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Abstract The class ofv-regular languages provide a robust specification langiragerification. Ev-
ery w-regular condition can be decomposed into a safety part divgrgess part. The liveness part
ensures that something good happens “eventually.” Two stagmgths of the classical, infinite-limit
formulation of liveness are robustness (independence fhengranularity of transitions) and simplic-
ity (abstraction of complicated time bounds). However, dleessical liveness formulation suffers from
the drawback that the time until something good happens reaynbounded. A stronger formulation
of liveness, so-callefinitary liveness, overcomes this drawback, while still retainingustness and
simplicity. Finitary liveness requires that there existsumknown, fixed bound such that something
good happens withii transitions. In this work we consider the finitary parity a8tteett (fairness)
conditions. We present the topological, automata-theoastd logical characterization of finitary lan-
guages defined by finitary parity and Streett conditions. &yesljow that the finitary parity and Streett
languages aré’>-complete; (b) present a complete characterization ofxpesssive power of various
classes of automata with finitary and infinitary conditioimsp@articular we show that non-deterministic
finitary parity and Streett automata cannot be determiniaeterministic finitary parity or Streett au-
tomata); and (c) show that the languages defined by nonrdigiistic finitary parity automata exactly
characterize the star-free fragment.aB-regular languages.

1 Introduction

Classicalw-regular languages: strengths and weaknes3.he class ofv-regular languages provide a ro-
bust language for specification for solving control and fieation problems (see, e.g., [PR89,RW87]).
Everyw-regular specification can be decomposed into a safety pdradiveness part [AS85]. The safety
part ensures that the component will not do anything “badtligsas violate an invariant) within any finite
number of transitions. The liveness part ensures that thgooent will do something “good” (such as
proceed, or respond, or terminate) in the long-run. Livere be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on wietgbod” thing must happen. This infini-
tary, classical formulation of liveness has both strengtisweaknesses. A main strength is robustness, in
particular, independence from the chosen granularityasfditions. Another main strength is simplicity, al-
lowing liveness to serve as an abstraction for complicatéety conditions. For example, a component may
always respond in a number of transitions that depends nresmmplicated manner, on the exact size of
the stimulus. Yet for correctness, we may be interested thialiythe component will respond “eventually.”
However, these strengths also point to a weakness of theicdéslefinition of liveness: it can be satisfied
by components that in practice are quite unsatisfactorsimeEno bound can be put on their response time.

Stronger notion of liveness.For the weakness of the infinitary formulation of livenedteraative and
stronger formulations of liveness have been proposed. @tleese isfinitary liveness [AH94,DJP03]:
finitary liveness does not insist on a response within a knbaumdb (i.e., every stimulus is followed by
a response within transitions), but on response within some unknown boued (here exists such that
every stimulus is followed by a response withitransitions). Note that in the finitary case, the botintay

be arbitrarily large, but the response time must not growfer from one stimulus to the next. In this way,
finitary liveness still maintains the robustness (indegere of step granularity) and simplicity (abstraction
of complicated safety) of traditional liveness, while rerimy unsatisfactory implementations.



Finitary parity and Streett conditions. The classical infinitary notion of fairness is given by thee8tt
condition: a Streett condition consists of a setigfairs of requests and corresponding responses (grants)
and the condition requires that every request that appeiamgely often must be responsed infinitely often.
The finitary Streett condition requires that there is a bdusuth that in the limit every request is responsed
within b steps. The classical infinitary parity condition considt& @riority function and the condition
requires that the minimum priority visited infinitely ofténeven. The finitary parity condition requires that
there is a bound such that in the limit after every odd priority a lower eveiopty is visited withinb steps.

Characterization of infinitary parity and Streett automata . There are several robust language-theoretic
characterization of the languages expressible by automititanfinitary liveness (Buchi), parity and Streett
conditions. Some of the important characterizations aréoll®wvs: (a) Topological characterizationit

is known that deterministic automata with Biichi conditi@ame /75-complete, whereas non-deterministic
Biichi and both deterministic and non-deterministic paaityl Streett automata lie in the boolean closure
of X5 and 1, [MP92]; (b) Automata theoretic characterizationon-deterministic automata with Bichi
conditions have the same expressive power as determiaisticmon-deterministic parity and Streett au-
tomata [Cho74,Saf92]; and (tpgical characterizationthe class of languages expressed by deterministic
parity (that is equivalent to non-deterministic Blchi,ipaand Streett automata) is equivalent to the class
of w-regular languages and is also characterized byniieadic second-order log{®ISOL) (see the hand-
book [Tho97] for details).

Our results. For finitary Bichi, parity and Streett automata the topatajiautomata-theoretic, and logical
characterization were all missing. In this work we presdirtha three characterizations. Our main results
are as follows.

1. Topological characterizationiVe show that the class of languages defined by finitary Buehitypand
Streett conditions ar&’s-complete, and thus present a precise topological chaizatien of finitary
Bichi, parity and Streett languages.

2. Automata-theoretic characterizatiow/e show that languages defined by finitary parity and Streett a
tomata are incomparable in expressive power as comparedinitary parity and Streett automata.
We show that non-deterministic automata with finitary paaind Streett conditions have the same ex-
pressive power as non-deterministic automata with finigighi conditions, and deterministic parity
and Streett automata have the same expressive power aridtlg store expressive than deterministic
finitary Blichi automata. However, in contrast to infinitagrity condition, for finitary parity condi-
tion, non-deterministic automata is strictly more expresthan the deterministic counterpart. We also
present a precise characterization of the closure pr@seofifinitary automata with respect to union,
intersection and complementation.

3. Logical characterizationSince finitary automata are incomparable in expressive paweompared
to w-regular languages, the result also holdsNt8OL. We consider the characterization of finitary
automata through an extensionddSOL andw-regular languages defined I SOLA andw B-regular
languages by [BC06]. We show that languages defined by ntarrdmistic finitary parity automata
are exactly the star-free fragmentoB-regular languages. It follows that in genek&OLA andw B-
regular languages are strictly more expressive, and ntarrdmistic finitary parity automata exactly
characterize the star-free fragment. Hence we obtain aserémgical characterization of the finitary
languages.

2 Definitions

In this section we define languages, topology related todaggs, then automata and languages described
by automata with various acceptance conditions.

2.1 Languages, Cantor topology and Borel hierarchy

Languages.Let X be a finite set, we refer t&’ as the alphabet, and its elements as letters. A word
is a sequence of letters, which can be either finite or infiditevord w will be described as a sequence



wows ... of letters, wherevy, wy, --- € X. Let X* be the set of all finite words over and X“ the set of
all infinite words overX'. A language is a set of words, thiisC X* is a language over finite words and
L C X¥ is alanguage over infinite words.

Cantor topology. The complexity of languages can be studied according todpeldgical definition. To
present a topological definition on languages we first defppenandclosedsets. A language is open if it
can be described 8§ - X* wherel/ C X*. A closed set is a complement of an open set. Then we define
the Cantor topology to obtain the topology over languagesaly be noted that the above topology defines
the same topology as the one induced by the following digtaner infinite wordsdistword(w, w') = 2i
wherei is the largest nonnegative integer such that= w’; forall 0 < j <.

Borel hierarchy. We now define the Borel hierarchy of languages. Egtdenote the open setd,; denote
the closed sets, and then inductively we have the followlg; is obtained as countable union@f sets;
andI;, is obtained as countable intersection’gf sets. We note that the closed sets (languagés;in
correspond teafetyproperties. Fol, C X, letpref(L) C X* be the set of finite prefixes of words in
u € X* belongs topref(L) iff there existsw € L such thatu is a finite prefix ofw. Then the following
property holds.

Proposition 1. For all languaged. C X“, the following statements are equivalent: (ajs closed; (b) for
all infinite wordsuw, if all finite prefixes ofv are inpref(L), thenw € L.

Topological reduction. The classesy, I11, 35, I1o, . .. are the levels of Borel hierarchy. Since they are
closed under continuous preimage, we can define a notiono€tien:L reduces td./, denoted byl < L,

if there exists a continuous functigh: X* — X suchL = f~(L’), wheref~(L’) is the preimage of’

by f. This defines the notion of Wadge reduction [Wad84]. A largia hard with respect to a class if all
languages of this class reduce to it. If it additionally Imge to this class, then it is complete.

Classical languagesWe now consider several classical notion of languages. Fanfanite wordw, let
Inf(w) C X denote the set of letters that appear infinitely oftenvinThe class of reachability, safety,
Buchi and coBuchi languages are defined as follows H. €t

Reach(F) ={w | Ji € Nyw; € F}; Safe(F) = Y*\Reach(F') = {w | Vi € N,w; ¢ F'};

Bitchi(F) = {w | Inf(w) N F £ 0};  CoBiichi(F) = $*\Biichi(F) = {w | Inf(w) C S\ F}.

In other words, the reachability languaBeach(F') requires that a letter ifi’ appears at least once and
the Buchi languag®iichi(F') requires that some letter il appears infinitely often. ThB8afe(F) and
CoBiichi(F') are duals oReach(F') andBiichi(F'), respectively. The class of parity languages is defined
as follows. Letp : X' — N be a priority function that maps letters to integer priestiThe parity languages
are defined as follows:

Parity(p) = {w | min(p(Inf(w))) is ever};

i.e., the parity condition accepts infinite words where thvedst priority infinitely visited is even. The parity
conditions are self-dual. The class of Rabin and Streeguages are defined as follows. Ldt, G) =
(R;,Gi)1<i<a, WhereR;, G; C X are request-grant pairs. Then we have

Streett(R, G) = {w | Vi, 1 <i < d,Inf(w) N R; # 0 = Inf(w) N G; # 0};
Rabin(R,G) = {w | 3i,1 <i < d,Inf(w) N R; # 0 A Inf(w) NG; = 0};

i.e., the Streett condition accepts infinite wotesuch that for all requests;, if R; appears infinitely often

in w, then the corresponding gra@Y;, also appears infinitely often im. Rabin condition is the dual of
Streett condition. Then we have the following theorem thiaspnts the topological characterization of the
classical languages.

Theorem 1 (Topological characterization of classical langages [MP92]). The following assertions
hold.



—Foral ® ¢ F c X, we have (a)Reach(F) is X;-complete andSafe(F) is I1;-complete; and
(b) Biichi(F') is IT;-complete andCoBiichi(F) is X;-complete.
— The parity, Streett and Rabin languages lie in the booleaswtke of}); and I15.

Finitary languages.Letp : X — N a priority function. We define:

0 p(wy) is even
inf{k' — k| k' > k,p(wy) is even anth(wy) < p(wy)} p(wy) is odd

dist (w, p) = {

The finitary parity languagBinParity(p) was defined as follows in [CHHO9]:

FinParity(p) = {w | lim sup dist, (w, p) < oo},
k

i.e., theFinParity(p) requires that the supremum limit of the distance sequertsausded. The definition
for FinStreett(R, G) languages uses similar distance sequence as follows:

dist] (w, (R.G)) = { i § By

inf{k' —k | k' > k,wpy € Gj} wi € R;
Then we havelisty (w, (R, G)) = max{dist],(w,p) | 1 < j < d}, and the finitary Streett language
FinStreett(R, G) was defined as follows in [CHHO9]:

FinStreett(R, G) = {w | limsup disty (w, (R, G)) < oo},
k

i.e., similar to finitary parity languagdanStreett(R, G) requires the supremum limit of the distance se-
guence to be bounded.

2.2 Automata,w-regular and finitary languages

In this section we consider automata with acceptance dondiand consider the class of languages defined
by automata with various classes of acceptance conditions.

Definition 1. An automaton is a tuplel = (Q, X, Qo, d, Acc), whereQ is a finite set of states is the
finite input alphabet@)y C @ is the set of initial statesy C @ x X' x @ is the transition relation and
Ace C Q¥ is the acceptance condition.

Deterministic and complete automataWe consider the special class a@éterministicandcompleteau-
tomata. An automatord is deterministic if (a)|Qo| = 1, i.e., there is a single initial state; (b) for
every letter and every state there is at most one transitien,for all¢ € Q, for all 0 € X we
have|{q' | (¢,0,¢") € §}| < 1. Deterministic automata will be described @3, X, o, J, Acc), where
§:Qx X — Qisafunction. If forally € @ and for allo € X, there existg’ € @ such tha{q,o,q’) € 4,
then the corresponding automaton is complete. This is tbe waen the transition functiontstal.

Runs.Arun p = qoq: - .. is a word overQ), whereqgy € Q. The runp is accepting if it is infinite and
p € Acc. We will write p % ¢ to denote(p, a, q) € 6. An infinite wordw = wow; . .. induces possibly
several runs ofd: a wordw induces a rum = qoq . . . if we havegy € Qg and

q()&ql KQQ...qn&l—’anrl....
The language accepted by denoted byC(A) C X¢, is as follows:

L(A) = {w | there exists a rup induced byw such thap € Acc}.



Note that for a deterministic automaton, every wardinduces at most one run, whereas in a non-
deterministic automaton a word may induce several possiinig.

Acceptance conditionsWe will consider various acceptance conditions for autenudittained from the
last section by considerin@ as the alphabet. Fdr C @, the conditionReach(F), Safe(F), Biichi(F),
CoBiichi(F), define reachability, safety, Buchi and coBuchi acceptaerlitions, respectively. Fqr :

@ — N, the condition®arity(p) andFinParity(p) define parity and finitary parity acceptance conditions,
respectively. FOfR, G) = (R;, Gi)1<i<a, WhereR;, G; C @, the conditionStreett(R, G), Rabin(R, G),
andFinStreett(R, G) define Streett, Rabin and finitary Streett acceptance dondjtrespectively. The
set of languages recognized by non-deterministic Blichoraata corresponds to the classuwsfegular
languages [Buic62] and we will denote the classakgular languages ds,.

Notation 1 We use a standard notation to denote set of languages rexedjbly some class of automata.
The first letter is eitheV or D, whereN stands for “non-deterministic” and stands for “deterministic”.
The last block of letters refers to the acceptance condifienexampleB stands for “Buchi”, C' stands
for “CoBluchi”, P stands for “parity” and S stands for “Streett”. The acceptance condition may be pre-
fixed byF for “finitary”. For example, NP denotes non-deterministic parity automata, anfélS denotes
deterministic finitary Streett automata. Hence we havedhewing combination:

({2

We now present the following theorem that summarizes thalteeef automata with classical languages,
and the results of the theorem follows from [Biic62,Saf9s,ChGHS82].

Theorem 2 (Automata-theoretic results for classical langages).The following assertions hold:

(1) L, = NB = NP = NS = DP = DS;
(2) DB C NB;  (3) DC = NC C NB.

3 Topological Characterization of Finitary Languages

In this section we present the topological characterimatibfinitary Buchi, finitary parity and finitary
Streett languages. We first present a definition and thenhesddfinition for characterization of finitary
languages.

Union of w-regular and closed subset of a languageGiven a languagd. C X%, the language
UniCloOmg(L) C X¥ is the union of the languaged that are subset of, w-regular and closed, i.e.,
UniCloOmg(L) = U{M | M € II,,M € L,,M C L}.

Proposition 2. The following assertions hold: (a) the operatdniCloOmg is idempotent; i.e., for all lan-
guages. we haveUniCloOmg(UniCloOmg(L)) = UniCloOmg(L); (b) the languag&JniCloOmg(L) is in
X, i.e., for all languaged. we haveUniCloOmg(L) € Xs.

Proof. We prove both the properties below.

1. By definition for all languaged’ we have UniCloOmg(L’) C L’. Given a language., let
L' = UniCloOmg(L). Hence we havéniCloOmg(L’) C L/, i.e., UniCloOmg(UniCloOmg(L)) C
UniCloOmg(L). We now show the other direction. For any langudgendM C L', if M € II, and
M € L,, thenM C UniCloOmg(L’). Consider the language = UniCloOmg(L). For a languagé/
suchthatM C L, M € I, andM € L,,, we haveM C UniCloOmg(L), (i.e.,M C L’) and hence
M C UniCloOmg(L'). Hence we have

L'=| J{M | M € II;,M €L, M C L} C UniCloOmg(L’).

The result follows.



2. SincelL, = NB (by Theorem 2), and the set of finite automata can be enundeiratgequence, it
follows L, is countable. It follows that for all languagés the setUniCloOmg(L) is described as a
countable union of closed sets. Herb@CloOmg(L) € Xs.

The result follows. [}

We now present pumping lemmdor regular languages, and will use it to present the topo#ig
characterization for finitary languages.

Lemma 1l (A pumping lemma).Let M be aw-regular language. There exists such that for all words
w € M, for all positions;j > ng, there existj < i; < ia < j 4+ ng such that for alll > 0 we have
Wowiwe ... Wi —1 * (wilwilJrl N wi2,1)l Wiy Wip+41 - - - e M.

Proof. Given M is aw-regular language, letl be a complete and deterministic parity automata that rec-
ognizesM (such an automaton exists by Theorem 2), andhlgbe the number of states of. Con-
sider a wordw = wowiws ... such thatw € M, and letp = qoq1q2 ... be the unique run induced
by w in A. Consider a position in w such thatj > ng. Then there exisj < i1 < ix < j + ng
such thatg;, = ¢i,, this must happen asl hasng states. For/ > 0, if we consider the word
wt = WoW{W2 .« .. Wiy —1 * (wilwiIH .. .wiz_l)l C Wiy Win 41 -+ o then the Unique run induced bye in
Aisp’ = qoqiq2 - @iy -1 (¢, iy 41 - - Tiy—1)" - GinGins1 - - .- Since the parity condition is independent of
finite prefixes and the rupis accepted by, it follows thatp’ is accepted byd. SinceA recognizes\/, it
follows w’ € M, and the result follows. |

We now present the main lemma of this section.
Lemma 2. Forall (R,G) = (R;, Gi)1<i<da, WhereR;, G; C X, we have
UniCloOmg(Streett(R, G)) = FinStreett(R, G);
i.e.,FinStreett(R, G) is obtained by applying theniCloOmg operator toStreett(R, G).
Proof. We present the two directions of the proof.

1. We first show that/niCloOmg(Streett(R, G)) C FinStreett(R, G). Let M C Streett(R, G) such
that M is closed andv-regular. Letw = wow; ... € M, and assume towards contradiction, that
lim sup,, distx(w, (R, G)) = oo. Hence for allny € N, there exists: € N such thatn > ny and
dist,, (w, (R, G)) > ng. Letngy € N given by the pumping lemma oW, from above givem, we obtain
j such thatj > ng anddist; (w, (R, G)) > no. By the pumping lemma (Lemma 1), we obtain the wit-
neSSj <y <ig < j “+ng. Letu = WoW7L -+« - Wiy —1,V = Wiy Wiy 41 -+ - Wip—1 andw’ = Wiy Win 41 + -
Sincew € M, by the pumping lemma for all > 0 we haveuv‘w’ € M. This entails that all finite
prefixes of the infinite wordiw“ are inpref(M). SinceM is closed, it follows touv® € M. Since
dist; (w, (R, G)) > ny it follows that there is some requesn positionj, and there is no correspond-
ing grant; for the nextn, steps. Hence there is a positighin v such that there is requeisat ;' and
no corresponding grant in, and thus it follows that the wordv* ¢ Streett(R, G). This contradicts
thatM C Streett(R, G). Hence it follows that)niCloOmg(Streett(R, G)) C FinStreett(R, G).

2. We now show the converséniCloOmg(Streett(R, G)) 2 FinStreett(R, G). We have

FinStreett(R, G) = {w | limsup dist, (w, (R, G)) < oo} = U {w | limsup dist, (w, (R, G)) < B}
k BeN k
= |J U{w |k > n,disti (w, (R, G)) < B}
BeNneN
The language{w | Vk > n,disty(w,(R,G)) < B} is closed,w-regular, and included in
Streett(R, G). It follows FinStreett(R, G) C UniCloOmg(Streett(R, G)).

The result follows. [}



Corollary 1. Forall p: ¥ — N, we haveUniCloOmg(Parity(p)) = FinParity(p).
Proof. This follows from Lemma 2 and the fact that parity conditieraispecial case of Streett conditilin.
Corollary 2. Forall F C ¥, we havéJniCloOmg(CoBiichi(F)) = CoBiichi(F').

Proof. We show thatCoBiichi(F") properties are stable unde&niCloOmg operator. By Lemma 2 we
haveUniCloOmg(CoBiichi(F')) and finitary coBuchi languages coincide, and since finita®ichi and
coBuchi languages coincide, the result follows. ]

We now present a characterization for finitary Buichi that bé used in the sequel. For a 4étC Y,
letnexty (w, F) = inf{k’ — k | K’ > k,wy € F}.

Corollary 3. Forall F C ¥, we haveUniCloOmg(Biichi(F)) = {w | lim sup,, nexty(w, F') < co}.

We now present the results for topological characterimatibfinitary Biichi, parity and Streett lan-
guages.

Theorem 3 (Topological characterization of finitary languages).The following assertions hold:

Forallp: X — N, we haveFinParity(p) € Xs.

For all (R, G) = (Ri, Gi)lgigdr we hav@‘inStreett(R, G) € .

Forall c F c X, we have thatniCloOmg(Biichi(F)) is Xs-complete.

There existg : X — N such thafFinParity(p) is Xz-complete.

There exist$R, G) = (R;, G;)1<i<q Such thaf'inStreett (R, G) is X3-complete.

agrLONPE

Proof. We prove all the cases below.

1. It follows from Corollary 1 and Proposition 2.(a) thahiCloOmg(FinParity(p)) = FinParity(p),
and then it follows from Proposition 2.(b) thBinParity(p) € Xs.

2. As above it follows from Lemma 2 and Proposition 2.

3. Itfollows from Proposition 2 thdniCloOmg(Biichi(F)) € X,. We have tha€CoBiichi(X'\ F) is Xs-
complete from Theorem 1. We now present a topological réolued show thatCoBiichi(X \ F) =<
UniCloOmg(Biichi(F")). Recall thatw € CoBiichi(X \ F) iff Inf(w) C F. Letd : ¥¥ — X“ be the
stuttering function defined as follows:

w o =wy wp ... Wy,
b(w) = wo WIWY .. WyWp .. W, - ..
—— —_—

2 2n

The functionb is continuous, sincédistword(b(w), b(w')) < distword(w, w’). It remains to show the
following:
Inf(w) C F iff 3B € N,3n € N,Vk > n,next;(b(w), F) < B.

Left to right direction: assume that from the positioof w, letters belong td". Then from the position
2" — 1, letters ofb(w) belong toF, thennexty (b(w), F) = 0 for k > 2™ — 1.
Right to left direction: letB andn be integers such that for &l > n we havenexty (b(w), F) < B.
Assume2t~! > B andk > n, then the letter in positioR® — 1 in b(w) is repeate@*~! times, thus
nexty (b(w), F) is either0 or higher thar2* 1. The latter is not possible since it must be less than
It follows that the letter in positiok in w belongs taF'.
4. This follows from item 3 above and the fact that Bichi coindiis a special case of parity condition.
5. This follows from item 3 above and the fact that Biichi cdiodiis a special case of Streett condition.

The desired result follows. |



4 Automata-Theoretic Characterization of Finitary Languages

In this section we consider the automata-theoretic charaetion of finitary languages. We compare the
expressive power of various classes of automata with finteceptance conditions with respect to automata
with classicalv-regular acceptance condition.

4.1 Comparison with classical languages

In this section we compare the expressive power of automiltefinitary acceptance conditions as com-
pared to automata with classical acceptance conditioribelexamples we will consider = {a, b}.

Example 1 ODFB ¢ NB). Consider the finitary Buchi automatohshown in Fig. 1 and the state labeled O
is the accepting seF. The language ofd is Lp = {(t"°af @) .- (p1af V) . (b2a/@) ... | f: N —

N, f boundedyi € N, j; € N}. Indeed,0-labeled state is visited while reading the letterand thel-
labeled state is visited while reading the letterAn infinite word w is accepted iff the)-labeled state
is visited infinitely often, and there must be a bound betwa@ntwo consecutive visits of thelabeled

state. We now show thdtp is notw-regular: assume towards contradiction that is w-regular. Then by
a b

() o ()

a
Figure 1. A finitary Blchi automaton4

Theorem 2 there is a deterministic parity automattrihat recognizes g, having N states. Without loss
of generality we assume this automaton to be complete, arlddestarting state bg). Since the word*
belongs to the language, the unique run on this word is aiccpahd can be decomposed as:

"o bPo bPo
qo —> S0 —> S0 —> S0 - -

wheres is the lowest priority state visited infinitely often (thu$ias even priority), andy < N,1 < py <
N. Since the wor@d™ a* belongs to the languades, we can repeat the above construction. By induction,

we defines;,, andq, as shown in the Figure 2 is the lowest priority state visited infinitely often while
bPO

J ) pP1
a™o
bt

[
[

[

[

o (D
Qk4>bk Sk

’
a™k
’
aPk-1

qk+1
Figure 2. Inductive construction showing thats ¢ DP.

readingb™a™ bm1a™ ... b1k bk b (thus it has even priority), and, < N,1 < p, < N,



and similarly forgy, readingb™a™ b™1a™ ...b"%-1a"-1 a. There exists < j such thaty; = g;,
and hence the infinite word - (a?i-1 v) - (a**i-1 v)... (a*?~1 v)..., whereu = b™a" ...a"-1 and
v=">0"...a"i-1,is accepted by!l’, and hence we have contradiction thitrecognized. 5. ]

We now show that there exist languages expressed by detstimiBiichi automata that cannot be
expressed by non-deterministic finitary parity automata.

Example2 DB ¢ NFP). Consider the language of infinitely manys, ie., L; = {w |
w has an infinite number ef}. The languagd.; is w-regular and there is a deterministic Biichi automa-
ton A’ such that the language of’ is L;. We now show that there is no non-deterministic finitary
parity automata that recognizds. Assume towards contradiction that is a non-deterministic fini-
tary parity automata recognizing; and let. A have N states. Let us consider the infinite woud =
ab ab? ab® ab*...ab™ ... € L;. Sincew must be accepted hyt, there must be an accepting ruand we
represent the accepting run as follows:
a b a b2 b" a bt
qgo —7Po —7q1 —P1 —q2---Pn—1 ——4n — Pn — 7 qn+1---
and
b b b b
Pn—1 —4qn1 —7qn2--- 7 4nn—-1 — qnn = qn - -
The sequence satisfies thds € N, In € N, Vk > n we havedist, (p, p) < B. Letc be the lowest priority
infinitely visited, ande must be even. The stagge _; is in position@ in p. Let k be an integer such

that (a)@ > nand (b)k > (N + 1) - B. Let us consider the set of statgg. 1, ..., qxr}. Since

the distance function is bounded 3, the priority ¢ appears at least once in each set of consecutively
visited states of siz&. Sincek > (N + 1) - B, it appears at leasy + 1 times in{qx 1, ..., qx}. Since
there isN states inA, at least one state has been reached twice. We can thug:itdratinfinite word

w' = ab ab® ab® ab*...b*1a b*, and the wordy’ is accepted byd. However,w’ ¢ L; and hence we
have a contradiction. |

Remark 1.From Example 2 we deduce the following resWtt'B and NF'P are not closed under comple-
mentation. The languagfe:, b}* \L; = {w | w has a finite number of} € NFB (see Example 3 later);

however, Example 2 shows that the complement is not exjpledsy non-deterministic finitary parity au-
tomata.

We summarize the results in the following theorem.

Theorem 4. The following assertions hold: (apB ¢ NFP and DFP ¢ NB; (b) DB ¢
NFB and DFB ¢ NB.

4.2 Deterministic finitary automata

In this subsection we consider deterministic automatafivittary acceptance conditions. Given a determin-
istic complete automatoAd with accepting conditiomcc, we will consider the language obtained by the
finitary restriction of the acceptance condition. We firstsider a functior®” 4 as follows:C'4 : X* — Q¥
maps an infinite wordv to the unique rum of .4 onw (there is a unique run sincé is deterministic and
complete). Then

L(A) ={w | Ca(w) € Acc} = C(Acc).

We will focus on the following propertyC’, (UniCloOmg(Acc)) = UniCloOmg(C', (Acc)), which follows
from the following lemma.

Lemma 3. Forall A = (Q, X, qo, 0, Acc) deterministic complete automaton, we have:

1. forall A C Q¥, Ais closed= C,(A) closed (4 is continuous).
2. forall L C ¥¥, Lis closed= C4(L) closed (C 4 is closed).



3. forall A C Q“, Aisw-regular=- C'; (A) w-regular.
4. forall L C X¥, L isw-regular=- C 4(L) w-regular.

Proof. We prove all the cases below.

1. LetA C Q¥ suchthatd is closed. Letw be such that for alk € Nwe havewy ... w, € pref(C(A)).
We define the rup = C'4(w) and show thap = gog: ... € A. SinceA is closed, we will show for
alln € N we haveg .. .q, € pref(A). From the hypothesis we have ... w,_1 € pref(C(A)),
and then there exists an infinite wordsuch thatC' 4 (wp . . . w,—1u) € A. LetCu(wp ... wp—1u) =
@wd,...q, ..., then we havey =% ¢} 25 ¢+ =% ¢/ ---. Since A is deterministic, we get
g} = ¢;, and hencey ... g, € pref(A).

2. Let L C X¥ such thatl is closed. Letp = ¢oq1 ... such that for aln € N we haveqq...q, €
pref(C4(L)). Then for alln € N, there exists a wordvyws ... w,—1 such thatg 20 o0 2

¢2... — qpn, andwowy ... wn_1 € pref(L). We define by induction on an infinite nested se-
quence of finite wordswy . .. w, € pref(L). We denote byw the limit of this nested sequence of
finite words. We have that = C 4(w). SinceL is closedw € L.

3. LetA C Q¥ such thatd recognized by a Biichi automatn= (Q5, Q, P, 7, F'). We define the Buchi
automator? = (Q x Q5, ¥, {q} x Po,v,Qp x F), where(q1,p1) % (g2, p2) iff ¢1 % g2 in Aand
P1 4, p2 in B. We now show the correctness of our construction.i:et wows ... accepted by,
then there exists an accepting rpiras follows:

wo w1

(90,P0) == (q1,P1) —> (q2,D2) - - (Gns Pn) — (@1, Prst1) - - -

where the second component visitanfinitely often. Hence:

o == g1 =5 G2 Gn = guy - -inAandpy T pr 5y pp S5 pagr - iN B (1)

Hence from(1), we haveC 4 (w) = qoq: - - - € L(B) = A, and it follows thatv € C'; (A). Conversely,
letw € C,(A), then we have = C4(w) = qoq1--- € A = L(B). Then the above statemefit)
holds, which entails that is accepted by.. It follows thatC recognize<, (A).

4. Let L C X% such thatL is recognized by a Buchi automatth= (Qg, X, Py, 7, F'). We define the
Biichi automator® = (Q x Q5,Q, {q} x Po,7,Q x F), where(q, p1) - (¢, po) iff there exists
o € ¥, such thay = ¢ in Aandp; = p, in B. A proof similar to above show that recognizes
C4(L).

The desired result follows. |

Theorem 5. For all deterministic complete automatd = (Q, X, qo, 0, Acc) recognizing a languagé,
the finitary restriction of this automatodniCloOmg(A) = (Q, X, qo, J, UniCloOmg(Acc)) recognizes
UniCloOmg(L).

Proof. A word w is accepted by UniCloOmg(A) iff w € C,(UniCloOmg(Acc))
UniCloOmg(C 7, (Acc)) = UniCloOmg(L). |

Theorem 5 allows to extend all known results on determmigfisses to finitary deterministic classes,
and we have the following corollary.

Corollary 4. We have: (a)DFP = DFS; (b) DFB C DFP;(c) DC C DFP.

We now show that non-deterministic finitary parity autormataore expressive than deterministic fini-
tary parity automata.

Example 3 DFP C NFP). Consider the following languager of finitely manya’s,

Lr ={a,b}* \L; = {w | w has afinite number of} € NFP.



Figure3.A NFB for Lp.

The languagéd.  is recognized by the non-deterministic finitary Biichi auédashown in Fig 3.

To show that deterministic finitary parity automata arectlifiless expressive than non-deterministic
finitary parity automata, i.eDFP C NFP we showLr ¢ DFP. Assume towards contradiction that there
is a deterministic finitary parity automatotwith N states that recognizds-. Without loss of generality
we assume this automaton to be complete, and let the statiteybey,. Since the word“ belongs to the
language, the unique run on this word is accepting and caretengposed as:

bpm™o bPo bPo
q —> S0 —>S0 —>S0---

wheres, is the lowest priority state visited infinitely often (thusas even priority), andg, po < N. Let

50 — 79. Since the word™a b belongs to the language, we can repeat the above construction. By

induction, we define;, andg, as shown in the Figure 4 is the lowest priority state visited infinitely
bPO
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qgq —— > S1
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Figure 4. Inductive construction showing that- ¢ DFP.

often while reading™°a b™'a ... b"=1a b"™* b (thus it has even priority), andy, pr < N.

There existsi < j such thatgq; = ¢;, and hence the infinite word, - (b"itPiv) -
(brit2piy) ... (bmitkPiy) . whereu = b™0q b™a...b" g andv = ab™ ...b"%-'q, is accepted by

u b bPi v b b2Pi
qo — q; — S§ T 8 — (; — > S T ...

Indeed, iterating or;’s loop ensures that there is no bound between two consecvitiits of a state, for
those which are not in this loop. ls}’s loop, s; has the lowest priority, and it is even. There is a bound
between two consecutive visits 8f: the loop has less thaN states, and the way from by v to ¢; and
back tos; has constant size| + n,. Hence we have contradiction thdtrecognized. r. |

Theorem 6. We haveDFP C NFP.

Remark 2.0bserve that Theorem 5 does not hold for non-deterministmraata, since we haveP = NP
but DFP C NFP.



4.3 Non-deterministic finitary automata

We now show that non-deterministic finitary Streett autantan be reduced to non-deterministic finitary
Bichi automata, and this would complete the picture of aatantheoretic characterization. We first show
that non-deterministic finitary Biichi automata are closedar conjunction, and use it to show Theorem 7.

Lemma 4. NFB is closed under conjunction.

Proof. Let 41 = (Q1,%,01,Q}, F1) and Ay = (Q2, X, 62, Q%, F») be two non-deterministic finitary
Buchi automata. Without loss of generality we assume bbttand. 4, to be complete. We will define a
construction similar to the synchronous product consiwactvhere a switch between copies will happen
while visiting F; or F». The finitary Blichi automatonid = (Q1 x Q2 x {1, 2}, X, 6, Qi x Q3 x {1}, Fy x

Q2 x {2} U Q1 x Fy x {1}). We define the transition relationbelow:

= {((qlqua )707 (qav(IQ?k)) | qll € Fvaé ¢ F27 (Q1505 qll) S 615 (qQaJa q/2) S 527k € {152}}
U {((CI17Q2, )707 (qll7qéa2)) | qll € F17 ((ZhUa qll) € 61; (q2;05 q/2) € 62}
U {((CI17Q2, )707 (qlhqé) 1)) | qé € F27 ((ZhUa qll) € 61; (q2;05 q/2) € 62}

Intuitively, the transition functiom is as follows: the first component mimics the transition fotcemata
Aj, the second component mimics the transitiondgr and there is a switch for the third component from
1 to 2 visiting a state infy, and from2 to 1 visiting a state inf5.

We now prove the correctness of the construction. Considard w that is accepted byl;, and then
there exists a boun#; and a runp; in A; such that eventually, the number of steps between two visits
to Fy in py is at mostBy; and similarly, there exists a bourig, and a runp, in A, such that eventually
the number of steps between two visits9in p, is at mostBs. It follows that in our construction there
is a runp (that mimics the rung; andps) in A such that eventually withimax{ B, B2} steps a state in
F1 x Q2 x {2} UQq x Fy x {1} is visited inp. Hencew is accepted byd. Conversely, consider a word
w that is accepted by, and letp be a run and3 be the bound such that eventually between two visits to
the accepting states jnis separated by at most steps. Lep; andp, be the decomposition of the rynn
A; and A, respectively. It follows that both inl; and.A; the respective final states are eventually visited
within at most2 - B steps inp; andp,, respectively. It follows that is accepted by botl; and.A;. Hence
we havel(A) = L(A1) N L(A). |

Theorem 7. We haveNF'S C NFP C NFB.

Proof. We will present a reduction aVF.S to NEF'B and the result will follow. Since the Streett condition
is a finite conjunction of conditiontf(w) N R; # @ = Inf(w) N G; # (), by Lemma 4 it suffices
to handle the special case whén= 1. Hence we consider a non-deterministic Streett automatca
(Q,X,0,Q0, (R,q)) with (R,G) = (Ry,G1). Without loss of generality we assuméto be complete.
We construct a non-deterministic Biichi automatn= (Q x {1,2,3}, X, Qo x {1}, Q x {2}), where
the transition relatiod’ is given as follows:

:{(q71>a0a (qlvj) | ( aaaq/)€57j6{1a2}}
U{(a:2),0,(d',2) | 4’ & B, (g,0,4') € 3}
U {(Q72)a0a (q/73) | q € Ry, (Q7U ql) € 6}
U {(Q73)a0a (q/73) |q ¢G1’( 1)66}
U{(¢:3),0,(¢',2) | ¢ € G1,(q,0,¢') € 6}

In other words, the state component mimics the transitiompoaind in the second component: (a) the
automaton can choose to stay in comporiet switch to2; (b) there is a switch fror to 3 upon visiting

a state inRy; and (b) there is a switch fromto 2 upon visiting a state id/;. Consider a wordv accepted
by A and an accepting rupin A, and letB be the bound on the distance sequence. We showuthsit
accepted byd’ by constructing an accepting rphin A’. We consider the following cases:



1. Ifinfinitely many request®; are visited inp, then in A’ immediately switch to componetand then
mimic the runp as a rurp’ in A’. It follows that from some poinf on every request is granted within
B steps, and it follows that after positignwhenever the second component st become2 within
B steps. Hence is accepted b.

2. If finitely many request®2, are visited inp, then after some point, there are no more requests. The
automaton4’ mimics the rurp by staying in the second componentla®r j steps, and then switches
to componen?. Then afterj steps we always have the second componeff asd hence the word is
accepted.

Conversely, consider a word accepted by4d’ and consider the accepting rgh We mimic the run inA.
To accept the wordb, the runp’ must switch to the second componenRasay after; steps. Then, from
some point on whenever a state with second compahientisited, within some boung® steps a state with
second componeftis visited. Hence the rupis accepting ind. Thus the languages of and.A’ coincide,
and the desired result follows. |

Corollary 5. We haveDFB C DFP C NFB = NFP = NFS.

Our results establishing the precise automata-theorbticacterization of languages defined by au-
tomata with finitary acceptance condition is shown in FigrbgéneralNFP cannot be determinized to a
DFP, however, for every language € L, there isA € DP such that4 recognizes., and hence the
deterministic finitary parity automatdniCloOmg(.A) recognizedJniCloOmg(L).

Corollary 6. For every languagd. € LL,, there is a deterministic finitary parity automaté& such thatA
recognize$JniCloOmg(L).

NFB = NFP = NFS

Figure 5. Automata-theoretic characterization



5 Logical Characterization of Finitary Languages

In this section we consider the logical characterizatiofirifary languages.

Closure properties.For a logical characterization of languages defined by aatarwith finitary accep-
tance conditions, we first study the closure properties térdgnistic and non-deterministic automata with
finitary acceptance conditions. We will considef'P and NFP.

Theorem 8 (Closure properties).The following closure properties hold:

1. DFP is closed under intersection.

2. DFP and NFP are not closed under complementation.
3. DFP is not closed under union.

4. NFP is closed under union and intersection.

Proof. We prove all the cases below.

1. Intersection closure fapF'P follows from Theorem 5 and from the observation that fodall.’ C X%
we haveUniCloOmg(L N L) = UniCloOmg(L) N UniCloOmg(L’). The observation is proved as
follows. LetM € IT; NL, andM C LN L', thenM C UniCloOmg(L)NUniCloOmg(L’), and hence
UniCloOmg(L N L") C UniCloOmg(L) N UniCloOmg(L’). Conversely, lef\i/; C UniCloOmg(L) and
My C UmCIoOmg(L’), thenM; N My € II NL, andM; N My C LN L. HenceM, N My C
UniCloOmg(L N L), thusUniCloOmg(L) N UniCloOmg(L’) € UniCloOmg(L N L’).

2. It follows from Example 2 and Example 3 that there is a netedministic finitary parity automata that
recognizes the languade-, and the complementary language b} \ L = L; is notrecognized by a
non-deterministic finitary parity automaton. It followsathV/'P is not closed under complementation.
The result forDFP is similar.

3. As for Example 1 we consider the languadas = {(a?b/(©) . (a?*b/M) . (a?20/@) ... | f -

N — N, f boundedyi € N,j; € N} andLy = {(a/@p70) - (a/Dbit) . (afPbi2) ... | f: N —

N, f boundedYi € N, j; € N}, also described by theB-regular expressions*5”)w and (b*a”)w,
respectively. It follows from Example 1 that bath andLs belong toDFP, and we show tha, UL, ¢
DFP. The proof is the very similar to Example 1. Assume towardstraaliction thatl; U Ly €
DFP, and letA be a deterministic complete finitary parity automaton tleabgnizes.; U L,. Let

A hasN states, and lejy be the starting state. Sine& belongs to this language, its unique run on
A is acceptingy o, S0 oy S0 e, . whereny < N, 1 < pp < N andsg is the lowest
priority visited infinitely often while reading“. Then,a™ b“ belongs to this language, its unique run

’ / ’
b"o bPo bPo

on A is acceptingyy KON s) — @1 — ¢ — ... wherenj, < N, 1 < p;, < N andg

is the lowest priority visited infinitely often while readjra"°5“. Repeating this construction and by
. . a™0 b0 a1 [ o’k bk . aPk
induction we haveyy — sp — q1 —— 81 —— ... qx —— Sk —— Qr+1 With s — si
and gp+1 LN Qk+1, Whereng,nj, < N andl < pg,p, < N; ands; is the lowest priority visited
infinitely often while readingi™0 ™ . . . a"a*; andgy+1 is the lowest priority visited infinitely often
while readinga”ﬂb% ...a™b"b*. There must be < J, such thaty; = ¢;. Letu = amopno .. i
andv = b" ... b"%-1. The word

w* = - (BPiatPiy) - (bR TPiy) (B |
is accepted by, but does not belong tb; U L,. Hence we have a contradiction, and the result follows.
4. Union closure foiVF'P is obvious, intersection closure fafF'P follows from Lemma 4, sinc& FP =

NFB (Corollary 5).

The result follows. |



Comparison with w B-regular expressionsWe now study the expressive power®f'P as compared to
wB-regular expressions. The class.aB-regular expressions was introduced in the work of [BCOG&ms
extension ofv-regular expressions. Regular expressions defines exagtijar languages over finite words,
and has the following grammar:

L:=0le|lo|L-L|L*|L+L; oc€X

In the above grammar,stands for concatenation,for Kleene star and- for union. Thenw-regular lan-
guages are finite union df - L', where L and L’ are regular languages of finite words. The class of
wB-regular languages, as defined in [BC06], is exactly desdrliy finite union ofL - M“, whereL is a
regular language over finite words and is a B-regular language over infinite sequences of finite words.
The grammar foB-regular languages is as follows:

M:=0|e|o|M-M|M*|MP | M+M;, cex

The semantics of regular languages over infinite sequerfdaste words will assign to aB-regular ex-
pression), a language it X*)“. The infinite sequenc@uo, u1, . ..) will be denoted byu. The semantics
is defined by structural induction as follows.

— ) is the empty language,

— ¢ is the language containing the single sequdace, . . . ),

— ais the language containing the single sequdnce, . . . ),

— M - M; is the languagé(ug - vo, u1 - v1,...) | w € My, v € Ma},

— M* isthe languag(u; ... upay—1,uf) .- - Up@y—1,---) |w € M, f: N — N},

— M7 is defined likeM * but we additionally require the valugi + 1) — f(i) to be bounded,
— My + Msis {w | u € My,v € My,Vi,w; € {ul,vl}}

Finally, thew operator on sequences with nonempty words on infinitely ncaoydinates{ug, u1, .. .)* =
uguy - ... This operation is naturally extended to languages of sexpgeby taking thes power of every
sequence in the language (ignoring those with nonempty svondfinitely many coordinates). The class
of wB-regular languages is more expressive thanP, and this is due to the-operator. We will consider
the following fragment ofv B-regular languages where we do not considerstfuperator forB-regular
expressions (however, theoperator is allowed for., regular languages over finite words). We call this
fragment the star-free fragmentof3-regular languages. In the following two lemmas we show st
freew B-regular expressions express exadllyP = NFB.

Lemma 5. All languages inVF'P can be described by a star-frag3-regular expression.

Proof. Let A = (Q, X, 4, Qo, p) be a non-deterministic finitary parity automaton. Withasd of general-
ity we assume = {1,...,n}. LetC = p(Q) be the set of prioritiesp*" = {q € Q | p(q) ever}
the set of states with even priority afgF® = {q € Q | p(q) > c} the set of states with prior-
ity at leastc. Let Ly = {u € X* | ¢ = ¢} and M7 = {u | (Ju;); is bounded andti,q —-
g where all intermediate visited states have priority gretéitanc}. Then

L(A) = U Lo q - (]V[qu(q))w-

q0ERQ0,gEQ"

For all ¢,¢ € Q we haveL,, C X* is regular. We now show that for all ¢ Q andc¢ € C
the IanguagquZC is B-regular. We fixc € C, and then for simplicity of notation abbreviafﬁ’qzc

to M,. Forall0 < k < nandg,q¢ € Q, let Mé",q, = {u | (|u|): is bounded andli,q
¢’ where all intermediate visited states are from. .., k} and have priority greater thar}. We show by
induction on0 < k < n that for allq, ¢’ € Q the Ianguagdwtiq, is B-regular. The base case= 0
follows from observation:

a1 +as + -+ +aq if ¢ #¢ and(q,a,¢') €6 — Fie{l,...,l},a=q
Mg_’q,: e+ar+ay+---+aifg=q¢ and(q,a,¢)€d <— Fie{l,...,l},a=qa;
0 otherwise



The inductive case far > 0 follows from observation:
k k—1 k—1 k—1 k—1
Mq_’q/ :M(Lk .(Mk,k ) qu/ +]\/[q_’q/
SinceM,', = M,, we conclude thaf(.A) is described by a star-free3-regular expression. ]

Lemma 6. All languages described by a star-freeB-regular expression is recognized by a non-
deterministic finitary Blichi automaton.

Proof. To prove this result, we will describe automata reading itdieequences of finite words, and cor-
responding acceptance conditions. let= (Q, X, J, Qo, F) a finitary Buchi automaton. While reading
an infinite sequence of finite words, A will accept if the following conditions are satisfied: (3yg €
Qo,q1, G2, - .. € F,Vi € N, we havey; ~- ¢;41 and (2)(|un|), is bounded.

We show that for all\/ star-freeB-regular expression, there exists a non-deterministitafipiBuchi
automaton accepting/ Z, language of infinite sequence of finite words, as describede We proceed
by induction oni1.

— The case$, ¢ anda € X are easy.

— FromM to M B, the same automaton faf works for M 2 as well, sinceB is idempotent.

— From M, M, to My + Ms: this involves non-determinism. The automaton guessegdoh finite
word which word is used. Letl; = (Q1,X,01,Q%, F1) and Ay = (Q2, X, 52, QY, F») two non-
deterministic finitary Biichi automata acceptingy® and M2, respectively. Fok € {1,2} andT C
Qr, we defineFinal(T) = {¢’ € F, | 3¢ € T,3u € Y*,q 4, ¢'} to be the state of final
states reachable from a statelinWe denote byFinal® the k-th iteration ofFinal, e.g.,Final®(T') =
Final(Final(Final(T))).

We define a finitary Blchi automaton:

= ((Q1 x 29) U (Qa x 291) U 29 x 292 225, (Q%,Q%), F)

computation states guess states

where
Q') (¢, Final(Q"))) | ¢ € Q} (guess i)

(@

{((Q.Q).2. (¢, Final(@) | ¢ €Q'}  (guessi®)

{((¢.7),0.(q, 7)) | (4,0,q') € 61 U}
U{((@ D)o (b, 7)) | € F}

U {((a2. T2 (T, {2))) | 2 € Fo}

There are two kinds of states. Computation states@arg) whereq € Q1 andT C @, (or symmetri-
cally ¢ € Q2 andT C @), wheregq is the current state of the automaton that has been decidexto
for the current finite word, and is the set of final states of the other automaton that wouleé baen
reachable if one had chosen this automaton. Guess stat@3,dpé), where( is the set of states from
A; one can start reading the next word, and similarly@or
We now prove the correctness of our construction. Considérfanite sequence accepted by4, and
consider an accepting ryn There are three cases:

1. either all guesses ate

2. or all guesses atz

3. else, both guesses happen.
The first two cases are symmetric. In the first, we can eas#lyts®w is accepted byl;, and similarly
in the secondw is accepted by,.
We now consider the third case. There are two symmetric s@iscaither the first guesslisthen

with ¢¥ € QY; or symmetrically the first guess 25 then



with ¢9 € QY. We consider only the first subcase. Then

= ( ?a Qg) : ((Z?; Final(Qg)) s (Qia Final(Qg)) : ({Qi}a Final(Qg)) SRR

0 %o

whereuy is a finite prefix ofw* such thai) —% ¢} in A; andg} € F;. We denote by, the finite
prefix of p up to(¢1, Final(QY)). Let k be the first time when guessdsthen

p=po-p1-pr-1-({qf}, Final®(Q9)) - (¢3, Final({qx})). ..,

whereg) € Final®(Q9) and forl < i < k — 1, we have
= ({gi}, Final (Q3)) - (g}, Final ™™ (Q3)) ... (1", Final " (Q5)),

andu; is a finite word such thagi % ¢t in Ay, ¢/ € Fy anduguy ... ux—1 finite prefix of
w*. Sinceq) € Finalk(QO) there existsjo,vl, ..., v_1 finite words andy, . .., ¢5 € F» such that:

@O gt 2 2L gk Thenwe can repeat '[hIS by induction, constructing M andv € M2,

such that for ali € N, we havew; € {u;,v;}.
Conversely, lets € M andv € M, andw such thati € N, w; € {u;,v;}. UsingA; whenw; = u;
and.A, otherwise, one can construct an accepting rund@nd.A. HenceA recognize§ M + M) P

— From M, M5 to M, - Ms: the automaton keeps tracks of pending states while redldéngther word.
Let Ay = (Q1,%,01,Q% F1) and Az = (Q2, X, 62, QY, F») two non-deterministic finitary Blchi
automata accepting/? and M2, respectively. Letd = ((Q1 x F»)U(Q2 x F1), X,5,Q% x QY, Fy x

F,), where
={((q, f),0.(d". f)) | (¢,0,q') € 61, f € F>}
U{((g. f),o,(d", f)) | (¢.0,q") €62, f € I}
U {((q1, f),e (f7 ‘h;) | q1 € F1}

U{((q2, f), e, (f,42)) | @2 € Fo}

Intuitively, the transition relation is as follows: eithene is reading usingl; or A,. In both cases, the
automaton remembers the last final state visited while nggidithe other automaton in order to restore
this state for the next word. Leb accepted by4, an accepting run is as follows:

wo

(H—l z+1) B

(q?,qg) (Q17Q2) (‘J1aQ2) a1 593

where(q?, ¢9) € QY x @Y, foralli > 1, we have(qi, ¢3) € Fy x F, and(|wy|), bounded. From the
construction, for ali € N, we havew; = uf - v - u! - v} ... uF - vF where

3 K2 3

k.

7

U 7S B uki .
@ =qi(0) =5 gl(1) =5 ¢i(2) ... ~> (ki +1) =g inA

. . 00 N Ufi p i .
@b = q5(0) =5 g5(1) == gh(2) ... == gh(ki +1) = g5 in Ay

the stategq: (k), ¢i(k)) belong toF; x Fy. We defineu; = uful ... u* andv; = v¥v} ... v, From
the above follows that andv are accepted byl; and.A,, respectlvely. Themw € (M1 MQ)B
Conversely, a sequence(ii/; - M»)? is clearly accepted byl. HenceA recognizegM; - M)?

We now prove that all star-free B-regular expressions are recognized by a non-deterndffistiary
Biichi automaton. Sinc& F'B are closed under finite union (Theorem 8), we only need toidensxpres-
sionsL - M“, whereL. C X* is regular language of finite words aid star-freeB-regular expression. The
constructions above ensure that there exists = (Qar, X, dar, QY. Far), @ non-deterministic finitary
Buichi automaton that recognizes the languag€ of infinite sequences. Let;, = (Qr, X, 6., Q%, F1)
be a finite automaton over finite words that recognizegVe construct a non-deterministic finitary Bichi
automaton as follows4d = (Q,UQu, X, 6, Q% , Far) wheres = 6,UdU{(q,¢,4') | ¢ € Fr,q' € Q%,}.

In other words, firstd simulates4,, and when a finite prefix is recognized iy, thenA turns toA,, and
simulates it.



We argue thatd recognized. - M“. Letw accepted byd, andu the finite prefix read by, w = u - v.
Fromu infinite word, we define an infinite sequence of finite words by sequencimgch time a final state
(i.e., from Fy) is visited. The sequenaeis accepted byd,;, hence belongs ta/ 7, and sincev” = v,
we havev € (MP)* = M¥, and finallyw € L - M*“. Conversely, letv = u - v*, whereu € L and
ve MPB. Letq € QV,q € Fr, suchthay, — ¢. Letq’ € Qo,q1,qo,... € Fr, such that for ali € N
we havey; - ¢;,1. Thekey, yet simple observation is that for alf star-freeB-regular expression, for all
v € M, (Jv,|)n is bounded. This is straightforward by induction A Hence, from positiotu|, the set
F, is visited infinitely many times, and there is a bound betwieenconsecutive visits. Thus is accepted
by A. ]

The following theorem follows from Lemma 5 and Lemma 6.
Theorem 9. NFP has exactly the same expressive power as starfigégegular expressions.

Monadic second-order logic.We now consider monadic second-order logi€SOL). Terms are eithed
or a first-order variablé: ¢ := 0 | i. They will stand for positions. Atomic formulas are of therfg where
t,t" are terms and second-order variable:

A=t=t|Stt)|t<t |teX|Qut)forae X
MSOL formulas are generated by the grammar:

¢:=AloNG OV [ =9 [T, ¢|Vi¢|3X,¢0|VX, ¢

Languages described by atomic formulas lieNi'P. We now consider closure properties §%'P
under the logical constructors used\NfSOL:

— The closure under conjunction and disjunction follows fréheorem 8.
— The failure of closure under negation follows from Theorem 8
— The closure under existential quantification (both first sexbnd-order) follows from non-determinacy.
— The closure under universal quantification (both first andosd-order) fails:L = {w |
w has an infinite number af} ¢ NFP as shown in Example 2, but it can be described using a uni-
versal guantifier and an existential ode= {w | w = Vn, 3k, k > n A Q.(k)}.

We already saw thabFP and NFP are not included ifL,,, thusMSOL is not expressive enough to
describeDFP nor NFP, asMSOL describes exactliz,,. MSOLA [BCO06] is an extension dfISOL where
we add theabove bounded quantifiér, whose semantics is:

AX.¢:=3N e N,VX,|X| > N = ¢(X)

MSOLA is the set of formulas containifgSOL and closed under, A, V,3 andA. MSOLA is equivalent

in expressive power asB-regular expressions. SindéF'P corresponds to the star-free fragment (The-
orem 9), which is less expressive thai3-regular expressions, it follows thAfSOLA is strictly more
expressive thatvF'P.

Theorem 10. MSOLA is strictly more expressive thaWFp.
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