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ABSTRACT

The edit distance between two (untimed) traces is the mimimu
cost of a sequence of edit operations (insertion, deletioaybsti-
tution) needed to transform one trace to the other. Editdists
have been extensively studied in the untimed setting, amd tbe
basis for approximate matching of sequences in differentaios
such as coding theory, parsing, and speech recognition.

In this paper, we lift the study of edit distances from untime
languages to the timed setting. We define an edit distaneeshet
timed words which incorporates both the edit distance betvibe
untimed words and the absolute difference in time stampst Ou
edit distance between two timed words is computable in pBlyn
mial time. Further, we show that the edit distance betweémeck
word and a timed language generated by a timed automaton, de
fined as the edit distance between the word and the closest wor
in the language, is PSPACE-complete. While computing thie ed
distance between two timed automata is undecidable, we gtaiw
the approximate version, where we decide if the edit distdres
tween two timed automata is either less than a given pararoete
more thand away from the parameter, fér > 0, can be solved
in exponential space and is EXPSPACE-hard. Our definitios a
techniques can be generalized to the setting of hybrid sysstand
analogous decidability results hold for rectangular awtiam
Keywords. Timed automata; Edit distance; Rectangular hybrid
automata.

1. INTRODUCTION

The edit distance [14] between two strings is the minimunt cos
of a sequence of edit operations (insertion, deletion, bstiu-
tion of one letter by another) that transforms one stringnmtlaer.
The edit distance between a stringand a languagé is the min-
imal distance between strings belonging/tandw. The notion
of edit distanceprovides a quantitative measure of “how far” one
string is from another, or from a given language. It forms lthe
sis for approximately comparing sequences, a problem tisgsa
in many different areas, such as error-correcting codearaldan-
guage processing, and computational biology.

Algorithms for edit distance have been studied extensifaly
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(untimed) words[[14 11, 16, 18, 13,115]. In this paper, we gene
alize the definition of edit distance from untimed to timedrdg

We define the edit distance between two timed wardsand tw’

as the lexico-graphic ordering of two components: the fgghe
(normal) edit distance on their untimed parts, and the skdésn
the maximum difference in time stanfpsWe study algorithmic
aspects of the edit distance between timed words and tinmed la
guages. We show that the edit distance between two timedsword
can be computed in polynomial time. Moreover, we show that th
edit distance between a timed word and a timed languageateder
by a timed automaton can be computed in polynomial space. The
corresponding decision problem is PSPACE-complete. A bjce
product of our result is that the edit distance problem fouatime
‘word and untimed non-deterministic finite-state automiifed) is
NL-complete (complete for non-deterministic log-space).

One can generalize edit distances to capture the distahwedre
two languages: the edit distance betwdanand L. is the supre-
mum over all stringsv in L, of the edit distance betweenandL.

We show that the edit distance between two timed languages-ge
ated by timed automata is not computable. However, we shatv th
the approximate version of the problem, where we ask if the ed
distance is either less thanor more tharw+-6 for an additive error

0 > 0, can be solved in exponential space, and is EXPSPACE-hard.

Our results use the following technical constructions. fher
computation of edit distance between a timed word and a timed
automaton, we construct two timed automata which are pelyno
mial in the size of the input automaton, and show that thesitati
problem for edit distance reduces to checking non-eminéthe
constructed automata. The key intuition is to use non-tdetgsm
in the timed automata to model edits in the word, and use iaddit
clocks with rectangular constraints to bound the mismatdimie
stamps. For the computation of the approximation of edibdise
between two timed automata, we generalize the approactofor ¢
putation of edit distance between two untimed automdta T4l
algorithm uses the classical region abstraction, but reguion-
trivial generalization of the untimed case [4] to capture ¢fuanti-
tative timing aspects.

Besides intellectual curiosity, our definition and algwomitc
computation of edit distances between timed words and tiared
guages form the foundations of a quantitative approachntedi
verification. The calculation of timed edit distance is tlasis for
repairing timed specifications, generalizing the untimed case [4],
and for providing robust semantics to timed automata anedim
logics [9,[8]. For example, in simulation-based verificatiaf a
real-time implementation against a timed automaton maithel,
simulation trace may differ slightly from the model due t@dn

! while we focus on this definition, we show that several relate
definitions have similar algorithmic properties.



curacies in the implementation and errors in measuringithiag
behavior. Thus, a timed trace of the implementation may eot b
in the model. However, instead of rejecting the implemeoitat

take on the values specified By A states = (¢, k) of the timed
automatonA is a location? € L together with a clock valuation
k € K(C) such that the invariant at the location is satisfied, that

one can quantify the distance between a measured trace and this, x |= y(¢). We letS be the set of all states of. The semantics

model. Quantitative semantics for timed and hybrid logiaseh
been the basis for some recent verification tdols$[[10, 7]. v@ark

can be seen as providing a quantitative semantics for timieniea-
ton models.

Finally, while we focus on timed systems, we sketch how our
definitions and algorithmic techniques extend to hybricbmata,
with EXPTIME algorithms for the edit distance between a liybr
trace and a rectangular hybrid automaton, and 2EXPTIME-algo
rithm for the approximate distance between two rectangalar
tomata.

2. DEFINITIONS

In this section we first present the basic definition of timad a
tomata, and then the notion of edit distance for them.
2.1 Timed Automata

Timed automatd_[2] suggest a finite syntax for specifyingdini
state automata with real-valued clocks. We first start vhhrio-
tion of clock constraints.

Clock constraints. For a setX of clock variables, the s (X)) of
clock constraints) is defined inductively by

Y=z <dld<z| |1 Ay,
wherez is a clock inX andd is a constant in natural numbers.

Timed automata. A timed automaton4 over finite words is a
tuple(L, X, C, —, v, So, F') , where

e L is afinite set of locations.

Y is a finite set of input alphabet.

C'is afinite set of clocks.

e - C LxLxYx2%x ®(0) gives the set of transitions,
where®(C) is the set of clock constraints ovél. An edge
(4,2, 0, ), v) represents a transition from locatiéto loca-
tion ¢’ on input letters, A C C represents the set of clocks
to be reset with the transition ardis a clock constraint over
C.

e v : L — Constr(C) is a function that assigns to every lo-
cation an invariant on clock valuations. All clocks increas
uniformly at the same rate. When at locatigra valid exe-
cution must move out of before the invariant (¢) expires.

Thus, the timed automaton can stay at a location only as long

as the invariant is satisfied by the clock values.
e Sy CL X ]Ri‘f‘ is the set of initial states.

e F' C Lis afinite set of accepting locations.

Each clock increases at ratenside a location. Aclock valuation

is a functionx : C — R3¢ that maps every clock to a non-negative
real. The set of all clock valuations far is denoted byK (C).
Given a clock valuation: € K(C) and a time delayA € Rxo,
we writex + A for the clock valuation ik (C') defined by(x +
A)(xz) = k(z)+Aforall clocksz € C. Forasubsek C C of the
clocks, we writes[A := 0] for the clock valuation i< (C') defined
by (k[A := 0])(x) = 0if 2 € A, and(k[\ := 0])(x) = k(x) if

x ¢ A. Aclock valuationk € K(C) satisfieshe clock constraint
0, written x = 6, if the conditiond holds when all clocks irC'

of timed automata are given as timed transition systems;twisi
standard([2], and omitted here.

Timed and untimed words. An untimed wordw € X* is a finite
sequence of input letters, antimed wordtw € (X xR)* is afinite
sequence of input letters and time stamps such that the tamgs

are non-decreasing. Equivalently a timed wosd = (w,?) can

be considered as a pair of sequences, where the first sequeace
(01,02,...,04) is the sequence of letters (i.e., the untimed word
corresponding tow), and the second sequence is the corresponding
time stampg = (t1,t2,...,t,), and we require that for all <

1 < n—1we havet; < t;11. Thelengthof a timed wordtw is the
number of letters in it, i.e., the length of the untimed word.

Language of timed automata.A timed wordtw induces a set of

runs over a timed automata (séé [2] for the standard sersasttic
runs). A wordtw is accepted by an automath if there exists a

run that ends in an accepting location. For a timed automaiton
we denote byC(.A) the set of timed words accepted ly

Clock region equivalence.Clock region equivalence, denoted as
2 js an equivalence relation on states of timed automata. The
equivalence classes of the relation are catteglons and induce

a time abstract bisimulation on the corresponding timeaisitin
system[[2]. There are finitely many clock regions; more melyi

the number of clock regions is bounded|By-[ ], . - (¢ +1)-|C]!-

411, For arealt > 0, letfrac(t) = t — |t] denote the fractional
part oft. Given a timed automatad, for each clocke € C, letc,
denote the largest integer constant that appears in ani clot
straint involvingz in A (let ¢, = 1 if there is no clock constraint
involving x). Two stateg¢1, 1) and (¢, x2) are said to beegion
equivalentf all the following conditions are satisfied: (&) = /2,
(b) for all clocksz, we haver:(z) < ¢, iff K2(z) < ¢q, (C) for
all clocks z with k1(z) < ¢z, we have|ki(z)| = |k2(x)],
(d) for all clocksz, y with k1 (x) < ¢, andki(y) < ¢y, we have
frac(k1(z)) < frac(ki(y)) iff frac(ka(z)) < frac(k2(y)), and
(e) for all clocksz with k1 (x) < ¢z, we havefrac(k1(z)) = 0 iff
frac(kz(x)) = 0. Given a statd/, k) of A, we denote the region
containing(¢, ) asReg({¢, k)).

Region graph. The region graplReg(.A) corresponding to a timed
automataA is the time-abstract bisimulation quotient graph in-
duced by the region equivalence relation. The stateRegf(.A)
are the regions ofd. In the region graph, for region® and R’,
there exists a transitioR — R’ iff there existss € R ands’ € R’
such that there exists a transition frerto s’ in the timed automata.
We denote by Reg(.A)| the number of states in the region graph,
which is bounded byC|! - 4!°! . (¢max + 1)!€! - |L|, whereC is
the set of clocksgmax the largest constant in the clock constraints,
and|L| is the number of locations.

2.2 Edit distance

In this section we first recall the notion of edit distance dor
timed words, and then introduce the definition of edit diseafor
timed words. Finally we present the definition of edit disgbe-
tween a timed word and a timed automaton, and between twdtime
automata.

Edit distance between untimed words. Consider a pair of un-
timed wordsw andw’. A word editWE from w to w’ is a fi-

nite sequence of some deletions, substitutions, and iogerof
letters intow such that the sequence of transformations changes



w to w’. We denote byWE(w,w’) the set of word edits fromw

to w’, and Opt(w, w’) be the set of optimal word edits between
w andw’, i.e., Opt(w,w’) is the subset ofVE(w, w’) such that
every sequence iOpt(w,w’) has the minimal length among the
sequences iWVE(w, w’). Theedit-distanceD(w, w’) is the mini-
mum number of edits required to transfomnto w’, i.e., the length
of a sequence iMpt(w,w"). A word editWE is optimalif it be-
longs toOpt(w, w’). Given a word editWE, we say that the-th
index of w is retainedif the i-th letterw; was not deleted by the
deletions ofWE nor substituted by the substitutions\WE. Also,
we say that theé-th index ofw correspondgo thej-th index ofw’

if 4 was retained and there wgs- i insertions minus deletions in
WE before thei-th index. Note that if index is retained, there is
always someg such that corresponds tg. Also note that for any
index j, there is at most one indexsuch that index corresponds
to indexj.

Example. Informally, the edit distance between two timed words
is a pair, where the first component is the edit distance @tlee
untimed words, and the second component is the absolutermabxi
time mismatch. We illustrate with some examples the definiti
for edit distance between timed words. First consider tweet
words where the untimed parts match, iter,= (w, ) andtw’
(w, ). Then the first component of the edit distance is 0 and the
second component is the absolute maximal mismatch in thegim
Now, consider two timed wordsw = (w,t), wherew = abed
and? = (1,2,3,4), andtw’ = (w',¥) wherew’ = abbed and

T = (1,2,2,4,4). We first extend the timed wordy to a timed
word tw” = (w”,") such thatw” = w’ and the time sequences
in ¥’ matches the ones @ffor the occurrences that match in
andw”. For example, an extension ofv is w” = abbed and

7" = (1,2,2,3,4). Thus the first component of the edit distance
is 1, and the second component is also 1.

Extension of timed words. Given a pair of timed wordsw =
(w,t) andtw’ = (w', %), we first consider the corresponding un-
timed wordsw andw’. Given a word editVE betweenw andw’,
the timed wordtw can beextendedo tw’ by WE if for each pair of
indicesi, 7, such that index of w corresponds to indexof w’ un-
derWE, we have that; = tg. In other words, the word edit creates
a word whose untimed word matches with and the time stamps
corresponding to the letters in match with the time stamps in.
Given a timed wordw, a wordw’, and a word ediWE between
w andw’, let Ext(tw, w’, WE) be the set of timed wordsv’ such
thattw can be extended tav’ by WE.

Edit distance between timed words. Let (ai,b1) € R? and
(a2, b2) € R? be two pairs of real numbers, then tegico-graphic
ordering<,ex and <. is defined as follows:

(a17b1) Slex (a2,b2) iff

(a1 < az) V (a1 as ANby < bz);

iff =

(aly bl) <lex (a27 b2)

and we use similar notations forex and >. The edit distance
for timed words has two components, the first component is the
number of edits for the untimed word, and the second componen
is the maximal mismatch in the time stamps. We consider éslit d
tance between timed words where we consider the lexicograp
ordering of the two components, i.e., edits to discretesiteoms

are more costly. Formally, the edit distanPétw, tw’) between
two timed words is defined as follows, whef (tw, tw’) and
D»(tw, tw’) are the first and second component, respectively:

(a1 < az) \% (a1 az ANb1 < bz);

1. For a pair of timed wordsw = (w,?) andtw’ = (w’,T’)
of lengthn, such thatw = w’, the first component of the

edit distance is 0 and the second compor®sftw, tw’) is
defined as follows:

N o Y
Da(tw,tw') = 1??5}3L|t1 ti| .

. For a pair of timed wordsw = (w,?) andtw’ = (w’,7)
such thatw # w’ we haveD; (tw,tw’') = D(w,w’), i.e.,
the first component is the edit distance of the untimed words.
For the second component we first consider the extension of
tw and then compute the second component. Formally,

inf Do (tw”, tw') .
WE€Opt(w,w’) and,
tw’/ €Ext(tw,w’ ,WE)

Do(tw, tw') =

Note that above we have that the untimed pattof andtw’
coincide and hence we apply the definition of the first item
above where the untimed parts coincide. Intuitively, we firs
pick some optimal word edit for the untimed word, and then
extend the first word under this word edit, and then compute
the second component. Finally, among all the choices we
consider the one that minimizes the second component.

PROPOSITIONL (COMPUTATION OF EDIT DISTANCE).
Given two timed wordsw and tw’ the edit distanceD(tw, tw’)
can be computed in polynomial time.

PROOF It is straightforward to find the edit distance between
two timed wordstw, tw’ in polynomial time, and we describe the
main ideas below. The first component is computed simply run-
ning the classical dynamic programming algorithm/[of| [20]tba
untimed words. Given a bound on the second component the
standard dynamic programming algorithm ©f1[20] is modified t
ensure that for alt, j, the i-th character ofw matches thej-th
character oftw’ iff they use the same letter and the difference be-
tween the time stamps is at mgstlt is also clear that there are at
most| tw | - | tw’ | different “possible” values foB: the difference
between each pair of time stamps (except in the case wheettap |
match, in which case the value gfis 0). By simply using a binary
search algorithm over the possible choices, we get an #igori
with a running time o0 (| tw | - | tw’ | - log(|tw | - [tw'])). O

Edit distance of timed words and timed automata, and between
pairs of timed automata. Consider a pair of timed automathand

A’, and a timed wordw. The edit distance between the pairs, and
between the timed word and an automaton is defined as follows:

1. For the timed wordw and the timed automatad, the edit
distanceD(tw, A) is inf.rc o) D(tw, tw'), i.e., the edit
distance is the minimal edit distance among all words ac-
cepted by the automatad. Also note that we consider the
lexico-graphic ordering to compare the edit distance which
consists of a pair of numbers.

2. For the pair of timed automatal, A’, the edit distance
D(A, A') is sup e p(a) D(tw, A), i.e., it is the maximal
edit distance between a word in the languageldb the au-

tomatonA’.

EDIT DISTANCE BETWEEN A TIMED
WORD AND A TIMED AUTOMATON

In this section we consider the edit distance problem beiveee
timed word and a timed automaton. We show that the problem is
PSPACE-complete. We first define the decision problem antl sta
with the lower bound.



Decision problem for edit distance between a timed word
and a timed automaton. The edit-distance decisiomproblem
EdDec(«, 8, tw, A) is as follows: given a non-negative integer
a, a numberg € Q U {oo}, whereQ is the set of rationals, a
timed wordtw, and a timed automato, the decision problem
asks whether the edit distan€¥tw, . A) <iex (o, §)? In the se-
quel we always consider € N and3 € Q U {oo} such thats is
non-negative.

LEMMA 2 (PSPACE.OWER BOUND). The edit-distance
decision problenEdDec(«, 8, tw, A) is PSPACE-hard.

PROOF Since the reachability problem for timed automata is
PSPACE-hard [2], it follows that the non-emptiness quesfir
timed automata (i.e., given a timed automatdrwhetherL(A) is
non-empty) is also PSPACE-hard. If the langu#gel) for a timed
automatonA is non-empty, then it accepts a timed word of length
say at mostl* (d* is at most exponential in the size dfand linear
in the size of the region graph). Then the answer to the duresti
EdDec(d" + 1,0,¢, A) is YES iff L(A) is non-empty, where is
the empty word. The PSPACE lower bound follow$.]

PSPACE upper bound. The rest of the section is devoted to pre-
senting a PSPACE upper bound for the edit distance decisain p
lemEdDec(q, 3, tw, A) .

Bound on the components of the edit distanceWe start with a
bound of the first component of edit distance.

1. (Bound on first componentiror a given timed automataA,
if £L(.A) is not empty, then as mentioned abodeaccepts a
word of length at most exponential in the size of the automa-
ton (at most the size of the region graph). Hence the first
component of the edit distance between a timed wardnd
a timed automaton! is at mostmax{| tw |, d}, where| tw |
is the length of the timed word antthe length of the shortest
word in L(A).

2. (Bound on second component)f the first component is
bounded by, then the second component can be at most
max (| tw | 4+ @) - Cmax, t|tw |, Where cmax is the greatest
number appearing in a clock constraint ang, | is the last
time stamp inbw. This is because any run A that ensures
that the first component is at mastcannot be longer than
(] tw |4+«) and we can bound the wait in each moverhy.

PSPACE algorithm. We now give an algorithm which solves the
decision problenEdDec(«, 3, tw,.4) in polynomial space. We
refer to our algorithm as@._ED(«, 8, tw, A). Givena, 3, tw, and

A, we construct two timed automai and.A” and return NO iff
L(A")andL(A") are both empty, i.e., if either of the automata has
anon-empty language, then the answer to the edit-distawsion
problem is YES. The construction of” givenc, 3, tw, and.A, is

the same as the construction.4f givena — 1, oo, tw and.A4, and
thus we only explicitly give the construction gf .

Construction ofd’ givena, 3, tw, and.A. The construction ofd’
givena, 3, tw, andA, is as follows:

1. (Locations).The timed automato’ contains(| tw | + 1) -
(a+ 1) copies ofA, each location in each copy is annotated
with a pair of integergj, k), where0 < j < |tw| and
0 < k < «, wherej corresponds to how far the timed word
tw has been processed, antb the number of edits that have
been made. The location corresponding to locafiom A,
annotated with(j, k) is location(¢, 5, k) in A’. Furthermore

there is a locatioerr from which no accepting location can

be reached, and corresponds to the fact that morecitealits

have been made (i.e., the target on edit distance has been
exceeded).

2. (Accepting locations).The only accepting locations in the
automatad’ are the locations in the copies @f, which are
annotated witl{| tw |, k) for somek and which corresponds
to accepting locations ofl.

3. (Clocks).The set of clock<’ in A’ is C, the set of clocks in
A, together with the two additional clocKg, x'}. The clock
x measures the total time used and the cldckeasures the
time used in the current location. Heneds never reset and
x' is reset in every transition.

4. (Transitions).The location(4, j, k) have up t® - d + 1 tran-
sitions, wherel is the number of transitions in locatidrof
A. Each transition front to ¢’ in A is copied three times
and there is also at most one more transitionThe tran-
sition ¢ exists iff j # |tw|. If transitiont exists, it resets
the clockx’ (though this is not necessary, but makes it con-
ceptually easier to follow), uses the letter:, and has a
clock constraint of< = 0. That is, it can only be used if
no time has passed since arriving(f} j, k). The transition
goes to(4,j + 1, k + 1) (the transitiont modelsinsertions
of the next letter). For a fixed transitiafh between? and
¢ in A, the three copies of it froni¢, j, k) each resets the
same clocks ag, but also the clock’ and otherwise are as
follows:

(a) The first copy has the same clock constraint’asut
goes to locatiorf?’, 5, k+1), if k < « orerr otherwise
and has the letter (this copy corresponds tdeletion
of the current letter).

(b) The second copy only existsjf< |tw|. The second
copy (if it exists) also has the same clock constraint as
' but goes to locatiot¢’, j + 1,k + 1), if j < « or

err otherwise and has the letter; ., (this copy corre-

sponds tesubstitutionof the current letter).

The third copy also only exists jf < |tw| and that
t' is aw,1-transition. The third copy (if it exists) has
the clock constraing (t') A (x € [tj+1 — B;tj+1+ A]),
whereG(t') is the clock constraint of (the clock con-
straint is the same as fdf if 3 = oo) and goes to
location(¢, j+ 1, k) and has lettew;1 (this copy cor-
responds tamo edithaving been made with the current
letter).

(c

~

Intuitively, the transitiort’ checks for insertions, the first two
copies of the transition check for deletions and substitistj
and the final copy of the transition checks for a correct move
(i.e., no edits).

5. (Invariant). The invariant at locatioif/, j, k) is the same as
in location.

Before the correctness argument and complexity analysfgste
present an example for illustration.

Example. Consider the timed automatoh for the timed language
overa, b which (i) ends ina; and (ii) in which there is a difference
in time of at most 1 between each consecutitgeand between each
consecutivé's; and (iii) the first move has a delay of at most 1. The
automaton consists of two locatiorisand2, location1 is the start



a,{c1 <1,¢c2 <1},
co:=0

b, {c1 <1,c2 <1}, a,{c1 <1e2 <1},
clL = 0 M—\ Cco = 0

b, {Cl S 1,02 S 1},
c1:=0

Figure 1: Example automatd.

location and locatior® is the accepting location. There are two
clocks in the automaton; andcz. The automaton contains four
transitions, and each transition has clock constraint< 1 and

c2 < 1. From locationj there are two outgoing transitions and
t. The transitiont} goes to locatior, resets clock:;, and uses
letterb. The transitionté goes to locatior?, resets clock:, and
uses letten. A pictorial illustration is given in Figurg] 1.

We then consider the decision probldauDec(1, 1, tw,.A),
wheretw = ((a,2), (b,3)). There is an illustration of the timed
automatonA’ corresponding t&EdDec(1, 1, tw,.A) in Figure[2.
For the sake of readability, we have removed the unreachable
cations (which are locatiof2, 0, 0), location (1,1,0) and loca-

tion (2,2,0)) in the figure, and instead of annotating the transi- Figure 2: The automatad’ constructed from the timed automaton

tions with the letter, clock constraints and resets, we reavso-

tated them only with letters ifNV, D, I, S}, corresponding to a
no-edit-transition, a deletion-transition, an inseritoansition, or a
substitution-transition, respectively. Note that if therre multiple
letters on an edge, then there is a copy of each transitiod’jn
between the designated locations for each letter.

LEMMA 3 (CORRECTNESSARGUMENT). The
SOLED(«, B,tw,.A) correctly solves the decision problem
EdDec(a, 8, tw, A).

A in Figure[d.

algorithm

We see that there are only three paths in the graph of Figure 2
that reaches an accepting location from the start locafibe.paths
corresponds to the timed words described below:

PROOF For a given decision probleEdDec(«, 8, tw, .A), we
show thatA’ or A" is not empty iff there is a timed word i,
with edit distance at mosty, 3) to tw.

1. The sequenceVN,I which gives the run(1,0,0) —
(2,1,0) — (2,2, 1). This sequence corresponds to the timed
word (a, 1) in A, which has an edit distance ¢f, 1) from
(a,2), (b, 3) (by inserting(b, 3)). This timed word is ind’.

2. The sequenceV, S which also gives the rurf1,0,0) —
(2,1,0) — (2,2,1). This sequence corresponds to the timed
word (a, 1), (a,z) in A for somez > 1, which has an edit
distance of(1, 1) from (a, 2), (b, 3) (by substituting(a, z)
with (b, 3)). This timed word is ind’.

3. The sequenceV, N, D which gives the run(1,0,0) —
(2,1,0) — (1,2,0) — (2,2,1). This sequence does not
correspond to any run i’: the requirements on the first
no-edit-transition isthat; < 1,c2 < 1,x € [2—-1;2+4 1]
(which can only be satisfied by waiting one time unit in the
start location), followed by a reset of; and the requirement
on the second no-edit-transition is that< 1,ce < 1,x €
[3—1; 3+1], but this cannot be satisfied, because= x = 1
at the start location and any positive amount of waiting will
ensure that we violate; < 1, but we must wait at least one
time unit beforex € [3 — 1;3 + 1]. Note that if we consid-
ered the decision probleBdDec(1, 2, tw, .A) instead, then
there is such a run, e.ga, 1), (b, 1), (a,2) in A" and the
word (a, 1), (b, 1), (a,2) has an edit distance ¢1, 2) from
(a,2), (b, 3).

We now establish the correctness of the reduction and theln an
yse the complexity.

1. (Non-emptiness implieB(tw, A) <. (a,3)). Consider
an accepting wordw’ of A’ or A”, ending in location
(£, |tw |, k) for somek. Lettw” be the word ind we get
by following the transitions inw’, which are not insertions.
Note that such a word exists, since the clock constraints on
transitions ind” and.A” which are not insertions are stronger
than in.A and the insertions does not matter (since they go
between(?, j, k) and(¢, 41, k+1) and no time has passed).
Note thattw’ andtw spells the same (untimed) word (ignor-
ing €). Therefore, by making the modifications to the un-
timed word oftw’ as indicated byw’, we obtaintw. Note
that there are at most modifications, which is at most.
We now consider two cases: eitheE= a ork < a.

e If k = « (indicating thatw’ € A"), then whenever we
used a no-edit-transition (or correct-move-transition)
from (¢,5,k) to (¢, + 1,k), then the correspond-
ing move in.A was such that the total tinf€ was in
[tj+1—B;tj+1+ 5] and the letter used was thg+1)-st
letter of tw, indicating that no edit has been made and
|t;+1 — T| < B. Hence the edit distance is at most
(k, B) = (e, B).

e If k < « (indicating thattw’ € A", because in such
cases the requirements il are stronger than i),
then using an argument like the preceding and the con-
struction of.A”, we get that the edit distance is at most
(k,00) <iex (e, B).



2. D(tw,A) <ix (a,B) implies non-emptiness). Con-
sider a timed wordw” € A, such that the edit distance
D(tw,tw”) = D(tw”,tw) is at most(a, 3). We consider
the case thafa — 1,00) <iex D(tw”,tw) and show that
A’ is non-empty (the casB(tw”, tw) <jex (v — 1,00) is
similar, but in this case we show” is non-empty instead
of A"). Let WE be a word edit which is used to show that
D(tw”, tw) is at most(a, 3). We now show an accepting
run of A’ from tw” andWE. Define/; € A to be the start
location oftw’ and let the corresponding locati¢fy, 0, 0)

be the start location of the run. We can view the sequence of

operators that;wE makes ontw’ as the following sequence
of letter operators: for al > 1, the word editWE firsts in-
serts some letters before thh letter oftw”, then it either
substitutes, deletes, or keeps thih letter and then repeat
for the (z 4 1)-st letter. WheneveWE inserts an letter into
tw’’, follow the insertion transition from the current loca-
tion. In the other cases, there is a corresponding trangitio
in the wordtw” € A. In that case follow the (substitution,
deletion, no-edit) transition depending on the choic&\#

in the obvious way. Note that if it follows the no-edit case,
the timeT" spent on the sub-word up to transitiomust be
within 3 of the time used for the corresponding lettertaf

by definition of WE and hence, in each case, we can use the
indicated transition. At the end we end up(iff, | tw |, &),
where/(’ is an accepting location ofl the runtw” ends in.
Hence it follows thatd’ is non-empty.

The desired result follows. [

LEMMA 4 (SPACECOMPLEXITY ANALYSIS). The  algo-
rithm SOLED(«, 8, tw,.A) can be implemented so that it uses
polynomial space.

PROOF ltis clear from the algorithm that we just need to solve
the non-emptiness problem fot” and A’ in PSPACE. Both au-
tomata have at most = |L| - (|tw|+ 1) - (o + 1) 4 1 locations
and the least common multiple (LCM) of the numbers in thekloc
constraints ig - d, whereg is the LCM of the numbers in the clock
constraints ofd4 andd the LCM of the denominators of the time
stamps in the timed wortdw and 3, and the number of clocks is 2
more than the number of clockS| of A. This indicates that we get
a region abstraction witf2 + |C|)! - 4271€1 . (g d +1)**1°! .y re-
gions [2], each region of which can be written in polynomighse
and the successors can also be computed in polynomial spaise.
indicates, similarly to how the non-emptiness problem fbiis
solved by Alur and Dill [2], that we can solve the non-empsisie
problem for. A’ and A" in polynomial space. The desired upper
bound follows. [

THEOREM5 (CoMmPLEXITY). The edit-distance decision
problemEdDec(«, 38, tw, A) is PSPACE-complete.

PROOF. The theorem follows from Lemma 2, Lemrhh 3 and
Lemmd?. O

REMARK 6. We now argue that our construction above for
timed automata specialized to untimed automata shows NL-
completeness (non-deterministic log-space completgh@ssin-
timed non-deterministic finite automata (NFA). In case oANFRe
second component does not exist. Also given an input untiroet
w, the edit distance to an NFA is at mostmax{|w|, |L|}, where
L is the set of locations off. Our construction above applied
to NFA reduces the edit distance computation to non-enmggioé
NFA. Moreover, since our reduction is local (i.e., it only difees

transitions of every location locally) it can be implemehie log-
space. Since emptiness of NFA is NL-completé [12], we oltain

edit distance computation for an untimed word and an NFA is in
NL. The same proof as in Lemih 2 shows that non-emptiness of
NFA reduces to the edit distance computation problem. Tikissg

us the following result.

COROLLARY 7. The edit-distance computation problem for an
untimed wordw and an untimed non-deterministic finite automata
(NFA) is NL-complete.

4. EDIT DISTANCE BETWEEN TIMED
AUTOMATA

In this section we consider the computation of edit distdree
tween two timed automata. We first show that theact deci-
sion problem is undecidable, and then consideraygroximation
problem. We first formally define the approximation problesraa
promiseproblem.

Promise problem. We will consider the following promise prob-
lem PromEd(§, 4, A’, o, 3): Given a rational numbef > 0, a
pair of numberga, 8) € N x (QU {o0}), and a pair of timed au-
tomataA, A’, the promise problem asks whetfBfA, A’) <ie
(o, B), under the promise that eith@?(A, A') <ix (a,B) or
D(A,A") >iex (o, B+ d). Intuitively the promise problem de-
fines the approximation problem with additiveerror in the sec-
ond component.

Significance of the promise problem.We now explain why the
promise problem is the appropriate formulation for appration
with additive error. First, given an algorithm for the pramiprob-
lem with a space (resp. time) bound, we run a modified algo-
rithm which runs as the given algorithm till the space (retime)
bound has been exceeded; and if the bound has been exceeded,
then it terminates and answers UNSURE. Thus even if the m@mi
is not met, the algorithm always terminates in the required r
source bound. For our concrete algorithm for the promisd-pro
lem, the algorithm will always use at most exponential spacd
terminate even if the promise is not satisfied, but if the psem

is not satisfied, the algorithm may answer incorrectly. Aeral
native (perhaps more intuitive) approximation formulatis given
numbers(a, 3), timed automatad and.A’, and3 > § > 0, if

(o, B —6) <iex D(A, A') <iex (v, B + §), the algorithm can an-
swer UNSURE. If it does not, it must (correctly) answer YES if
D(A, A") <iex (o, B), and NO if D(A, A') >iex (a, 8). We ar-
gue that solving the promise problem imply a solution to theva
formulation, using a similar amount of resources. Givenm@an i
stance of the problem, first we solfRgomEd(s, A, A’, o, B — J)
andPromEd(4, A, A’, a, B). Note that at least one of the answers
is correct. If the results match and is YES, we h@eA, A') <jex
(a, B) and return YES; if the results match and is NO, we have
D(A, A') >iex (o, 8) and return NO. If the results do not match,
then we have(a, 8 — 6) <iex D(A, A") <iex (o, 8 + §), and

we return UNSURE. Hence we focus on the promise problem and
present a solution to it.

4.1 Lower bounds

LEMMA 8 (HARDNESS OF EXACT DECISION PROBLE
Given two timed automatal and.4’ and two numbersc;, 8), the
decision problem whethdP(A, A") <ix (c, 8) is undecidable.

PROOF Let.4 be atimed automaton accepting all timed words.
We will now argue that for a closed timed automatd, i.e.
where all clock constraints are closed (except towatdswe have



D(A, A") < (0,0) iff L(A) C L(A) (i.e., the language uni-
versality problem for closed timed automata). It is cleaattt
L(A) C L(A") thenD(A, A') <iex (0,0) and we will therefore
argue that ifD(A, A") <i (0,0) thenL(A) C L(A'). The ar-
gument is as follows. Pick any timed wotdr = (w, 7). We will
argue thatw € £(A"). We have thaD(tw, A") <ie (0,0), which
by definition, indicates that there is a sequence of timedds/or
(tw;)ien, such thatw; = (w;, ;) € L(A") andD(tw, tw;) <jex
(0, %) (thatis, for alli we have thatv = w; and thej-th component
of ¢ and; differs by at most: for all 5). Because the clock con-
straints are closed, we also have that the limiftef;);cn is in A’.
But the limit of (tw;);en iS tw. Hence any arbitrary timed word is
in A’ and therefore also all timed words. Since the language tnive
sality problem for closed timed automata is undecidableshasvn
by Ouaknine and Worrell [17], the desired result follows.]

Since Lemmal8 establishes the undecidability of the exatit de
sion problem, we consider the problem of finding the first comp
nent exactly, but approximating the second component bydn a
tive error termy (as defined in the promise problem). Also note that
multiplicative approximation is undecidable, since it Wabstill re-
quire deciding if the edit distance is precisély 0) or not. We now
establish a complexity lower bound for the promise problem.

LEMMA 9 (HARDNESS OF APPROXIMATION. Given  two
timed automatad and A’, two numbers(a, 3), and a rational
number§ > 0, the promise problenPromEd(s, A, A’, a, B) is
EXPSPACE-hard.

PROOF As shown by Brenguier and Sankui [5], the decision
problem for the universality of the untimed language of aetim
automata is EXPSPACE-complete (i.e., given a timed autamat
A’, deciding whether for every wora in ©* there existgw’ =
(w',T) € L(A") such thatw’ = w is EXPSPACE-complete). We
can solve the universality of the untimed language problesimg
our promise problem, lefd be a timed automaton accepting all
words and then deciding if the first component of the editdise
D(A, A') is 0 coincides with the untimed universality &f, i.e.,
PromEd(4, A, A’, 0, 00), for any§ > 0, iff the untimed language
of A’ is universal. The desired results follows. Since [5] has not
yet been published, we present an alternative proof: onelean
duce that the promise problem is EXPSPACE-hard, by modijfyin
the construction of Baieat. al.[3] (giving rise to the timed automa-
ton.A"), for showing EXPSPACE-hardness of universality for their
subset of timed automata. The modification is as followstegd
of requiring that each move has delay precisely 1 in a run kvisic
rejected, we require that the floor of the total time useddases
by 1 in every move. This indicates that if there exists a tinedd
tw which is not in their construction, then the timed wars’,
which has the same moves, but there the first delay &d the
remaining arel is not in A”. For that timed wordw’ we have
that all timed wordsw”, such thaD(tw’, tw") <i (0, 3) is also
not in A", indicating thatD(tw’, .A") >ie (0, 3). Therefore, we
can solve universality of their construction using the piaprob-
lemPromEd(%, A, .A4”,0,0), indicating that the promise problem
is EXPSPACE-hard. [

4.2 Upper bound

Simplification. To simplify the remainder, we will assume that

distance. We will furthermore assume that there is a bourg, of

on the time we can wait before moving. This assumption can be
removed by including two additional columns correspondiog
arbitrary high and arbitrary low difference between timangps
and suitable book-keeping. This will not be done explicitiythe
present paper for sake of simplicity in presentation.

Overview of our algorithm. We will now present our algorithm in
three stages.

e (Step 1) First we will give an algorithm that finds the first
component of the edit distance.

e (Step 2) For a pair of timed automath A’ of edit distance
at most(«, 5), we bound the worst case time mismatch,
between indices close together, for a pair of timed words
tw, tw’ such thata — 1, 00) <iex D(tw, tw’) <iex (v, B).

e (Step 3) Then finally, we will give an algorithm that tests
if D(A, A") <ix (a,B), under the promise that either
D(A,A") <iex (a, B) o D(A, A”) >iex (r, B+ 6).

The first two steps of the algorithm are relatively straifgrvard
and we present them below. Finally we present Step 3 in detail

4.2.1 Step 1 and Step 2 of the algorithm

Step 1 of the algorithm. Given two timed automatal and A’,
we want to compute the first componentof the edit distance.
First we construct the corresponding region grapleg(.4) and
Reg(.A’) and annotate on each transition the corresponding letter.
By running an algorithm by Benedikt, Puppis and Riverds (4] t
compute edit distance between two finite-state (untimethraata,
on the region graphs, we obtain The results of{[4] also imply
that the first component of the edit distance is at nipReg(.A)|+

1) - | Reg(A")], if itis finite.

Step 2 of the algorithm: Bounding the time difference.We now
present the following lemma for Step 2 of the algorithm.

LEMMA 10. Let a pair(«, ) of numbers, and a pair of timed
automatad, A’ be given, such thab (A, A’) <ix (a, B). If there
exists a timed wortw = (w,?) € L(.A) such thatD(tw, A") >
(. — 1,00), then for all timed wordsw’ = (w',7) € L(A"),
whereD(tw, tw’) <iex (v, 8), and for all integersl < i < |tw]
and all integersj suchthat —2-a<j<i+2-candl <j <
|tw’ |, we have that

|ti_t;|§4'a'cmax+ﬂ .

PROOF Let a pair of numbergc, 8) and a pair of timed au-
tomataA, A’ be given, such thab(A, A) <« (o, 3). Consider
a timed wordtw = (w,t) € L(A), such thatD(tw, A") >
(a — 1,00), and a timed wordw’ = (w',¥) € L(A’), where
D(tw,tw’) <iex (a, 8). Let WE be some word edit witnessing
D(tw,tw') <iex (o, 8). Fix some index in tw. If i < 2. q,
then note tha < ¢; < 7+ cmax < 2+ @+ Cmax @nd0 < ¢, <
(1+2-a)-cmax < 4-a-cmax, beCause the time can at most increase
with cmax in every move, from which the statement follows, for
suchi. Hence, we only need to consider> 2 - «. Consider some
index j in w which corresponds to indexof w’, then|i — j| < «,
since it is the number of insertions minus deletions befadex

d > 2 and all numbers used, i.e. the ones in clock constraints of i. Also note that in any sef of indices intw’ of sizea + 1, at

A and. A" and the numbera, 3, andé are integers. If one has an

least one index’ corresponds to some indgkin tw, because oth-

instance of the problem where this is not the case, one can sim erwise there would be at least+ 1 edits. This is especially true

ply scale all clock constraint$§ andd so that they are all integers
andé > 2 (by multiplying with two times the LCM of the de-
nominators), and considér| for the first component of the edit

for the set of indicesS’ = {j —a,j —a—1,...,5 —2-a} of
sizea + 1 (note that they are all indices o&', because > 2 - «
and the length of the words cannot differ by more thgn Let



i’, j' be some indices such thétin S’ corresponds tg’. We then

get thatj’ < j < j' + 3 - «, by the preceding definition of .
Because of the correspondence betwigeand;’ we also get that
|t;; — t;| < B. Since we can increase the time used by at most
cmax IN €very move and thatis monotonically non-decreasing, we
also getthat], — 8 <t; < t;, + [+ 3- . By the same argument
we also get that

tjoa—B <ty —B<t; <ty +B+3-a<tia+f+4a
and also
th—B—4-a<t;<tr+B+3-a,

wherek = min(| tw’|,j + 2 - @). Therefore, by monotonicity of
T wegetthatforalj —2-« <i <k, that|t; —t;| <4-a+f
and the desired result follows.[]

4.2.2 Step 3 of the algorithm

We will now give an algorithm that solves the decision prable
PromEd(s, A, A, o, B).
Deducing time passageGiven a timed automatd, we will con-
sider Eps(.4), which is identical toA, except that (1) it has one
more clockx; (2) modifies the clock constraints on the transitions
in A; and (3) also add§l| new transitions, one from each loca-
tion. For each transition in A, the corresponding transition in
Eps(.A) also includex < 1 as a part of the clock constraint. For
each locatior? in A, the new transition iftps(.4) from the corre-
sponding location ifEps(.A) is ane-transition and a self-loop with
clock constraint{x = 1 A A .o ¢ < cmax}. Note that this en-
sures that ™" (L(Eps(A))) = L(A), wheree™" is the function on
timed languages that removes all occurrences of the letted the
corresponding time stamps. The construction ensuresh@dloor
of the total timed used in a prefix of a run is precisely the num-
ber of e-transitions used in the prefix. A similar construction was
used by Chatterjee and Prabhu [6] for computation of quetiviit
simulation.
The triple impact(tw, 4, A", o, ) (A, V,M). Given a
timed word tw = (w,%), a pair of timed automatad, A’,
and some target pair of numbe(fs, 3), we define the triple
impact(tw, A, A, a, B) = (A, V, M). We now describe the com-
ponents of the triple.

e The first component A in

Reg(Eps(A)).

e The second componefif is a vector of lengthy, and each
entry in the vector is a subset of regionsRaig(.A").

is a subset of regions

e The third componeniM/ is a matrix of dimensior(8 - « -
Cmax + 2 - B+ 4, + 1). Each entry(a1,a2) of M is a
subset of regions dReg(Eps(.A")).

To simplify the definition ofimpact(tw, A, A", o, 3), we will now
first assign labels td7 andV'. The rows are labeled, . .., o and
the columns are labeled-4 - @ - cmax — 8 —2,...,4 - @ Cmax +

B + 2}. Similarly we assign label8, ..., « — 1 to the entries of
V. The subsetd is the set of regions iReg(Eps(.A)) one can get
to such that theé-th none-transition used isv; and there arét; |
many e-transitions before that transition. ThevectorV is such
that entrya, of V' contains the regions, which can be reached after
a timed wordtw’ = (w’,7’), such thaD(w, w’) < a; (this is easy
to compute on the region graph, using the algorithm by Béaedi
Puppis and Riveros [4], since it only considers the untimad)p
Also, a given region € Reg(Eps(.A")) is in entry (a1, az) of M
(wherea; anda, are resp. row and column labels &f) iff there

exists a timed wordw’ = (w’,7’), such that (1) one can get to
r after having processedv’; and (2) there exists a word ediE
with at mosta; edits betweenw andtw’ such that at every pair of
corresponding timed letteisj, we have that|¢; | — [t} ]| < 8+1;
and (3)Lt‘ tw ‘J - Lt\/tw/ ‘J = ao.

Feasible and successfulmpact triples. We will call a triple
(A, V, M) feasibleif impact(tw, A, A", o, 8) = (A4,V, M) for
sometw and successfulf it is feasible andA contains a region
with a location of A which is accepting, but no entry in neither
nor M contains a region with a location of’ which is accepting.
We will now argue that there exists a successful triple #&f éimswer
is NO to the promise problefromEd(4, A, A', a, ).

LEMMA 11. There exists a successful triplel, V, M) iff the
answer is NO to the promise problePnomEd (s, A, A, o, 3).

PrRooOF We will first argue that a successful triple implies that
the answer tdPromEd(d, A4, A, o, B) is NO. Consider a triple
(A, V,M) = impact(tw, A, A’, o, 3) for sometw = (w,%),
which is successful. Consider some accepting regiam A and
let tw’ = (w’,T’) be some timed word that goes #drom some
start location, such that for all we have thatw; w; and
|t:] = [ti]. Such a run exists by definition dfnpact. We
have thattw’ € L£(A). Assume towards contradiction that there
is atw” € L(A") such thatD(tw’, tw") <ix (a, 3). Letr’ be
the accepting region one reachesRag(Eps(.A’)) after the run
tw” = (w”,T"). First consider the case th&(tw’, tw”) <ie
(o — 1,00). This implies that’ is in entry (o« — 1) of V and
hence contradicts thdtA, V, M) is successful. If, on the other
hand(a — 1,00) <jex D(tw', tw"”) <iex (c, B), thenr’ is in entry
(, [t 4w 1] = [t ]) Of M (by Lemma[ID, this is an entry of
the matrix) and again contradicts that, V, M) is successful.

We will now argue that if the answer RromEd (s, A, A, o, B)
is NO, then there is a successful triple. By definition of
PromEd(s, A, A’, «, 3) we know that there is a timed wotgh =
(w,t) € L(A) such that for all timed wordsw’ € L(A’), we
have thatD(tw,tw’) > (o, 8 + 2). Fix such a timed word
tw. There are two cases. Either for some’ we have that
D(tw, tw') >jex (r, 00) OF NO.

o If we have thatD(tw, tw') > (o, 00), then all entries of
V' do not contain a region with accepting location. But the
requirements to be in entry; of V' are satisfied by every
region in(a1, az) of M for all a2. But this implies that the
matrix also does not contain a region with accepting locatio

e In the other case, there must be a timed wartl = (w', )
such that(a, 8 + 2) <iex D(tw, tw') <jex (v, 00). First
note that for alla1 < «, no region with an accepting loca-
tion can be in entry(a:, az) of M nor in entrya; for V,
becaus®(tw, A) > (o — 1, 00). We therefore only need
to consider the entries in row. But then for any word edit
with « edits, there must be some index w corresponding
to index; of w’, such thatt; — t;| > 8 + 2, by definition of
edit distance and since we consider that 2. But then also
[[ti] —|t;]] > B+1, implying that no region with accepting
location can be in entrjo, a2) of M for anyas.

The desired result follows. ]

Computing impact - the start case. It is easy to compute
impact(e, A, A", a,8) = (A,V, M), because (LA are simply
the regions corresponding to tideon all clocks in the start loca-
tions; and (2) for eaclr:, entrya, of V is the set of regions in
Reg(A), reachable in at most; moves; and (3) for each; and



as > 0, entry (a1, —a2) of M (the entriegal, a3), whereay > 0
are empty, because the time stamps are always non-negative n
bers, and the time for the timed woeds 0) is the set of regions in
Reg(Eps(.A)), reachable in preciselyy many none-moves andi»

from our computation ofd’. Wagner and Fischelr [20] shows that
we can split up a word edit between a wardo o and a word
w’, so thatw is edited tow” and o is edited tow’”’ for some
w” o w” = w. Itis easy to see that this generalises to timed

manye-moves (note that every letter used must be deleted to matchwords. Therefore, we must have that' can be split up intaw”

€ and thus we do not need to consider the requirement on times).

Computing impact - the move case. Given
impact(tw, A, A, o, B) (A,V,M), for some A,V,M
and for some timed wortw = (w, t), we can compute each triple
impact(tw o(a, t), A, A", o, 8) = (A", V', M") for some(o, t).
Lett = |t] — [tjtw|]- ThenA’ is the set of regions one can
get to from some region iM, using firstt’ many e-transitions
and then oner-transition. Each entry;, of V' can be computed
directly fromV/, similar to the algorithm by Benedikt, Puppis and
Riveros [4] for untimed automata. Also, entfy,a2) of M’
consists of the regions one can get to from some regign’inas)

of M foray € [—4 - acmax — B — 1,4 @ cmax + 8 + 1]
using (1) no transitions, ifi; ay +1andas = a5+t
(this corresponds to insertion); or (2) fifgt> — a5 + t') many
e-transitions and then any nestransition ifa; = aj + 1 (this
corresponds to substitution); or (3) fifst many e-transitions and
then someo-transition, followed byé; many e-transitions and
then some nor-transition, followed byf. manye-transitions and
then some nor-transition and so on until, many e-transitions
and then some no&dransition, wheren a1 — a) and
az — ay +t = S" % (corresponding to one correct move
followed by n deletions). It is easy to see that we can always
assume that all deletions comes directly after a correctenfov
appears at the beginning).

Computing impact - correctness. We will now argue that our
computation ofmpact satisfy the properties required.

LEMMA 12. The computation dfnpact is correct.

PROOF In both the start case and the move case, it should be
clear that the first two components (thatdsand V') of the triple
are correctly computed.

We now recall the requirements on being in erity, a2) of M:

A given regionr € Reg(Eps(A’)) is in entry (a1, az) of M iff
there exists a timed wordv’ = (w’, %), such that (1) one can get
to r after having processesk’; and (2) there exists a word edlitE
with at mosta; edits betweenw andtw’ such that at every pair of
corresponding indices j, we have that|¢; ] — [¢} || < 8+ 1; and
) [t ow ] = [ ewr ] = a2

Start case of M. In the start case fa¥/, itis clear that there exists a
timed wordtw’ = (w’, ') to each of the regions of entty1, —as)

of M, because of our use of the region abstractidn [2]. Also, it
containsa; many none-moves andi, many e-moves, indicating
that D(e, tw’) <iex (a1,00) (indicating that we satisfy (1)) and
that [#[ || = a2 (indicating that we satisfy (3)). Also, since no
word edit can have any corresponding indices betweand tw’
we satisfy (2).

Move case of M. the move case, we have
impact(tw, 4, A", a, B) (A,V,M) and we must com-
pute eachimpact(two(o,t), A, A", a,8) = (A", V', M) for
any (o,t). By Alur and Dill [2] we see that we satisfy (1) (since
it indicates that there is a timed word ending in each redehab
region). Also, by letting the word ediWE we consider in (2), be
any that have the pairs of corresponding indices defined by ou
correct moves, we see that we satisfy (2). It is clear thatamedo

the rest of the word edit afterwards in edits, since we increase

In
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andtw’” such thattw’ = tw” otw’”” and such thatw” is in M
(because of Lemmia]l0). From we get|t|iw|—1] — [t (]
for all possibletw”. Thus to computét| || — [#] ¢ (], We just
need|(t| .|| = [t]4wr ] — [t{swr ), Which is easy to find, by
counting the number aftransitions used and is done correctly by
the description.

We therefore conclude that aldd is computed correctly. (]

Space complexity ofimpact-triple computation. Observe that a
triple (A4, V, M) consists of some exponential number of subsets of
exponential sized sets of regions and therefore each tigple at
most exponential size. Given the preceding it is also cleatrwe
can compute each successor of the (possibly) exponentietyy
successors in exponential space. Note that given a fedsible
(A,V,M) it is easy to check in exponential space if the triple is
also successful.

The algorithm SolPromEd. Our algorithm SolPromEd for
solving PromEd(4, A, A’, a, ), is as follows: (1) first compute
impact(e, A, A’, a, 8); and (2) then guess a timed word (with one
letter and the floor of the corresponding time stamp at a time)
to a successful triple and compute the impact triples usieg t
move case, and check that the triple is successful and then re
turn NO. If there is no successful triple, return YES. The-cor
rectness follows from Lemnfadll and Lemma 12. The above al-
gorithm is non-deterministic (since it involves a guess d¢ifreed
word) and the space complexity is exponential (sinceitiyeact-
triple computation and check is exponential space). Singx-N
PSPACE=EXPSPACE by Savitch’s Theorem|[19], we obtain that
the algorithm for the promise problem can be implementedin e
ponential space. Along with Lemnid 9 we obtain the following
result.

THEOREM13 (COMPLEXITY OF APPROXIMATION). The
promise problem PromEd(6, .4, A", a,8) can be solved in
exponential space; and the problem is EXPSPACE-hard.

Relating our algorithm to the algorithm by Benedikt, Puppis
and Riveros [4]. Our algorithmSolPromEd for deciding the de-
cision problenPromEd(4, A, A’, , 8) is similar to the algorithm
by Benedikt, Puppis and Riveras| [4] for solving the problem o
edit distance between untimed languages. There they cahstr
impact(w, uA, uA’, '), for some wordw, some finite-state (un-
timed) automatauA, u.A’ and some target’, whereas we con-
struct impact(tw, A4, A’, o, 8), for some timed wordw, some
timed automatad and.A’ and some targef, 3). But their con-
struction only have parallels for the first two componentoof
triple (they do not have the matrix component in their carmstr
tion). Also, in their construction a given location couldynccur
once in their vector, in contrast, we can have a given lonatio
each column ofdMf and inV (because, while it is always better
to make less errors, it is not clear what the best time mismiatc
before the next move).

5. DISCUSSION ON EXTENSIONS AND
CONCLUSION

In this work we have considered the edit distance computatio

the number of edits we need whenever we do not use a correctfor timed automata under the lexico-graphic ordering. e dis-

move. In regards to (3), we have the valug 8t || — [ tw|—1],

cuss several extensions that can be obtained from oursesult



1. Point-wise comparison and Pareto curvenstead of the
lexico-graphic comparison we could also consider point-
wise comparison between the components of the edit dis-

tance, and then compute the Pareto points where one compo-

nent cannot be improved without sacrificing the other. The
Pareto curve consists of all Pareto points. Consider bounds
By and B, for the bounds for Pareto curve. Given a solution
to the decision problem with point-wise comparison which
asks whether the first component is at masand the sec-
ond component at mog, thed-approximation of the Pareto
curve bounded by3, and B, for > 0, can be computed
as follows: enumeratea from 0 to B; as integers, and for a
fixed «, chooseg iteratively by a binary search in the in-
terval [0, B2] until the imprecision is smaller thaf, and
consider the decision problem for the point-wise compari-
son with« and 3. Our solution for lexico-graphic order-
ing can also be modified to solve the point-wise compari-
son. The modifications are as follows: (A) For the solution
of Section 3, we remove automatety, and in automatot’
consider a locatioif¢, 7, k) to be accepting if is accepting,
and the automato!’ is non-empty iffD; (tw,.A4) < a and

Do (tw, A) < S (i.e., pointwise comparison). Also note that
if the language of the input automaton is non-empty, then we
have B, bounded by = max{]| tw|,d} and B, bounded

by max{(| tw | + @) - cmax, t| 4w | } (refer to the paragraph of
Bound on the components of the edit distance in Section 3).
(B) For the solution of Section 4, we simply need to remove
the vectoV from the triple for the solution. Also in this case
By is bounded by the product of the size of the region graphs
(refer to Step 1 of our algorithm in Section 4).

. Delay instead of time mismatch our definition of the sec-
ond component of the edit distance we considered the more
challenging notion of the absolute timing mismatch. Anothe
alternative notion is to consider the delays, wheredélay
A, in index is the time difference; — ¢;,—1 between the
(i — 1)-th andi-th move. Then instead of the timing mis-
match oft; andt; we could consider the delay mismatah
and A}. The problem with the mismatch of delay is tech-
nically slightly easier (though has the same computational
complexity) and we discuss the details for the solution of
Section 4. To find the delay difference betwedrand A’,
we computeReg(A) andReg(.A’), then label each transition
in Reg(.A) with the corresponding letter and some symbol in-
dicating the floor of the delay used. Then each transition
Reg(.A)’ is copied2 - 3 + 1 times, one copy for each integer
y € [-B, B]. Letd be the floor of the delay of transitian
We mark they-th copy of transitiort with the correspond-
ing letter oft and a symbol indicating + d. We then run
the algorithm of[[4] on the resulting graphs. Note that when-
ever we match a letter, then the difference in delay must be
in[—3 — 1, 8 + 1] as required.

. Rectangular hybrid automata/hile we have presented the
solution for timed automata, our results also extends to rec
angular hybrid automata [11]. First note that in our solu-
tion of Section 3, we either copy transitions, or include ad-
ditional rectangular constraints, and thus our transftiona
ensures that if we start with a rectangular hybrid automata
we obtain another rectangular hybrid automata. Since lan-
guage emptiness is decidable in EXPTIME for rectangular
hybrid automatal [11], our solution also extends to rectan-
gular hybrid automata giving decidability in EXPTIME. Fi-
nally the solution of Section 4 relied on the region absteact

for timed automata, and since a similar finite-quotient dase
abstraction exists for rectangular hybrid automata [114, t
impact-triple based computation can also be done for rectan-
gular hybrid automata. Intuitively, the computation foné&d
automata was a PSPACE computation over exponential size
structures leading to exponential space bound, and for rect
angular automata we have an EXPTIME computation over
exponential size structures that gives 2EXPTIME complex-

ity.

Concluding remarks. In this work we extended the notion of edit
distance from untimed languages to timed languages defiped b
timed automata. Our results characterized precisely thiglaleil-

ity and complexity of the computation between timed wordd an

timed automata, and between timed automata. While we estab-

lished the complexity is PSPACE-complete for timed wordd an
timed automata, the problem is undecidable for a pair of diane
tomata. For the approximation problem between a pair ofdime
automata, we establish exponential space lower and uppedbo
We also discussed how our results can be extended to vawéhts
point-wise comparison, delay instead of time mismatch, tued
more general model of rectangular automata. We believessults
will provide a theoretical basis for approximate matchimgween
timed words and timed languages.
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