(si) and π \ Conc(si), and let this partition
be denoted as Ti. We define a partition Pπ as the largest equivalence relation on π
that is finer than any of the equivalence relation Ti for all 1 ≤ i ≤ m. Formally,
Pπ = {π1, π2, . . . , πk} is a partition of π such that for all 1 ≤ j ≤ k and 1 ≤ i ≤ m
we have πj ⊆ Conc(si) or πj ⊆ π \ Conc(si). The new partition Π ′ is then defined
as the union over Pπ for all π ∈ Π .

Example 6. We continue with our running example. In Example 5 we showed that the
abstractions of Ĝ2 by the coarsest partition Π lead to a spurious counter-example de-
picted in Figure 6. Consider the partition π1 = {s22, s24, s26}. There are three states in the
counter-example that have π1 as its component and the concretization function assigns
to them three subsets of states: ∅, {s22}, {s24, s26}. After the refinement partition π1 is
split into two partitions π′1 = {s22} and π′′1 = {s24, s26}. ut

Proposition 6. Given a partition Π and a spurious counter-example Cex, the partition
Π ′ obtained as refinement of Π is finer than Π .

Since we consider finite games, the refinement procedure only executes for finitely
many steps and hence the CEGAR loop eventually terminates.

7 Experimental Results

We implemented our CEGAR approach for combined simulation in Java, and experi-
mented with our tool on a number of MDPs and two-player games examples. We use
PRISM [35] model checker to specify the examples and generate input files for our tool.

Observable actions. To be compatible with the existing benchmarks (e.g. [33]) in our
tool actions are observable instead of atomic propositions. Our algorithms are easily
adapted to this setting. We also allow the user to specify silent actions for components,
which are not required to be matched by the specification G′.

Improved (modified) combined-simulation game. We leverage the fact that MDPs are
interpreted as alternating games to simplify the (modified) combined-simulation game.
When comparing two Player-1 states, the last two steps in the alternating-simulation

23

gadget can be omitted, since the players have unique successors given the actions cho-
sen in the first two steps. Similarly, for two probabilistic states, the first two steps in the
alternating-simulation gadget can be skipped.
Improved partition refinement procedure. In the implementation we adopt the approach
of [27] for refinement. Given a state s of the abstract counter-example with partition
π as its component, the equivalence relation may split the set π \ Conc(s) into mul-
tiple equivalence classes. Intuitively, this ensures that similar-shaped spurious counter-
examples do not reappear in the following iterations. This approach is more efficient
than the naive one, and also implemented in our tool.
MDP examples. We used our tool on all the MDP examples from [33]:

– CS1 and CSn model a Client-Server protocol with mutual exclusion with proba-
bilistic failures in one or all of the n clients, respectively.

– MER is an arbiter module of NASAs software for Mars Exploration Rovers which
grants shared resources for several users.

– SN models a network of sensors that communicate via a bounded buffer with prob-
abilistic behavior in the components.

In addition, we also considered two other classical MDP examples:
– LE is based on a PRISM case study [35] that models the Leader election proto-

col [32], where n agents on a ring randomly pick a number from a pool of K
numbers. The agent with the highest number becomes the leader. In case there
are multiple agents with the same highest number the election proceed to the next
round. The specification requires that two leaders cannot be elected at the same
time. The MDP is parametrized by the number of agents and the size of the pool.

– PETP is based on a Peterson’s algorithm [39] for mutual exclusion of n threads,
where the execution order is controlled by a randomized scheduler. The specifica-
tion requires that two threads cannot access the critical section at the same time.
We extend Peterson’s algorithm by giving the threads a non-deterministic choice
to restart before entering the critical section. The restart operation succeeds with
probability 1

2 and with probability 1
2 the thread enters the critical section.

Details of experimental results. Table 1 shows the results for MDP examples we ob-
tained using our assume-guarantee algorithm and the monolithic approach (where the
composition is computed explicitly). We also compared our results with the tool pre-
sented in [33] that implements both assume-guarantee and monolithic approaches for
strong simulation [43]. All the results were obtained on a Ubuntu-13.04 64-bit ma-
chine running on an Intel Core i5-2540M CPU of 2.60GHz. We imposed a 4.3GB up-
per bound on Java heap memory and one hour time limit. For MER(6) and PETP(5)
PRISM cannot parse the input file (probably it runs out of memory).
Summary of results. For all examples, other than the Client-Server protocol, the assume-
guarantee method scales better than the monolithic reasoning; and in all examples our
qualitative analysis scales better than the strong simulation approach.
Two-player games examples. We also experimented with our tool on several examples
of games, where one of the players controls the choices of the system and the other
player represents the environment.

– EC is based on [8] and models an error-correcting device that sends and receives
data blocks over a communication channel. Notation EC(n, k, d) means that a data

24

AGCS AGSS MONCS MONSS
Ex. |G1| |G2| |G′| T ime Mem I |Π| T ime Mem I |Π| T ime Mem Time Mem

CS1(5) 36 405 16 1.2s 111MB 49 85 6.11s 213MB 32 33 0.04s 34MB 0.18s 95MB
CS1(6) 49 1215 19 2.55s 210MB 65 123 11.41s 243MB 40 41 0.05s 51MB 0.31s 99MB
CS1(7) 64 3645 22 4.49s 426MB 84 156 31.16s 867MB 56 57 0.05s 82MB 0.77s 113MB
CSn(3) 125 16 54 0.57s 100MB 9 24 33.43s 258MB 11 12 0.09s 35MB 11.29s 115MB
CSn(4) 625 25 189 6.38s 491MB 15 42 TO - - - 0.36s 107MB 1349.6s 577MB
CSn(5) 3k 36 648 106.39s 2579MB 24 60 TO - - - 4.41s 384MB TO -
MER(3) 278 1728 11 0.38s 92MB 6 10 2.74s 189MB 6 7 0.02s 48MB 128.1s 548MB
MER(4) 465 21k 14 3.72s 471MB 13 22 10.81s 870MB 10 11 10.73s 1218MB TO -
MER(5) 700 250k 17 31.26s 1773MB 20 32 67s 2879MB 15 16 - MO MO -
SN(1) 43 32 18 0.13s 39MB 3 6 0.28s 88MB 2 3 0.04s 30MB 3.51s 135MB
SN(2) 796 32 54 0.86s 125MB 3 6 66.09s 258MB 2 3 0.4s 104MB 3580.83s 1022MB
SN(3) 7k 32 162 5.1s 439MB 3 6 TO - - - 5.33s 619MB TO -
SN(4) 52k 32 486 35.21s 2462MB 3 6 TO - - - 44.14s 3357MB TO -
LE(3, 4) 2 652 256 0.2s 64MB 6 14 1.63s 223MB 6 7 0.4s 103MB TO -
LE(3, 5) 2 1280 500 0.37s 91MB 6 14 Error - - - 1.98s 255MB Error -
LE(4, 4) 3 3160 1280 0.55s 104MB 6 16 TO - - - 10.41s 1230MB TO -
LE(5, 5) 4 18k 12k 3.78s 389MB 6 18 TO - - - - MO TO -
LE(6, 4) 5 27k 20k 6.52s 734MB 6 20 TO - - - - MO TO -
LE(6, 5) 5 107k 78k 21.04s 1932MB 6 20 TO - - - - MO TO -
PETP(2) 68 3 3 0.07s 31MB 0 2 0.04s 87MB 0 1 0.07s 30MB 0.04s 90MB
PETP(3) 4 1730 4 0.22s 65MB 6 8 0.29s 153MB 3 4 0.27s 72MB 1.07s 170MB
PETP(4) 5 54k 5 1.52s 316MB 8 10 3.12s 727MB 4 5 8.17s 957MB 31.52s 1741MB

Table 1. Results for MDPs examples: AGCS stands for our assume-guarantee combined simula-
tion; AGSS stands for assume-guarantee with strong simulation; MONCS stands for our mono-
lithic combined simulation; and MONSS stands for monolithic strong simulation. The number I
denotes the number of CEGAR iterations and |Π| the size of the abstraction in the last CEGAR
iteration. TO and MO stand for a time-out and memory-out, respectively, and Error means that
an error occurred during execution. The memory consumption is obtained using the Unix time
command.

block consists of n bits and it encodes k bits of data; value d is the minimum
Hamming distance between two distinct blocks. In the first component Player 2
chooses a message to be sent over the channel and is allowed to flip some bits in
the block during the transmission. The second component restricts the number of
bits that Player 2 can flip. The specification requires that every message is correctly
decoded.

– PETG is the Peterson’s algorithm [39] example for MDPs, with the following dif-
ferences: (a) the system may choose to restart instead of entering the critical sec-
tion; (b) instead of a randomized scheduler we consider an adversarial scheduler.
As before, the specification requires mutual exclusion.

– VIR1 models a virus that attacks a computer system with n nodes (based on case
study from PRISM [35]). Player 1 represents the virus and is trying to infect as
many nodes of the network as possible. Player 2 represents the system and may
recover an infected node to an uninfected state. The specification requires that the
virus has a strategy to avoid being completely erased, i.e., maintain at least one
infected node in the network. VIR2 is a modified version of VIR1 with two special
critical nodes in the network. Whenever both of the nodes are infected, the virus can
overtake the system. The specification is as for VIR1, i.e., the virus can play such
that at least one node in the network remains infected, but it additionally requires

25

AGCS MONCS AGAS MONAS
Ex. |G1| |G2| |G′| T ime Mem I |Π| T ime Mem Time Mem I |Π| T ime Mem

EC(32, 6, 16) 71k 193 129 4.53s 665MB 1 7 1.11s 289MB 1.94s 389MB 0 2 1.17s 266MB
EC(64, 7, 16) 549k 385 257 73.21s 3816MB 1 131 13.65s 1786MB 19.99s 2172MB 0 2 8.73s 1590MB
EC(64, 8, 16) 1.1m 769 513 - MO - - - MO 49.64s 3308MB 0 2 - MO
EC(64, 8, 32) 1.1m 1025 513 - MO - - - MO 50.64s 3164MB 0 2 - MO
PETG(2) 3 52 3 0.08s 36MB 4 6 0.03s 30MB 0.07s 35MB 4 6 0.03s 30MB
PETG(3) 4 1514 4 0.2s 63MB 6 8 0.23s 74MB 0.22s 62MB 6 8 0.2s 62MB
PETG(4) 5 49k 5 1.77s 314MB 8 10 8.53s 1105MB 1.59s 305MB 8 10 5s 729MB
VIR1(12) 14 4097 1 0.81s 153MB 15 30 1.38s 259MB 0.31s 108MB 2 4 1.46s 209MB
VIR1(13) 15 8193 1 1.56s 204MB 16 32 4.4s 597MB 0.53s 172MB 2 4 2.69s 404MB
VIR1(14) 16 16k 1 2.74s 349MB 17 34 7.38s 1020MB 0.75s 246MB 2 4 6.92s 826MB
VIR1(15) 17 32k 1 4.56s 630MB 18 36 14.5s 2071MB 0.99s 486MB 2 4 0.92s 1368MB
VIR1(16) 18 65k 1 8.86s 1010MB 19 38 41.23 3761MB 1.36s 851MB 2 4 25.23s 2957MB
VIR1(17) 19 131k 1 19.6s 1808MB 20 40 - MO 2.09 1679MB 2 4 65.38s 4300MB
VIR1(18) 20 262k 1 38.52s 2889MB 21 42 - MO 3.57s 2712MB 2 4 - MO
VIR2(12) 13 4096 1 0.76s 142MB 19 34 0.84 190MB 0.68s 118MB 9 14 0.54s 133MB
VIR2(13) 14 8192 1 1.57s 192MB 20 36 1.35s 217MB 0.94s 177MB 9 14 1.03s 209MB
VIR2(14) 15 16k 1 3.09s 319MB 21 38 2.37s 391MB 1.88s 309MB 9 14 2.02s 389MB
VIR2(15) 16 32k 1 5.04s 633MB 22 40 4.05s 858MB 2.13s 491MB 9 14 3.66s 755MB
VIR2(16) 17 65k 1 10.24s 944MB 23 42 7.11s 1398MB 3.94s 898MB 9 14 5.95s 1359MB
VIR2(17) 18 131k 1 24.42s 1742MB 24 44 24.27s 2840MB 8.03s 1681MB 9 14 18.67s 2422MB
VIR2(18) 19 262k 1 47.91s 2906MB 25 46 55.02s 4238MB 15.74s 2728MB 9 14 33.66s 4071MB

Table 2. Results for two-player games examples.

that even if the system cooperates with the virus, the system is designed in a way
that the special nodes will never be infected at the same time.
The results for two-player game examples are shown in Table 2. Along with AGCS

and MONCS for assume-guarantee and monolithic combined simulation, we also con-
sider AGAS and MONAS for assume-guarantee and monolithic alternating simulation,
as for properties in 1-ATL it suffices to consider only alternating simulation. For all the
examples, the assume-guarantee algorithms scale better than the monolithic ones. Com-
bined simulation is finer than alternating simulation and therefore combined simulation
may require more CEGAR iterations.
Concluding remarks. In this work we considered compositional analysis of MDPs for
qualitative properties and presented a CEGAR approach. Our algorithms are discrete
graph theoretic algorithms. An interesting direction of future work would be to consider
symbolic approaches to the problem.

References

1. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement relations. In
CONCUR, LNCS 1466, pages 163–178. Springer, 1998.

2. R. Alur and T. A. Henzinger. Computer-aided verification. Unpublished, 2004.
3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
4. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It usually works:

The temporal logic of stochastic systems. In CAV, LNCS 939, pages 155–165. Springer,
1995.

5. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
6. C. Beeri. On the membership problem for functional and multivalued dependencies in rela-

tional databases. ACM Trans. on Database Systems, 5:241–259, 1980.

26

7. A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In FSTTCS, LNCS 1026, pages 499–513. Springer, 1995.

8. P. Cerný, M. Chmelik, T. A. Henzinger, and A. Radhakrishna. Interface simulation distances.
In GandALF, EPTCS 96, pages 29–42, 2012.

9. R. Chadha and M. Viswanathan. A counterexample-guided abstraction-refinement frame-
work for Markov decision processes. ACM Trans. Comput. Log. 12, page 1, 2010.

10. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee reasoning for
simulation conformance. In CAV, LNCS 3576, pages 534–547. Springer, 2005.

11. K. Chatterjee, S. Chaubal, and P. Kamath. Faster algorithms for alternating refinement rela-
tions. In CSL, LIPIcs 16, pages 167–182. Schloss Dagstuhl, 2012.

12. K. Chatterjee, L. de Alfaro, M. Faella, and A. Legay. Qualitative logics and equivalences for
probabilistic systems. Logical Methods in Computer Science, 5(2), 2009.

13. K. Chatterjee, L. de Alfaro, M. Faella, R. Majumdar, and V. Raman. Code-aware resource
management. Formal Methods in System Design, 42(2):146–174, 2013.

14. K. Chatterjee, L. de Alfaro, and T. A. Henzinger. Qualitative concurrent parity games. ACM
Trans. Comput. Log., 12(4):28, 2011.

15. K. Chatterjee, L. Doyen, and T. A. Henzinger. Qualitative analysis of partially-observable
Markov decision processes. In MFCS, LNCS 6281, pages 258–269. Springer, 2010.

16. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
17. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In CAV, LNCS 1855, pages 154–169, 2000.
18. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,

42(4):857–907, 1995.
19. L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic sys-

tems. In CONCUR, LNCS 2154, pages 351–365. Springer, 2001.
20. L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games. In FOCS,

pages 564–575, 1998.
21. K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-objective model

checking of Markov decision processes. Logical Methods in Computer Science, 4(4), 2008.
22. L. Feng, M. Z. Kwiatkowska, and D. Parker. Automated learning of probabilistic assump-

tions for compositional reasoning. In FASE, LNCS 6603, pages 2–17. Springer, 2011.
23. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
24. E. Grädel, W. Thomas, and T. Wilke. Automata, logics, and infinite games: a guide to current

research. LNCS 2500. Springer, 2002.
25. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Asp.

Comput., 6(5):512–535, 1994.
26. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and

infinite graphs. In FOCS, pages 453–462, 1995.
27. T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In ICALP,

LNCS 2719, pages 886–902. Springer, 2003.
28. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refine-

ment. In CAV, LNCS 2725, pages 262–274. Springer, 2003.
29. H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In CAV, LNCS 5123, pages

162–175. Springer, 2008.
30. R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
31. N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Com-

puter and System Sciences, 22:384–406, 1981.
32. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information and Com-

putation, 88(1), 1990.
33. A. Komuravelli, C. S. Pasareanu, and E. M. Clarke. Assume-guarantee abstraction refine-

ment for probabilistic systems. In CAV, LNCS 7358, pages 310–326. Springer, 2012.

27

34. M. Z. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov decision
processes. In QEST, pages 157–166, 2006.

35. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In CAV, LNCS 6806, pages 585–591, 2011.

36. M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verification for
probabilistic systems. In TACAS, LNCS 6015, pages 23–37. Springer, 2010.

37. R. Milner. An algebraic definition of simulation between programs. In IJCAI, pages 481–
489, 1971.

38. C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer. Learn-
ing to divide and conquer: applying the l* algorithm to automate assume-guarantee reason-
ing. Formal Methods in System Design, 32(3):175–205, 2008.

39. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, 1981.

40. A. Pnueli. In transition from global to modular temporal reasoning about programs. In
Logics and Models of Concurrent Systems, NATO Advanced Summer Institutes F-13, pages
123–144. Springer, 1985.

41. A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus algorithm
of Aspnes and Herlihy: a case study. Distributed Computing, 13(3):155–186, 2000.

42. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT Press, 1995. Technical Report MIT/LCS/TR-676.

43. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nord. J.
Comput., 2(2):250–273, 1995.

44. M. Stoelinga. Fun with FireWire: Experiments with verifying the IEEE1394 root contention
protocol. In Formal Aspects of Computing, 2002.

28

A Technical appendix

We start with an example that shows that also for alternating games combined sim-
ulation is finer that the intersection of simulation and alternating-simulation relation.

s0

s1

s3

s2 t0

t1

t3

t2

t4

G G′
⊥⊥

a1

a2

a3

⊥

a1

a2

a3

⊥

a3

Fig. 7. Games G,G′ such that G ∼S G
′ and G ∼A G′, but G 6∼C G

′.

Example 7. Figure 7 shows two alternating games G,G′, where the circu-
lar states belong to Player 1 and the rectangular states belong to Player 2,
white nodes are labeled by proposition p and gray nodes by proposi-
tion q. The largest simulation and alternating-simulation relations be-
tween G and G′ are: Smax = {(s0, t0), (s1, t1), (s2, t2), (s3, t1)},Amax =
{(s0, t0), (s0, t4), (s2, t2), (s3, t3), (s1, t3), (s1, t1)}. Formula 〈〈1〉〉(�(p ∧
〈〈1, 2〉〉(true U q))) is satisfied in state s0, but not in state t0, hence (s0, t0) 6∈ Cmax. ut

We now present detailed proofs of Lemma 1 and Theorem 2 in the context of alter-
nating games.

Lemma 8. Given two alternating games G and G′, let Cmax be the combined simula-
tion. For all (s, s′) ∈ Cmax the following assertions hold:

1. For all Player 1 strategies σ in G, there exists a Player 1 strategy σ′ in G′ such
that for every play ω′ ∈ Plays(s′, σ′) there exists a play ω ∈ Plays(s, σ) such that
ω ∼C ω′.

2. For all pairs of strategies σ and θ in G, there exists a pair of strategies σ′ and θ′ in
G′ such that Plays(s, σ, θ) ∼C Plays(s′, σ′, θ′),

Proof. Assertion 1. As the states of Player 1 and Player 2 are distinguished by the turn
atomic proposition, it follows from the fact that (s, s′) ∈ Cmax, that either (i) s ∈ S1

and s′ ∈ S′1 or (ii) s ∈ S2 and s′ ∈ S′2.
For the first case (i) we consider a winning strategy σC in GC such that for

all (s, s′) ∈ Cmax and against all strategies θC we have Plays((s, s′), σC , θC) ∈
J�(¬p)KGC . Given the Player 1 strategy σ in G we construct σ′ in G′ using the strategy
σC . Let h be an arbitrary history in GC that visits only states of type (S×S′) that are in
Cmax and ends in (s, s′). Consider a history w ·s inG and w′ ·s′ inG′. Let σ(w ·s) = a,
we define σ′(w′ ·s′) as action a′ = σC(h ·((s, s′),Alt, 2) ·((s, s′),Alt, a, 2)), i.e., action
a′ corresponds to the choice of the proponents winning strategy σC in response to the

29

adversarial choice of checking step-wise alternating-simulation followed by action a in
G. As both s and s′ are Player-1 states we have that |δ(s, a)| = 1 and |δ′(s′, a′)| = 1.
Let (t, t′) be the unique state reached in 2 steps from ((s, s′),Alt, a, a′, 2) in GC . As-
sume towards contradiction that LC((t, t′)) = {p}, then there exists a strategy for ad-
versary that reaches a loosing state while the proponent plays a winning strategy σC and
the contradiction follows. For the second case (ii) we have that states s and s′ belong to
Player 2, and there is a single action available for σ′.

Assertion 2 The proof is similar to the first assertion, and instead of using the step-wise
alternating-simulation gadget for strategy construction (of the first item) we use the
step-wise simulation gadget from GC to construct the strategy pairs.

Theorem 7. For all alternating games G and G′ we have Cmax =4∗C=4C .

Proof. First implication. We first prove the implication Cmax ⊆4∗C . We will show the
following assertions:

– For all states s and s′ such that (s, s′) ∈ Cmax, we have that every C-ATL∗ state
formula satisfied in s is also satisfied in s′.

– For all plays ω and ω′ such that ω ∼C ω′, we have that every C-ATL∗ path formula
satisfied in ω is also satisfied in ω′.

We will prove the theorem by induction on the structure of the formulas. The interesting
cases for the induction step are formulas 〈〈1〉〉(ϕ) and 〈〈1, 2〉〉(ϕ), where ϕ are path
formulas.

– Assume s |= 〈〈1〉〉(ϕ) and (s, s′) ∈ Cmax. It follows that there exists a strategy
σ ∈ Σ that ensures the path formula ϕ from state s against any strategy θ ∈ Θ.
We want to show that s′ |= 〈〈1〉〉(ϕ). By Lemma 8(item 1) we have that there exists
a strategy σ′ for Player 1 from s′ such that for every play ω′ ∈ Plays(s′, σ′) there
exists a play ω ∈ Plays(s, σ) such that ω ∼C ω′. By inductive hypothesis we have
that s′ |= 〈〈1〉〉(ϕ).

– Assume s |= 〈〈1, 2〉〉(ϕ) and (s, s′) ∈ Cmax. It follows that there exist strategies σ ∈
Σ, θ ∈ Θ that ensure the path formula ϕ from state s. By Lemma 8(item 2) we have
that there exist strategies σ′ and θ′ such that the two plays ω′ = Plays(s′, σ′, θ′)
and ω = Plays(s, σ, θ) satisfy ω ∼C ω′. By inductive hypothesis we have that
s′ |= 〈〈1, 2〉〉(ϕ).

– Consider a path formula ϕ. If ω ∼C ω′, then by inductive hypothesis for every sub-
formula ϕ′ of ϕ we have that if ω |= ϕ′ then ω′ |= ϕ′. It follows that if ω |= ϕ then
ω′ |= ϕ.

Second implication. It remains to prove the second implication 4∗C⊆4C⊆ Cmax. We
prove that from the assumption that (s, s′) 6∈ Cmax we can construct a C-ATL formula
ϕ such that s |= ϕ and s′ 6|= ϕ. We refer to the formula ϕ as a distinguishing for-
mula. Assume that given states s and s′ we have that (s, s′) 6∈ Cmax, then there exists
a winning strategy in the corresponding combined-simulation game for the adversary
from state (s, s′), i.e., there exists a strategy θC such that against all strategies σC we
have Plays((s, s′), σC , θC) reaches a state labeled by p. As memoryless strategies are

30

sufficient for both players in GC [24], there also exists a bound i ∈ N, such that the
proponent fails to match the choice of the adversary in at most i turns. We construct the
C-ATL formula ϕ inductively:

Base case: Assume (s, s′) 6∈ Cmax and let 0 be the number of turns the adversary needs
to play in order to win. It follows that (s, s′) is a winning state for the adversary,
i.e., LC((s, s′)) = {p}. It follows that L(s) 6= L′(s′). There are two options:
(i) there exists an atomic proposition q ∈ AP that is true in s and not true in s′ and
distinguishes the two states, or (ii) there exists an atomic proposition q ∈ AP that is
not true in s and true in s′, in that case the formula ¬q distinguishes the two states.

Induction step: Assume (s, s′) 6∈ Cmax and let n + 1 be the number of turns the ad-
versary needs to play in order to win. As the states of Player 1 and Player 2 are
distinguished by the turn atomic proposition, it follows that either (i) s ∈ S1 and
s′ ∈ S′1 or (ii) s ∈ S2 and s′ ∈ S′2. Otherwise the adversary could win in 0 turns
from (s, s′).
We first consider case (i), i.e., (s, s′) ∈ S1 × S′1. The adversary can choose
whether to verify (1) step-wise alternating-simulation (Alt) or (2) step-wise sim-
ulation (Sim). After that he chooses an action a to be played according the adver-
sarial strategy θC in state (s, s′), such that no matter what the proponent plays, the
adversary will win in n turns. We consider two cases: (1) the adversary checks for
step-wise alternating-simulation relation (Alt), or (2) the adversary checks for step-
wise simulation relation (Sim). For case (1) we have that there exists an action a
for the adversary such that for all actions a′ of the proponent the adversary can win
in n turns from the unique successor (t, t′) of (s, s′) given Alt and a was played by
the adversary and a′ by the proponent. From the induction hypothesis there exists
a C-ATL formula ϕn such that t |= ϕn and t′ 6|= ϕn. We define the formula ϕn+1

that distinguishes states s and s′ as 〈〈1〉〉(,ϕn). For case (2), where the adversary
plays Sim the proof is exactly the same, as step-wise simulation turn from Player 1
states coincides with step-wise alternating-simulation turn.
Next we first consider case (ii), i.e., (s, s′) ∈ S2 × S′2. The adversary can choose
whether to verify (1) step-wise alternating-simulation (Alt) or(2) step-wise simu-
lation (Sim). We start with first case (1): there is a unique action a available to
the adversary from state ((s, s′),Alt, 2) and similarly a unique action a′ for the
proponent from ((s, s′), a,Alt, 1). The adversary chooses an action t′ from the
((s, s′), a, a′,Alt, 2) according to the winning strategy and the proponent chooses
some action ti from a set of available successor (t1, t2, . . . , tm). As the adver-
sary follows a winning strategy θC we have that it wins from all states (ti, t

′) for
1 ≤ i ≤ m in at most n turns. From the induction hypothesis there exist C-ATL
formulas ϕin such that ti |= ϕin and t′ 6|= ϕin. We define the formula ϕn+1 that
distinguishes states s and s′ as 〈〈1〉〉(,(

∨
1≤i≤m

ϕin). For case (2) where the adver-

sary verifies the step-wise simulation step, the proof is analogous. The formula that
distinguishes states s and s′ is 〈〈1, 2〉〉((,

∨
1≤i≤m

ϕin)).

The desired result follows. ut

31

	CEGAR for Qualitative Analysis of Probabilistic Systems
	Introduction
	Game Graphs and Alternating-time Temporal Logics
	Two-player Games
	Alternating-time Temporal Logic

	Combined Simulation Relation Computation
	MDPs and Qualitative Logics
	MDPs
	Qualitative Logics for MDPs

	Characterization of Qualitative Simulation for MDPs
	CEGAR for Combined Simulation
	Simulation Abstraction and Alternating-Simulation Abstraction
	Sound Assume-Guarantee Rule
	Counter-examples Analysis
	CEGAR

	Experimental Results
	Technical appendix

