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Abstract The class ofω-regular languages provide a robust specification languagein verification. Ev-
ery ω-regular condition can be decomposed into a safety part and aliveness part. The liveness part
ensures that something good happens “eventually.” Two mainstrengths of the classical, infinite-limit
formulation of liveness are robustness (independence fromthe granularity of transitions) and simplic-
ity (abstraction of complicated time bounds). However, theclassical liveness formulation suffers from
the drawback that the time until something good happens may be unbounded. A stronger formulation
of liveness, so-calledfinitary liveness, overcomes this drawback, while still retaining robustness and
simplicity. Finitary liveness requires that there exists an unknown, fixed boundb such that something
good happens withinb transitions. In this work we consider the finitary parity andStreett (fairness)
conditions. We present the topological, automata-theoretic and logical characterization of finitary lan-
guages defined by finitary parity and Streett conditions. We (a) show that the finitary parity and Streett
languages areΣ2-complete; (b) present a complete characterization of the expressive power of various
classes of automata with finitary and infinitary conditions (in particular we show that non-deterministic
finitary parity and Streett automata cannot be determinizedto deterministic finitary parity or Streett au-
tomata); and (c) show that the languages defined by non-deterministic finitary parity automata exactly
characterize the star-free fragment ofωB-regular languages.

1 Introduction

Classicalω-regular languages: strengths and weakness.The class ofω-regular languages provide a ro-
bust language for specification for solving control and verification problems (see, e.g., [PR89,RW87]).
Everyω-regular specification can be decomposed into a safety part and a liveness part [AS85]. The safety
part ensures that the component will not do anything “bad” (such as violate an invariant) within any finite
number of transitions. The liveness part ensures that the component will do something “good” (such as
proceed, or respond, or terminate) in the long-run. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing must happen. This infini-
tary, classical formulation of liveness has both strengthsand weaknesses. A main strength is robustness, in
particular, independence from the chosen granularity of transitions. Another main strength is simplicity, al-
lowing liveness to serve as an abstraction for complicated safety conditions. For example, a component may
always respond in a number of transitions that depends, in some complicated manner, on the exact size of
the stimulus. Yet for correctness, we may be interested onlythat the component will respond “eventually.”
However, these strengths also point to a weakness of the classical definition of liveness: it can be satisfied
by components that in practice are quite unsatisfactory because no bound can be put on their response time.

Stronger notion of liveness.For the weakness of the infinitary formulation of liveness, alternative and
stronger formulations of liveness have been proposed. One of these isfinitary liveness [AH94,DJP03]:
finitary liveness does not insist on a response within a knownboundb (i.e., every stimulus is followed by
a response withinb transitions), but on response within some unknown bound (i.e., there existsb such that
every stimulus is followed by a response withinb transitions). Note that in the finitary case, the boundb may
be arbitrarily large, but the response time must not grow forever from one stimulus to the next. In this way,
finitary liveness still maintains the robustness (independence of step granularity) and simplicity (abstraction
of complicated safety) of traditional liveness, while removing unsatisfactory implementations.



Finitary parity and Streett conditions. The classical infinitary notion of fairness is given by the Streett
condition: a Streett condition consists of a set ofd pairs of requests and corresponding responses (grants)
and the condition requires that every request that appears infinitely often must be responsed infinitely often.
The finitary Streett condition requires that there is a boundb such that in the limit every request is responsed
within b steps. The classical infinitary parity condition consists of a priority function and the condition
requires that the minimum priority visited infinitely oftenis even. The finitary parity condition requires that
there is a boundb such that in the limit after every odd priority a lower even priority is visited withinb steps.

Characterization of infinitary parity and Streett automata . There are several robust language-theoretic
characterization of the languages expressible by automatawith infinitary liveness (Büchi), parity and Streett
conditions. Some of the important characterizations are asfollows: (a) Topological characterization:it
is known that deterministic automata with Büchi conditionsareΠ2-complete, whereas non-deterministic
Büchi and both deterministic and non-deterministic parityand Streett automata lie in the boolean closure
of Σ2 andΠ2 [MP92]; (b) Automata theoretic characterization:non-deterministic automata with Büchi
conditions have the same expressive power as deterministicand non-deterministic parity and Streett au-
tomata [Cho74,Saf92]; and (c)Logical characterization:the class of languages expressed by deterministic
parity (that is equivalent to non-deterministic Büchi, parity and Streett automata) is equivalent to the class
of ω-regular languages and is also characterized by themonadic second-order logic(MSOL) (see the hand-
book [Tho97] for details).

Our results. For finitary Büchi, parity and Streett automata the topological, automata-theoretic, and logical
characterization were all missing. In this work we present all the three characterizations. Our main results
are as follows.

1. Topological characterization.We show that the class of languages defined by finitary Büchi, parity and
Streett conditions areΣ2-complete, and thus present a precise topological characterization of finitary
Büchi, parity and Streett languages.

2. Automata-theoretic characterization.We show that languages defined by finitary parity and Streett au-
tomata are incomparable in expressive power as compared to infinitary parity and Streett automata.
We show that non-deterministic automata with finitary parity and Streett conditions have the same ex-
pressive power as non-deterministic automata with finitaryBüchi conditions, and deterministic parity
and Streett automata have the same expressive power and is strictly more expressive than deterministic
finitary Büchi automata. However, in contrast to infinitary parity condition, for finitary parity condi-
tion, non-deterministic automata is strictly more expressive than the deterministic counterpart. We also
present a precise characterization of the closure properties of finitary automata with respect to union,
intersection and complementation.

3. Logical characterization.Since finitary automata are incomparable in expressive power as compared
to ω-regular languages, the result also holds forMSOL. We consider the characterization of finitary
automata through an extension ofMSOL andω-regular languages defined asMSOLA andωB-regular
languages by [BC06]. We show that languages defined by non-deterministic finitary parity automata
are exactly the star-free fragment ofωB-regular languages. It follows that in generalMSOLA andωB-
regular languages are strictly more expressive, and non-deterministic finitary parity automata exactly
characterize the star-free fragment. Hence we obtain a precise logical characterization of the finitary
languages.

2 Definitions

In this section we define languages, topology related to languages, then automata and languages described
by automata with various acceptance conditions.

2.1 Languages, Cantor topology and Borel hierarchy

Languages.Let Σ be a finite set, we refer toΣ as the alphabet, and its elements as letters. A wordw
is a sequence of letters, which can be either finite or infinite. A word w will be described as a sequence



w0w1 . . . of letters, wherew0, w1, · · · ∈ Σ. Let Σ∗ be the set of all finite words overΣ andΣω the set of
all infinite words overΣ. A language is a set of words, thusL ⊆ Σ∗ is a language over finite words and
L ⊆ Σω is a language over infinite words.

Cantor topology. The complexity of languages can be studied according to the topological definition. To
present a topological definition on languages we first defineopenandclosedsets. A language is open if it
can be described asW · Σω whereW ⊆ Σ∗. A closed set is a complement of an open set. Then we define
the Cantor topology to obtain the topology over languages. It may be noted that the above topology defines
the same topology as the one induced by the following distance over infinite words:distword(w, w′) = 1

2i ,
wherei is the largest nonnegative integer such thatwj = w′

j for all 0 ≤ j < i.

Borel hierarchy. We now define the Borel hierarchy of languages. LetΣ1 denote the open sets,Π1 denote
the closed sets, and then inductively we have the following:Σi+1 is obtained as countable union ofΠi sets;
andΠi+1 is obtained as countable intersection ofΣi sets. We note that the closed sets (languages inΠ1)
correspond tosafetyproperties. ForL ⊆ Σω, let pref(L) ⊆ Σ∗ be the set of finite prefixes of words inL:
u ∈ Σ∗ belongs topref(L) iff there existsw ∈ L such thatu is a finite prefix ofw. Then the following
property holds.

Proposition 1. For all languagesL ⊆ Σω, the following statements are equivalent: (a)L is closed; (b) for
all infinite wordsw, if all finite prefixes ofw are inpref(L), thenw ∈ L.

Topological reduction. The classesΣ1, Π1, Σ2, Π2, . . . are the levels of Borel hierarchy. Since they are
closed under continuous preimage, we can define a notion of reduction:L reduces toL′, denoted byL � L′,
if there exists a continuous functionf : Σω → Σω suchL = f−(L′), wheref−(L′) is the preimage ofL′

by f . This defines the notion of Wadge reduction [Wad84]. A language is hard with respect to a class if all
languages of this class reduce to it. If it additionally belongs to this class, then it is complete.

Classical languages.We now consider several classical notion of languages. For an infinite wordw, let
Inf(w) ⊆ Σ denote the set of letters that appear infinitely often inw. The class of reachability, safety,
Büchi and coBüchi languages are defined as follows. LetF ⊆ Σ:

Reach(F ) = {w | ∃i ∈ N, wi ∈ F}; Safe(F ) = Σω\Reach(F ) = {w | ∀i ∈ N, wi /∈ F};

Büchi(F ) = {w | Inf(w) ∩ F 6= ∅}; CoBüchi(F ) = Σω\Büchi(F ) = {w | Inf(w) ⊆ Σ\F}.

In other words, the reachability languageReach(F ) requires that a letter inF appears at least once and
the Büchi languageBüchi(F ) requires that some letter inF appears infinitely often. TheSafe(F ) and
CoBüchi(F ) are duals ofReach(F ) andBüchi(F ), respectively. The class of parity languages is defined
as follows. Letp : Σ → N be a priority function that maps letters to integer priorities. The parity languages
are defined as follows:

Parity(p) = {w | min(p(Inf(w))) is even};

i.e., the parity condition accepts infinite words where the lowest priority infinitely visited is even. The parity
conditions are self-dual. The class of Rabin and Streett languages are defined as follows. Let(R, G) =
(Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Σ are request-grant pairs. Then we have

Streett(R, G) = {w | ∀i, 1 ≤ i ≤ d, Inf(w) ∩ Ri 6= ∅ ⇒ Inf(w) ∩ Gi 6= ∅};
Rabin(R, G) = {w | ∃i, 1 ≤ i ≤ d, Inf(w) ∩ Ri 6= ∅ ∧ Inf(w) ∩ Gi = ∅};

i.e., the Streett condition accepts infinite wordsw such that for all requestsRi, if Ri appears infinitely often
in w, then the corresponding grantGi also appears infinitely often inw. Rabin condition is the dual of
Streett condition. Then we have the following theorem that presents the topological characterization of the
classical languages.

Theorem 1 (Topological characterization of classical languages [MP92]).The following assertions
hold.



– For all ∅ ⊂ F ⊂ Σ, we have (a)Reach(F ) is Σ1-complete andSafe(F ) is Π1-complete; and
(b) Büchi(F ) is Π2-complete andCoBüchi(F ) is Σ2-complete.

– The parity, Streett and Rabin languages lie in the boolean closure ofΣ2 andΠ2.

Finitary languages.Let p : Σ → N a priority function. We define:

distk(w, p) =

{

0 p(wk) is even

inf{k′ − k | k′ ≥ k, p(wk′) is even andp(wk′ ) < p(wk)} p(wk) is odd

The finitary parity languageFinParity(p) was defined as follows in [CHH09]:

FinParity(p) = {w | lim sup
k

distk(w, p) < ∞},

i.e., theFinParity(p) requires that the supremum limit of the distance sequence isbounded. The definition
for FinStreett(R, G) languages uses similar distance sequence as follows:

distj
k(w, (R, G)) =

{

0 wk /∈ Rj

inf{k′ − k | k′ ≥ k, wk′ ∈ Gj} wk ∈ Rj

Then we havedistk(w, (R, G)) = max{distj
k(w, p) | 1 ≤ j ≤ d}, and the finitary Streett language

FinStreett(R, G) was defined as follows in [CHH09]:

FinStreett(R, G) = {w | lim sup
k

distk(w, (R, G)) < ∞},

i.e., similar to finitary parity languagesFinStreett(R, G) requires the supremum limit of the distance se-
quence to be bounded.

2.2 Automata,ω-regular and finitary languages

In this section we consider automata with acceptance conditions and consider the class of languages defined
by automata with various classes of acceptance conditions.

Definition 1. An automaton is a tupleA = (Q, Σ, Q0, δ,Acc), whereQ is a finite set of states,Σ is the
finite input alphabet,Q0 ⊆ Q is the set of initial states,δ ⊆ Q × Σ × Q is the transition relation and
Acc ⊆ Qω is the acceptance condition.

Deterministic and complete automata.We consider the special class ofdeterministicandcompleteau-
tomata. An automatonA is deterministic if (a)|Q0| = 1, i.e., there is a single initial state; (b) for
every letter and every state there is at most one transition,i.e., for all q ∈ Q, for all σ ∈ Σ we
have|{q′ | (q, σ, q′) ∈ δ}| ≤ 1. Deterministic automata will be described as(Q, Σ, q0, δ,Acc), where
δ : Q×Σ → Q is a function. If for allq ∈ Q and for allσ ∈ Σ, there existsq′ ∈ Q such that(q, σ, q′) ∈ δ,
then the corresponding automaton is complete. This is the case when the transition function istotal.

Runs. A run ρ = q0q1 . . . is a word overQ, whereq0 ∈ Q0. The runρ is accepting if it is infinite and
ρ ∈ Acc. We will write p

a
−→ q to denote(p, a, q) ∈ δ. An infinite wordw = w0w1 . . . induces possibly

several runs ofA: a wordw induces a runρ = q0q1 . . . if we haveq0 ∈ Q0 and

q0
w0−−→ q1

w1−−→ q2 . . . qn
wn−−→ qn+1 . . . .

The language accepted byA, denoted byL(A) ⊆ Σω, is as follows:

L(A) = {w | there exists a runρ induced byw such thatρ ∈ Acc}.



Note that for a deterministic automaton, every wordw induces at most one run, whereas in a non-
deterministic automaton a word may induce several possibleruns.

Acceptance conditions.We will consider various acceptance conditions for automata obtained from the
last section by consideringQ as the alphabet. ForF ⊆ Q, the conditionsReach(F ), Safe(F ), Büchi(F ),
CoBüchi(F ), define reachability, safety, Büchi and coBüchi acceptanceconditions, respectively. Forp :
Q → N, the conditionsParity(p) andFinParity(p) define parity and finitary parity acceptance conditions,
respectively. For(R, G) = (Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Q, the conditionsStreett(R, G), Rabin(R, G),
andFinStreett(R, G) define Streett, Rabin and finitary Streett acceptance conditions, respectively. The
set of languages recognized by non-deterministic Büchi automata corresponds to the class ofω-regular
languages [Büc62] and we will denote the class ofω-regular languages asLω.

Notation 1 We use a standard notation to denote set of languages recognized by some class of automata.
The first letter is eitherN or D, whereN stands for “non-deterministic” andD stands for “deterministic”.
The last block of letters refers to the acceptance condition, for example,B stands for “Büchi”,C stands
for “CoBüchi”, P stands for “parity” andS stands for “Streett”. The acceptance condition may be pre-
fixed byF for “finitary”. For example, NP denotes non-deterministic parity automata, andDFS denotes
deterministic finitary Streett automata. Hence we have the following combination:

{
N
D

}

·

{
F
ε

}

·







B
C
P
S







We now present the following theorem that summarizes the results of automata with classical languages,
and the results of the theorem follows from [Büc62,Saf92,Cho74,GH82].

Theorem 2 (Automata-theoretic results for classical languages).The following assertions hold:

(1) Lω = NB = NP = NS = DP = DS ;
(2) DB ⊂ NB ; (3) DC = NC ⊂ NB .

3 Topological Characterization of Finitary Languages

In this section we present the topological characterization of finitary Büchi, finitary parity and finitary
Streett languages. We first present a definition and then use the definition for characterization of finitary
languages.

Union of ω-regular and closed subset of a language.Given a languageL ⊆ Σω, the language
UniCloOmg(L) ⊆ Σω is the union of the languagesM that are subset ofL, ω-regular and closed, i.e.,
UniCloOmg(L) =

⋃
{M | M ∈ Π1, M ∈ Lω, M ⊆ L}.

Proposition 2. The following assertions hold: (a) the operatorUniCloOmg is idempotent; i.e., for all lan-
guagesL we haveUniCloOmg(UniCloOmg(L)) = UniCloOmg(L); (b) the languageUniCloOmg(L) is in
Σ2, i.e., for all languagesL we haveUniCloOmg(L) ∈ Σ2.

Proof. We prove both the properties below.

1. By definition for all languagesL′ we haveUniCloOmg(L′) ⊆ L′. Given a languageL, let
L′ = UniCloOmg(L). Hence we haveUniCloOmg(L′) ⊆ L′, i.e., UniCloOmg(UniCloOmg(L)) ⊆
UniCloOmg(L). We now show the other direction. For any languageL′ andM ⊆ L′, if M ∈ Π1 and
M ∈ Lω , thenM ⊆ UniCloOmg(L′). Consider the languageL′ = UniCloOmg(L). For a languageM
such thatM ⊆ L, M ∈ Π1 andM ∈ Lω, we haveM ⊆ UniCloOmg(L), (i.e.,M ⊆ L′) and hence
M ⊆ UniCloOmg(L′). Hence we have

L′ =
⋃

{M | M ∈ Π1, M ∈ Lω , M ⊆ L} ⊆ UniCloOmg(L′).

The result follows.



2. SinceLω = NB (by Theorem 2), and the set of finite automata can be enumerated in sequence, it
follows Lω is countable. It follows that for all languagesL, the setUniCloOmg(L) is described as a
countable union of closed sets. HenceUniCloOmg(L) ∈ Σ2.

The result follows.

We now present apumping lemmafor regular languages, and will use it to present the topological
characterization for finitary languages.

Lemma 1 (A pumping lemma).Let M be aω-regular language. There existsn0 such that for all words
w ∈ M , for all positionsj ≥ n0, there existj ≤ i1 < i2 ≤ j + n0 such that for allℓ ≥ 0 we have
w0w1w2 . . . wi1−1 · (wi1wi1+1 . . . wi2−1)

ℓ · wi2wi2+1 . . . ∈ M .

Proof. GivenM is aω-regular language, letA be a complete and deterministic parity automata that rec-
ognizesM (such an automaton exists by Theorem 2), and letn0 be the number of states ofA. Con-
sider a wordw = w0w1w2 . . . such thatw ∈ M , and letρ = q0q1q2 . . . be the unique run induced
by w in A. Consider a positionj in w such thatj ≥ n0. Then there existj ≤ i1 < i2 ≤ j + n0

such thatqi1 = qi2 , this must happen asA has n0 states. Forℓ ≥ 0, if we consider the word
wℓ = w0w1w2 . . . wi1−1 · (wi1wi1+1 . . . wi2−1)

ℓ · wi2wi2+1 . . ., then the unique run induced bywℓ in
A is ρℓ = q0q1q2 . . . qi1−1 · (qi1qi1+1 . . . qi2−1)

ℓ · qi2qi2+1 . . .. Since the parity condition is independent of
finite prefixes and the runρ is accepted byA, it follows thatρℓ is accepted byA. SinceA recognizesM , it
follows wℓ ∈ M , and the result follows.

We now present the main lemma of this section.

Lemma 2. For all (R, G) = (Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Σ, we have

UniCloOmg(Streett(R, G)) = FinStreett(R, G);

i.e.,FinStreett(R, G) is obtained by applying theUniCloOmg operator toStreett(R, G).

Proof. We present the two directions of the proof.

1. We first show thatUniCloOmg(Streett(R, G)) ⊆ FinStreett(R, G). Let M ⊆ Streett(R, G) such
that M is closed andω-regular. Letw = w0w1 . . . ∈ M , and assume towards contradiction, that
lim supk distk(w, (R, G)) = ∞. Hence for alln0 ∈ N, there existsn ∈ N such thatn ≥ n0 and
distn(w, (R, G)) ≥ n0. Letn0 ∈ N given by the pumping lemma onM , from above givenn0 we obtain
j such thatj ≥ n0 anddistj(w, (R, G)) ≥ n0. By the pumping lemma (Lemma 1), we obtain the wit-
nessj ≤ i1 < i2 ≤ j + n0. Let u = w0w1 . . . wi1−1, v = wi1wi1+1 . . . wi2−1 andw′ = wi2wi2+1 . . ..
Sincew ∈ M , by the pumping lemma for allℓ ≥ 0 we haveuvℓw′ ∈ M . This entails that all finite
prefixes of the infinite worduvω are inpref(M). SinceM is closed, it follows touvω ∈ M . Since
distj(w, (R, G)) ≥ n0 it follows that there is some requesti in positionj, and there is no correspond-
ing granti for the nextn0 steps. Hence there is a positionj′ in v such that there is requesti at j′ and
no corresponding grant inv, and thus it follows that the worduvω 6∈ Streett(R, G). This contradicts
thatM ⊆ Streett(R, G). Hence it follows thatUniCloOmg(Streett(R, G)) ⊆ FinStreett(R, G).

2. We now show the converse:UniCloOmg(Streett(R, G)) ⊇ FinStreett(R, G). We have

FinStreett(R, G) = {w | lim sup
k

distk(w, (R, G)) < ∞} =
⋃

B∈N

{w | lim sup
k

distk(w, (R, G)) ≤ B}

=
⋃

B∈N

⋃

n∈N

{w | ∀k ≥ n, distk(w, (R, G)) ≤ B}

The language{w | ∀k ≥ n, distk(w, (R, G)) ≤ B} is closed,ω-regular, and included in
Streett(R, G). It follows FinStreett(R, G) ⊆ UniCloOmg(Streett(R, G)).

The result follows.



Corollary 1. For all p : Σ → N, we haveUniCloOmg(Parity(p)) = FinParity(p).

Proof. This follows from Lemma 2 and the fact that parity condition is a special case of Streett condition.

Corollary 2. For all F ⊆ Σ, we haveUniCloOmg(CoBüchi(F )) = CoBüchi(F ).

Proof. We show thatCoBüchi(F ) properties are stable underUniCloOmg operator. By Lemma 2 we
haveUniCloOmg(CoBüchi(F )) and finitary coBüchi languages coincide, and since finitary coBüchi and
coBüchi languages coincide, the result follows.

We now present a characterization for finitary Büchi that will be used in the sequel. For a setF ⊆ Σ,
let nextk(w, F ) = inf{k′ − k | k′ ≥ k, wk′ ∈ F}.

Corollary 3. For all F ⊆ Σ, we haveUniCloOmg(Büchi(F )) = {w | lim supk nextk(w, F ) < ∞}.

We now present the results for topological characterization of finitary Büchi, parity and Streett lan-
guages.

Theorem 3 (Topological characterization of finitary languages).The following assertions hold:

1. For all p : Σ → N, we haveFinParity(p) ∈ Σ2.
2. For all (R, G) = (Ri, Gi)1≤i≤d, we haveFinStreett(R, G) ∈ Σ2.
3. For all ∅ ⊂ F ⊂ Σ, we have thatUniCloOmg(Büchi(F )) is Σ2-complete.
4. There existsp : Σ → N such thatFinParity(p) is Σ2-complete.
5. There exists(R, G) = (Ri, Gi)1≤i≤d such thatFinStreett(R, G) is Σ2-complete.

Proof. We prove all the cases below.

1. It follows from Corollary 1 and Proposition 2.(a) thatUniCloOmg(FinParity(p)) = FinParity(p),
and then it follows from Proposition 2.(b) thatFinParity(p) ∈ Σ2.

2. As above it follows from Lemma 2 and Proposition 2.
3. It follows from Proposition 2 thatUniCloOmg(Büchi(F )) ∈ Σ2. We have thatCoBüchi(Σ \F ) is Σ2-

complete from Theorem 1. We now present a topological reduction to show thatCoBüchi(Σ \ F ) �
UniCloOmg(Büchi(F )). Recall thatw ∈ CoBüchi(Σ \ F ) iff Inf(w) ⊆ F . Let b : Σω → Σω be the
stuttering function defined as follows:

w = w0 w1 . . . wn . . .
b(w) = w0 w1w1

︸ ︷︷ ︸

2

. . . wnwn . . . wn
︸ ︷︷ ︸

2n

. . .

The functionb is continuous, sincedistword(b(w), b(w′)) ≤ distword(w, w′). It remains to show the
following:

Inf(w) ⊆ F iff ∃B ∈ N, ∃n ∈ N, ∀k ≥ n, nextk(b(w), F ) ≤ B.

Left to right direction: assume that from the positionn of w, letters belong toF . Then from the position
2n − 1, letters ofb(w) belong toF , thennextk(b(w), F ) = 0 for k ≥ 2n − 1.
Right to left direction: letB andn be integers such that for allk ≥ n we havenextk(b(w), F ) ≤ B.
Assume2k−1 > B andk ≥ n, then the letter in position2k − 1 in b(w) is repeated2k−1 times, thus
nextk(b(w), F ) is either0 or higher than2k−1. The latter is not possible since it must be less thanB.
It follows that the letter in positionk in w belongs toF .

4. This follows from item 3 above and the fact that Büchi condition is a special case of parity condition.
5. This follows from item 3 above and the fact that Büchi condition is a special case of Streett condition.

The desired result follows.



4 Automata-Theoretic Characterization of Finitary Languages

In this section we consider the automata-theoretic characterization of finitary languages. We compare the
expressive power of various classes of automata with finitary acceptance conditions with respect to automata
with classicalω-regular acceptance condition.

4.1 Comparison with classical languages

In this section we compare the expressive power of automata with finitary acceptance conditions as com-
pared to automata with classical acceptance conditions. Inthe examples we will considerΣ = {a, b}.

Example 1 (DFB 6⊆ NB). Consider the finitary Büchi automatonA shown in Fig. 1 and the state labeled 0
is the accepting setF . The language ofA is LB = {(bj0af(0)) · (bj1af(1)) · (bj2af(2)) . . . | f : N →
N, f bounded,∀i ∈ N, ji ∈ N}. Indeed,0-labeled state is visited while reading the letterb, and the1-
labeled state is visited while reading the lettera. An infinite word w is accepted iff the0-labeled state
is visited infinitely often, and there must be a bound betweenany two consecutive visits of the0-labeled
state. We now show thatLB is notω-regular: assume towards contradiction thatLB is ω-regular. Then by

1 0

a

b

ba

Figure 1. A finitary Büchi automatonA

Theorem 2 there is a deterministic parity automatonA′ that recognizesLB, havingN states. Without loss
of generality we assume this automaton to be complete, and let the starting state beq0. Since the wordbω

belongs to the language, the unique run on this word is accepting and can be decomposed as:

q0
bn0

−−→ s0
bp0

−−→ s0
bp0

−−→ s0 . . .

wheres0 is the lowest priority state visited infinitely often (thus it has even priority), andn0 ≤ N, 1 ≤ p0 ≤
N . Since the wordbn0aω belongs to the languageLB, we can repeat the above construction. By induction,
we definesk andqk as shown in the Figure 2:sk is the lowest priority state visited infinitely often while

q0 s0

q1 s1

bn0

bp0

an′

0

ap′

0

bn1

bp1

qk sk

qk+1

ap′

k−1

bnk

bpk

an′

k

Figure 2. Inductive construction showing thatLB /∈ DP .

readingbn0an′

0 bn1an′

1 . . . bnk−1an′

k−1 bnk bω (thus it has even priority), andnk ≤ N, 1 ≤ pk ≤ N ,



and similarly forqk, readingbn0an′

0 bn1an′

1 . . . bnk−1an′

k−1 aω. There existsi < j such thatqi = qj ,
and hence the infinite wordu · (ap′

i−1 v) · (a2p′

i−1 v) . . . (akp′

i−1 v) . . ., whereu = bn0an′

0 . . . an′

i−1 and
v = bni . . . an′

j−1 , is accepted byA′, and hence we have contradiction thatA′ recognizesLB.

We now show that there exist languages expressed by deterministic Büchi automata that cannot be
expressed by non-deterministic finitary parity automata.

Example 2 (DB 6⊆ NFP ). Consider the language of infinitely manya’s, i.e., LI = {w |
w has an infinite number ofa}. The languageLI is ω-regular and there is a deterministic Büchi automa-
ton A′ such that the language ofA′ is LI . We now show that there is no non-deterministic finitary
parity automata that recognizesLI . Assume towards contradiction thatA is a non-deterministic fini-
tary parity automata recognizingLI and letA haveN states. Let us consider the infinite wordw =
ab ab2 ab3 ab4 . . . abn . . . ∈ LI . Sincew must be accepted byA, there must be an accepting runρ, and we
represent the accepting run as follows:

q0
a
−→ p0

b
−→ q1

a
−→ p1

b2

−→ q2 . . . pn−1
bn

−→ qn
a
−→ pn

bn+1

−−−→ qn+1 . . .

and
pn−1

b
−→ qn,1

b
−→ qn,2 . . .

b
−→ qn,n−1

b
−→ qn,n = qn . . .

The sequence satisfies that∃B ∈ N, ∃n ∈ N, ∀k ≥ n we havedistk(ρ, p) ≤ B. Let c be the lowest priority
infinitely visited, andc must be even. The statepk−1 is in positionk·(k+1)

2 in ρ. Let k be an integer such

that (a) k·(k+1)
2 ≥ n and (b)k ≥ (N + 1) · B. Let us consider the set of states{qk,1, . . . , qk,k}. Since

the distance function is bounded byB, the priority c appears at least once in each set of consecutively
visited states of sizeB. Sincek ≥ (N + 1) · B, it appears at leastN + 1 times in{qk,1, . . . , qk,k}. Since
there isN states inA, at least one state has been reached twice. We can thus iterate: the infinite word
w′ = ab ab2 ab3 ab4 . . . bk−1a bω, and the wordw′ is accepted byA. However,w′ 6∈ LI and hence we
have a contradiction.

Remark 1.From Example 2 we deduce the following result:NFB andNFP are not closed under comple-
mentation. The language{a, b}ω \LI = {w | w has a finite number ofa} ∈ NFB (see Example 3 later);
however, Example 2 shows that the complement is not expressible by non-deterministic finitary parity au-
tomata.

We summarize the results in the following theorem.

Theorem 4. The following assertions hold: (a)DB 6⊆ NFP and DFP 6⊆ NB ; (b) DB 6⊆
NFB and DFB 6⊆ NB .

4.2 Deterministic finitary automata

In this subsection we consider deterministic automata withfinitary acceptance conditions. Given a determin-
istic complete automatonA with accepting conditionAcc, we will consider the language obtained by the
finitary restriction of the acceptance condition. We first consider a functionCA as follows:CA : Σω → Qω

maps an infinite wordw to the unique runρ of A on w (there is a unique run sinceA is deterministic and
complete). Then

L(A) = {w | CA(w) ∈ Acc} = C−
A(Acc).

We will focus on the following property:C−
A(UniCloOmg(Acc)) = UniCloOmg(C−

A(Acc)), which follows
from the following lemma.

Lemma 3. For all A = (Q, Σ, q0, δ,Acc) deterministic complete automaton, we have:

1. for all A ⊆ Qω, A is closed⇒ C−
A(A) closed (CA is continuous).

2. for all L ⊆ Σω, L is closed⇒ CA(L) closed (CA is closed).



3. for all A ⊆ Qω, A is ω-regular⇒ C−
A(A) ω-regular.

4. for all L ⊆ Σω, L is ω-regular⇒ CA(L) ω-regular.

Proof. We prove all the cases below.

1. LetA ⊆ Qω such thatA is closed. Letw be such that for alln ∈ N we havew0 . . . wn ∈ pref(C−
A(A)).

We define the runρ = CA(w) and show thatρ = q0q1 . . . ∈ A. SinceA is closed, we will show for
all n ∈ N we haveq0 . . . qn ∈ pref(A). From the hypothesis we havew0 . . . wn−1 ∈ pref(C−

A(A)),
and then there exists an infinite wordu such thatCA(w0 . . . wn−1u) ∈ A. Let CA(w0 . . . wn−1u) =

q0q
′
1 . . . q′n . . ., then we haveq0

w0−−→ q′1
w1−−→ q′2 · · ·

wn−1

−−−→ q′n · · · . SinceA is deterministic, we get
q′i = qi, and henceq0 . . . qn ∈ pref(A).

2. Let L ⊆ Σω such thatL is closed. Letρ = q0q1 . . . such that for alln ∈ N we haveq0 . . . qn ∈
pref(CA(L)). Then for alln ∈ N, there exists a wordw0w1 . . . wn−1 such thatq0

w0−−→ q1
w1−−→

q2 . . .
wn−1

−−−→ qn, andw0w1 . . . wn−1 ∈ pref(L). We define by induction onn an infinite nested se-
quence of finite wordsw0w1 . . . wn ∈ pref(L). We denote byw the limit of this nested sequence of
finite words. We have thatρ = CA(w). SinceL is closed,w ∈ L.

3. LetA ⊆ Qω such thatA recognized by a Büchi automatonB = (QB, Q, P0, τ, F ). We define the Büchi
automatonC = (Q × QB, Σ, {q0} × P0, γ, QB × F ), where(q1, p1)

σ
−→ (q2, p2) iff q1

σ
−→ q2 in A and

p1
q1
−→ p2 in B. We now show the correctness of our construction. Letw = w0w1 . . . accepted byC,

then there exists an accepting runρ, as follows:

(q0, p0)
w0−−→ (q1, p1)

w1−−→ (q2, p2) . . . (qn, pn)
wn−−→ (qn+1, pn+1) . . .

where the second component visitsF infinitely often. Hence:

q0
w0−−→ q1

w1−−→ q2 . . . qn
wn−−→ qn+1 . . . in A andp0

q0
−→ p1

q1
−→ p2 . . . pn

qn
−→ pn+1 . . . in B (†)

Hence from(†), we haveCA(w) = q0q1 · · · ∈ L(B) = A, and it follows thatw ∈ C−
A(A). Conversely,

let w ∈ C−
A(A), then we haveρ = CA(w) = q0q1 · · · ∈ A = L(B). Then the above statement(†)

holds, which entails thatw is accepted byC. It follows thatC recognizesC−
A(A).

4. Let L ⊆ Σω such thatL is recognized by a Büchi automatonB = (QB, Σ, P0, τ, F ). We define the
Büchi automatonC = (Q × QB, Q, {q0} × P0, γ, Q × F ), where(q, p1)

q
−→ (q′, p2) iff there exists

σ ∈ Σ, such thatq
σ
−→ q′ in A andp1

σ
−→ p2 in B. A proof similar to above show thatC recognizes

CA(L).

The desired result follows.

Theorem 5. For all deterministic complete automataA = (Q, Σ, q0, δ,Acc) recognizing a languageL,
the finitary restriction of this automatonUniCloOmg(A) = (Q, Σ, q0, δ, UniCloOmg(Acc)) recognizes
UniCloOmg(L).

Proof. A word w is accepted by UniCloOmg(A) iff w ∈ C−
A(UniCloOmg(Acc)) =

UniCloOmg(C−
A(Acc)) = UniCloOmg(L).

Theorem 5 allows to extend all known results on deterministic classes to finitary deterministic classes,
and we have the following corollary.

Corollary 4. We have: (a)DFP = DFS ; (b) DFB ⊂ DFP ; (c) DC ⊂ DFP .

We now show that non-deterministic finitary parity automatais more expressive than deterministic fini-
tary parity automata.

Example 3 (DFP ⊂ NFP ). Consider the following languageLF of finitely manya’s,

LF = {a, b}ω \LI = {w | w has a finite number ofa} ∈ NFP .



1 0
b

a,b b

Figure 3. A NFB for LF .

The languageLF is recognized by the non-deterministic finitary Büchi automata shown in Fig 3.
To show that deterministic finitary parity automata are strictly less expressive than non-deterministic

finitary parity automata, i.e.,DFP ⊂ NFP we showLF 6∈ DFP . Assume towards contradiction that there
is a deterministic finitary parity automatonA with N states that recognizesLF . Without loss of generality
we assume this automaton to be complete, and let the startingstate beq0. Since the wordbω belongs to the
language, the unique run on this word is accepting and can be decomposed as:

q0
bn0

−−→ s0
bp0

−−→ s0
bp0

−−→ s0 . . .

wheres0 is the lowest priority state visited infinitely often (thus it has even priority), andn0, p0 ≤ N . Let
s0

a
−→ r0. Since the wordbn0a bω belongs to the languageLF , we can repeat the above construction. By

induction, we definesk andqk as shown in the Figure 4:sk is the lowest priority state visited infinitely

q0 s0

q1 s1

bn0

bp0

a

bn1

bp1

a

qk sk

qk+1

bnk

bpk

a

Figure 4. Inductive construction showing thatLF /∈ DFP .

often while readingbn0a bn1a . . . bnk−1a bnk bω (thus it has even priority), andnk, pk ≤ N .
There exists i < j such that qi = qj , and hence the infinite wordu · (bni+piv) ·

(bni+2piv) . . . (bni+kpiv) . . . whereu = bn0a bn1a . . . bni−1a andv = abni . . . bnj−1a, is accepted by
A.

q0
u
−→ qi

bni

−−→ si
bpi

−−→ si
v
−→ qi

bni

−−→ si
b2pi

−−→ . . .

Indeed, iterating onsi’s loop ensures that there is no bound between two consecutive visits of a state, for
those which are not in this loop. Insi’s loop, si has the lowest priority, and it is even. There is a bound
between two consecutive visits ofsi: the loop has less thanN states, and the way fromsi by v to qi and
back tosi has constant size|v| + ni. Hence we have contradiction thatA recognizesLF .

Theorem 6. We haveDFP ⊂ NFP .

Remark 2.Observe that Theorem 5 does not hold for non-deterministic automata, since we haveDP = NP

butDFP ⊂ NFP .



4.3 Non-deterministic finitary automata

We now show that non-deterministic finitary Streett automata can be reduced to non-deterministic finitary
Büchi automata, and this would complete the picture of automata-theoretic characterization. We first show
that non-deterministic finitary Büchi automata are closed under conjunction, and use it to show Theorem 7.

Lemma 4. NFB is closed under conjunction.

Proof. Let A1 = (Q1, Σ, δ1, Q
1
0, F1) andA2 = (Q2, Σ, δ2, Q

2
0, F2) be two non-deterministic finitary

Büchi automata. Without loss of generality we assume bothA1 andA2 to be complete. We will define a
construction similar to the synchronous product construction, where a switch between copies will happen
while visitingF1 or F2. The finitary Büchi automaton isA = (Q1×Q2×{1, 2}, Σ, δ, Q1

0×Q2
0×{1}, F1×

Q2 × {2} ∪ Q1 × F2 × {1}). We define the transition relationδ below:

δ = {((q1, q2, k), σ, (q′1, q
′
2, k)) | q′1 /∈ F1, q

′
2 /∈ F2, (q1, σ, q′1) ∈ δ1, (q2, σ, q′2) ∈ δ2, k ∈ {1, 2}}

∪ {((q1, q2, 1), σ, (q′1, q
′
2, 2)) | q′1 ∈ F1, (q1, σ, q′1) ∈ δ1, (q2, σ, q′2) ∈ δ2}

∪ {((q1, q2, 2), σ, (q′1, q
′
2, 1)) | q′2 ∈ F2, (q1, σ, q′1) ∈ δ1, (q2, σ, q′2) ∈ δ2}

Intuitively, the transition functionδ is as follows: the first component mimics the transition for automata
A1, the second component mimics the transition forA2, and there is a switch for the third component from
1 to 2 visiting a state inF1, and from2 to 1 visiting a state inF2.

We now prove the correctness of the construction. Consider awordw that is accepted byA1, and then
there exists a boundB1 and a runρ1 in A1 such that eventually, the number of steps between two visits
to F1 in ρ1 is at mostB1; and similarly, there exists a boundB2 and a runρ2 in A2 such that eventually
the number of steps between two visits toF2 in ρ2 is at mostB2. It follows that in our construction there
is a runρ (that mimics the runsρ1 andρ2) in A such that eventually withinmax{B1, B2} steps a state in
F1 × Q2 × {2} ∪ Q1 × F2 × {1} is visited inρ. Hencew is accepted byA. Conversely, consider a word
w that is accepted byA, and letρ be a run andB be the bound such that eventually between two visits to
the accepting states inρ is separated by at mostB steps. Letρ1 andρ2 be the decomposition of the runρ in
A1 andA2, respectively. It follows that both inA1 andA2 the respective final states are eventually visited
within at most2 ·B steps inρ1 andρ2, respectively. It follows thatw is accepted by bothA1 andA2. Hence
we haveL(A) = L(A1) ∩ L(A2).

Theorem 7. We haveNFS ⊆ NFP ⊆ NFB .

Proof. We will present a reduction ofNFS to NFB and the result will follow. Since the Streett condition
is a finite conjunction of conditionsInf(w) ∩ Ri 6= ∅ ⇒ Inf(w) ∩ Gi 6= ∅, by Lemma 4 it suffices
to handle the special case whend = 1. Hence we consider a non-deterministic Streett automatonA =
(Q, Σ, δ, Q0, (R, G)) with (R, G) = (R1, G1). Without loss of generality we assumeA to be complete.
We construct a non-deterministic Büchi automatonA′ = (Q×{1, 2, 3}, Σ, δ′, Q0 ×{1}, Q×{2}), where
the transition relationδ′ is given as follows:

δ′ = {(q, 1), σ, (q′, j) | (q, σ, q′) ∈ δ, j ∈ {1, 2}}
∪ {(q, 2), σ, (q′, 2) | q′ /∈ R1, (q, σ, q′) ∈ δ}
∪ {(q, 2), σ, (q′, 3) | q′ ∈ R1, (q, σ, q′) ∈ δ}
∪ {(q, 3), σ, (q′, 3) | q′ /∈ G1, (q, σ, q′) ∈ δ}
∪ {(q, 3), σ, (q′, 2) | q′ ∈ G1, (q, σ, q′) ∈ δ}

In other words, the state component mimics the transition ofA, and in the second component: (a) the
automaton can choose to stay in component1, or switch to2; (b) there is a switch from2 to 3 upon visiting
a state inR1; and (b) there is a switch from3 to 2 upon visiting a state inG1. Consider a wordw accepted
by A and an accepting runρ in A, and letB be the bound on the distance sequence. We show thatw is
accepted byA′ by constructing an accepting runρ′ in A′. We consider the following cases:



1. If infinitely many requestsR1 are visited inρ, then inA′ immediately switch to component2, and then
mimic the runρ as a runρ′ in A′. It follows that from some pointj on every request is granted within
B steps, and it follows that after positionj, whenever the second component is3, it becomes2 within
B steps. Hencew is accepted byA.

2. If finitely many requestsR1 are visited inρ, then after some pointj, there are no more requests. The
automatonA′ mimics the runρ by staying in the second component as1 for j steps, and then switches
to component2. Then afterj steps we always have the second component as2, and hence the word is
accepted.

Conversely, consider a wordw accepted byA′ and consider the accepting runρ′. We mimic the run inA.
To accept the wordw, the runρ′ must switch to the second component as2, say afterj steps. Then, from
some point on whenever a state with second component3 is visited, within some boundB steps a state with
second component2 is visited. Hence the runρ is accepting inA. Thus the languages ofA andA′ coincide,
and the desired result follows.

Corollary 5. We haveDFB ⊂ DFP ⊂ NFB = NFP = NFS .

Our results establishing the precise automata-theoretic characterization of languages defined by au-
tomata with finitary acceptance condition is shown in Fig 5. In generalNFP cannot be determinized to a
DFP , however, for every languageL ∈ Lω there isA ∈ DP such thatA recognizesL, and hence the
deterministic finitary parity automataUniCloOmg(A) recognizesUniCloOmg(L).

Corollary 6. For every languageL ∈ Lω there is a deterministic finitary parity automataA such thatA
recognizesUniCloOmg(L).

DFB

DB

DC

DFP = DFS

NFB = NFP = NFS

Lω

Figure 5. Automata-theoretic characterization



5 Logical Characterization of Finitary Languages

In this section we consider the logical characterization offinitary languages.

Closure properties.For a logical characterization of languages defined by automata with finitary accep-
tance conditions, we first study the closure properties of deterministic and non-deterministic automata with
finitary acceptance conditions. We will considerDFP andNFP .

Theorem 8 (Closure properties).The following closure properties hold:

1. DFP is closed under intersection.
2. DFP andNFP are not closed under complementation.
3. DFP is not closed under union.
4. NFP is closed under union and intersection.

Proof. We prove all the cases below.

1. Intersection closure forDFP follows from Theorem 5 and from the observation that for allL, L′ ⊆ Σω

we haveUniCloOmg(L ∩ L′) = UniCloOmg(L) ∩ UniCloOmg(L′). The observation is proved as
follows. LetM ∈ Π1 ∩Lω andM ⊆ L∩L′, thenM ⊆ UniCloOmg(L)∩UniCloOmg(L′), and hence
UniCloOmg(L∩L′) ⊆ UniCloOmg(L)∩UniCloOmg(L′). Conversely, letM1 ⊆ UniCloOmg(L) and
M2 ⊆ UniCloOmg(L′), thenM1 ∩ M2 ∈ Π1 ∩ Lω andM1 ∩ M2 ⊆ L ∩ L′. HenceM1 ∩ M2 ⊆
UniCloOmg(L ∩ L′), thusUniCloOmg(L) ∩ UniCloOmg(L′) ⊆ UniCloOmg(L ∩ L′).

2. It follows from Example 2 and Example 3 that there is a non-deterministic finitary parity automata that
recognizes the languageLF , and the complementary language{a, b}ω\LF = LI is not recognized by a
non-deterministic finitary parity automaton. It follows thatNFP is not closed under complementation.
The result forDFP is similar.

3. As for Example 1 we consider the languagesL1 = {(aj0bf(0)) · (aj1bf(1)) · (aj2bf(2)) . . . | f :
N → N, f bounded,∀i ∈ N, ji ∈ N} andL2 = {(af(0)bj0) · (af(1)bj1) · (af(2)bj2) . . . | f : N →
N, f bounded,∀i ∈ N, ji ∈ N}, also described by theωB-regular expressions(a∗bB)ω and(b∗aB)ω,
respectively. It follows from Example 1 that bothL1 andL2 belong toDFP , and we show thatL1∪L2 /∈
DFP . The proof is the very similar to Example 1. Assume towards contradiction thatL1 ∪ L2 ∈
DFP , and letA be a deterministic complete finitary parity automaton that recognizesL1 ∪ L2. Let
A hasN states, and letq0 be the starting state. Sinceaω belongs to this language, its unique run on

A is accepting:q0
an0

−−→ s0
ap0

−−→ s0
ap0

−−→ . . . wheren0 ≤ N , 1 ≤ p0 ≤ N ands0 is the lowest
priority visited infinitely often while readingaω. Then,an0bω belongs to this language, its unique run

on A is accepting:q0
an0

−−→ s0
bn′

0

−−→ q1
bp′

0

−−→ q1
bp′

0

−−→ . . . wheren′
0 ≤ N , 1 ≤ p′0 ≤ N and q1

is the lowest priority visited infinitely often while reading an0bω. Repeating this construction and by

induction we have:q0
an0

−−→ s0
bn′

0

−−→ q1
an1

−−→ s1
bn′

1

−−→ . . . qk
ank

−−→ sk
b

n′

k

−−→ qk+1 with sk
apk

−−→ sk

andqk+1
bp′

k

−−→ qk+1, wherenk, n′
k ≤ N and1 ≤ pk, p′k ≤ N ; andsk is the lowest priority visited

infinitely often while readingan0bn′

0 . . . ankaω; andqk+1 is the lowest priority visited infinitely often
while readingan0bn′

0 . . . ankbn′

kbω. There must bei < j, such thatqi = qj . Let u = an0bn′

0 . . . bn′

i−1

andv = bn′

i . . . bn′

j−1 . The word

w∗ = u · (bp′

iani+piv) · (b2p′

iani+2piv) . . . (bkp′

iani+kpiv) . . .

is accepted byA, but does not belong toL1∪L2. Hence we have a contradiction, and the result follows.
4. Union closure forNFP is obvious, intersection closure forNFP follows from Lemma 4, sinceNFP =

NFB (Corollary 5).

The result follows.



Comparison with ωB-regular expressions.We now study the expressive power ofNFP as compared to
ωB-regular expressions. The class ofωB-regular expressions was introduced in the work of [BC06] asan
extension ofω-regular expressions. Regular expressions defines exactlyregular languages over finite words,
and has the following grammar:

L := ∅ | ε | σ | L · L | L∗ | L + L; σ ∈ Σ

In the above grammar,· stands for concatenation,∗ for Kleene star and+ for union. Thenω-regular lan-
guages are finite union ofL · L′ω, whereL andL′ are regular languages of finite words. The class of
ωB-regular languages, as defined in [BC06], is exactly described by finite union ofL · Mω, whereL is a
regular language over finite words andM is aB-regular language over infinite sequences of finite words.
The grammar forB-regular languages is as follows:

M := ∅ | ε | σ | M · M | M∗ | MB | M + M ; σ ∈ Σ

The semantics of regular languages over infinite sequences of finite words will assign to aB-regular ex-
pressionM , a language in(Σ∗)ω. The infinite sequence〈u0, u1, . . .〉 will be denoted byu. The semantics
is defined by structural induction as follows.

– ∅ is the empty language,
– ε is the language containing the single sequence(ε, ε, . . . ),
– a is the language containing the single sequence(a, a, . . . ),
– M1 · M2 is the language{〈u0 · v0, u1 · v1, . . .〉 | u ∈ M1, v ∈ M2},
– M∗ is the language{〈u1 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .〉 | u ∈ M, f : N → N},
– MB is defined likeM∗ but we additionally require the valuesf(i + 1) − f(i) to be bounded,
– M1 + M2 is {w | u ∈ M1, v ∈ M2, ∀i, wi ∈ {ui, vi}}.

Finally, theω operator on sequences with nonempty words on infinitely manycoordinates:〈u0, u1, . . .〉ω =
u0u1 . . . . This operation is naturally extended to languages of sequences by taking theω power of every
sequence in the language (ignoring those with nonempty words on finitely many coordinates). The class
of ωB-regular languages is more expressive thanNFP , and this is due to the∗-operator. We will consider
the following fragment ofωB-regular languages where we do not consider the∗-operator forB-regular
expressions (however, the∗-operator is allowed forL, regular languages over finite words). We call this
fragment the star-free fragment ofωB-regular languages. In the following two lemmas we show thatstar-
freeωB-regular expressions express exactlyNFP = NFB .

Lemma 5. All languages inNFP can be described by a star-freeωB-regular expression.

Proof. Let A = (Q, Σ, δ, Q0, p) be a non-deterministic finitary parity automaton. Without loss of general-
ity we assumeQ = {1, . . . , n}. Let C = p(Q) be the set of priorities,Qeven = {q ∈ Q | p(q) even}
the set of states with even priority andQ≥c = {q ∈ Q | p(q) ≥ c} the set of states with prior-
ity at leastc. Let Lq,q′ = {u ∈ Σ∗ | q

u
−→ q′} and M≥c

q = {u | (|ui|)i is bounded and∀i, q
ui−→

q where all intermediate visited states have priority greater thanc}. Then

L(A) =
⋃

q0∈Q0,q∈Qeven

Lq0,q · (M
≥p(q)
q )ω .

For all q, q′ ∈ Q we haveLq,q′ ⊆ Σ∗ is regular. We now show that for allq ∈ Q and c ∈ C
the languageM≥c

q is B-regular. We fixc ∈ C, and then for simplicity of notation abbreviateM≥c
q

to Mq. For all 0 ≤ k ≤ n and q, q′ ∈ Q, let Mk
q,q′ = {u | (|ui|)i is bounded and∀i, q

ui−→
q′ where all intermediate visited states are from{1, . . . , k} and have priority greater thanc}. We show by
induction on0 ≤ k ≤ n that for all q, q′ ∈ Q the languageMk

q,q′ is B-regular. The base casek = 0
follows from observation:

M0
q,q′ =







a1 + a2 + · · · + al if q 6= q′ and(q, a, q′) ∈ δ ⇐⇒ ∃i ∈ {1, . . . , l}, a = ai

ε + a1 + a2 + · · · + al if q = q′ and(q, a, q′) ∈ δ ⇐⇒ ∃i ∈ {1, . . . , l}, a = ai

∅ otherwise



The inductive case fork > 0 follows from observation:

Mk
q,q′ = Mk−1

q,k · (Mk−1
k,k )B · Mk−1

k,q′ + Mk−1
q,q′

SinceMn
q,q = Mq, we conclude thatL(A) is described by a star-freeωB-regular expression.

Lemma 6. All languages described by a star-freeωB-regular expression is recognized by a non-
deterministic finitary Büchi automaton.

Proof. To prove this result, we will describe automata reading infinite sequences of finite words, and cor-
responding acceptance conditions. LetA = (Q, Σ, δ, Q0, F ) a finitary Büchi automaton. While reading
an infinite sequenceu of finite words,A will accept if the following conditions are satisfied: (1)∃q0 ∈
Q0, q1, q2, . . . ∈ F, ∀i ∈ N, we haveqi

ui−→ qi+1 and (2)(|un|)n is bounded.
We show that for allM star-freeB-regular expression, there exists a non-deterministic finitary Büchi

automaton acceptingMB, language of infinite sequence of finite words, as described above. We proceed
by induction onM .

– The cases∅, ε anda ∈ Σ are easy.
– FromM to MB, the same automaton forM works forMB as well, sinceB is idempotent.
– From M1, M2 to M1 + M2: this involves non-determinism. The automaton guesses foreach finite

word which word is used. LetA1 = (Q1, Σ, δ1, Q
0
1, F1) andA2 = (Q2, Σ, δ2, Q

0
2, F2) two non-

deterministic finitary Büchi automata acceptingMB
1 andMB

2 , respectively. Fork ∈ {1, 2} andT ⊆

Qk, we defineFinal(T ) = {q′ ∈ Fk | ∃q ∈ T, ∃u ∈ Σ∗, q
u
−→Ak

q′} to be the state of final
states reachable from a state inT . We denote byFinalk thek-th iteration ofFinal, e.g.,Final3(T ) =
Final(Final(Final(T ))).
We define a finitary Büchi automaton:

A = ((Q1 × 2Q1) ∪ (Q2 × 2Q1)
︸ ︷︷ ︸

computation states

∪ 2Q1 × 2Q2

︸ ︷︷ ︸

guess states

, Σ, δ, (Q0
1, Q

0
2), F )

where
δ = {((Q, Q′), ε, (q, Final(Q′))) | q ∈ Q} (guess is1)
∪ {((Q, Q′), ε, (q′, Final(Q))) | q′ ∈ Q′} (guess is2)
∪ {((q, T ), σ, (q′, T )) | (q, σ, q′) ∈ δ1 ∪ δ2}
∪ {((q1, T ), ε, ({q1}, T )) | q1 ∈ F1}
∪ {((q2, T ), ε, (T, {q2})) | q2 ∈ F2}

There are two kinds of states. Computation states are(q, T ) whereq ∈ Q1 andT ⊆ Q2 (or symmetri-
cally q ∈ Q2 andT ⊆ Q1), whereq is the current state of the automaton that has been decided touse
for the current finite word, andT is the set of final states of the other automaton that would have been
reachable if one had chosen this automaton. Guess states are(Q, Q′), whereQ is the set of states from
A1 one can start reading the next word, and similarly forQ′.
We now prove the correctness of our construction. Consider an infinite sequencew accepted byA, and
consider an accepting runρ. There are three cases:
1. either all guesses are1;
2. or all guesses are2;
3. else, both guesses happen.

The first two cases are symmetric. In the first, we can easily see thatw is accepted byA1, and similarly
in the secondw is accepted byA2.
We now consider the third case. There are two symmetric subcases: either the first guess is1, then

ρ = (Q0
1, Q

0
2) · (q

0
1 , Final(Q0

2)) . . . ,

with q0
1 ∈ Q0

1; or symmetrically the first guess is2, then

ρ = (Q0
1, Q

0
2) · (q

0
2 , Final(Q0

1)) . . . ,



with q0
2 ∈ Q0

2. We consider only the first subcase. Then

ρ = (Q0
1, Q

0
2) · (q

0
1 , Final(Q0

2)) . . . (q1
1 , Final(Q0

2)) · ({q
1
1}, Final(Q0

2)) . . . ,

whereu0 is a finite prefix ofwω such thatq0
1

u0−→ q1
1 in A1 andq1

1 ∈ F1. We denote byρ0 the finite
prefix ofρ up to(q1

1 , Final(Q0
2)). Let k be the first time when guess is2: then

ρ = ρ0 · ρ1 · ρk−1 · ({q
k
1}, Finalk(Q0

2)) · (q
0
2 , Final({qk})) . . . ,

whereq0
2 ∈ Finalk(Q0

2) and for1 ≤ i ≤ k − 1, we have

ρi = ({qi
1}, Finali(Q0

2)) · (q
i
1, Finali+1(Q0

2)) . . . (qi+1
1 , Finali+1(Q0

2)),

andui is a finite word such thatqi
1

ui−→ qi+1
1 in A1, q

i+1
1 ∈ F1 andu0u1 . . . uk−1 finite prefix of

w
ω. Sinceq0

2 ∈ Finalk(Q0
2), there existsv0, v1, . . . , vk−1 finite words andq1

2 , . . . , q
k
2 ∈ F2 such that:

q0
2

v0−→ q1
2

v1−→ . . .
vk−1

−−−→ qk
2 . Then we can repeat this by induction, constructingu ∈ MB

1 andv ∈ MB
2 ,

such that for alli ∈ N, we havewi ∈ {ui, vi}.
Conversely, letu ∈ MB

1 andv ∈ MB
2 , andw such that∀i ∈ N, wi ∈ {ui, vi}. UsingA1 whenwi = ui

andA2 otherwise, one can construct an accepting run forw andA. HenceA recognizes(M1 +M2)
B .

– FromM1, M2 to M1 · M2: the automaton keeps tracks of pending states while readingthe other word.
Let A1 = (Q1, Σ, δ1, Q

0
1, F1) andA2 = (Q2, Σ, δ2, Q

0
2, F2) two non-deterministic finitary Büchi

automata acceptingMB
1 andMB

2 , respectively. LetA = ((Q1×F2)∪ (Q2 ×F1), Σ, δ, Q0
1×Q0

2, F1×
F2), where

δ = {((q, f), σ, (q′, f)) | (q, σ, q′) ∈ δ1, f ∈ F2}
∪ {((q, f), σ, (q′, f)) | (q, σ, q′) ∈ δ2, f ∈ F1}
∪ {((q1, f), ε, (f, q1)) | q1 ∈ F1}
∪ {((q2, f), ε, (f, q2)) | q2 ∈ F2}

Intuitively, the transition relation is as follows: eitherone is reading usingA1 orA2. In both cases, the
automaton remembers the last final state visited while reading in the other automaton in order to restore
this state for the next word. Letw accepted byA, an accepting run is as follows:

(q0
1 , q

0
2)

w0−−→ (q1
1 , q1

2)
w1−−→ . . . (qi

1, q
i
2)

wi−→ (qi+1
1 , qi+1

2 ) . . .

where(q0
1 , q0

2) ∈ Q0
1 × Q0

2, for all i ≥ 1, we have(qi
1, q

i
2) ∈ F1 × F2 and(|wn|)n bounded. From the

construction, for alli ∈ N, we havewi = u0
i · v

0
i · u1

i · v
1
i . . . uki

i · vki

i , where

qi
1 = qi

1(0)
u0

i−→ qi
1(1)

u1
i−→ qi

1(2) . . .
u

ki
i−−→ qi

1(ki + 1) = qi+1
1 in A1

qi
2 = qi

2(0)
v0

i−→ qi
2(1)

v1
i−→ qi

2(2) . . .
v

ki
i−−→ qi

2(ki + 1) = qi+1
2 in A2

the states(qi
1(k), qi

2(k)) belong toF1 × F2. We defineui = u0
i u

1
i . . . uki

i andvi = v0
i v1

i . . . vki

i . From
the above follows thatu andv are accepted byA1 andA2, respectively. Thenw ∈ (M1 · M2)

B.
Conversely, a sequence in(M1 · M2)

B is clearly accepted byA. HenceA recognizes(M1 · M2)
B.

We now prove that all star-freeωB-regular expressions are recognized by a non-deterministic finitary
Büchi automaton. SinceNFB are closed under finite union (Theorem 8), we only need to consider expres-
sionsL ·Mω, whereL ⊆ Σ∗ is regular language of finite words andM star-freeB-regular expression. The
constructions above ensure that there existsAM = (QM , Σ, δM , Q0

M , FM ), a non-deterministic finitary
Büchi automaton that recognizes the languageMB of infinite sequences. LetAL = (QL, Σ, δL, Q0

L, FL)
be a finite automaton over finite words that recognizesL. We construct a non-deterministic finitary Büchi
automaton as follows:A = (QL∪QM , Σ, δ, Q0

L, FM ) whereδ = δL∪δM∪{(q, ε, q′) | q ∈ FL, q′ ∈ Q0
M}.

In other words, firstA simulatesAL, and when a finite prefix is recognized byAL, thenA turns toAM and
simulates it.



We argue thatA recognizesL ·Mω. Letw accepted byA, andu the finite prefix read byAL, w = u ·v.
Fromv infinite word, we definev an infinite sequence of finite words by sequencingv each time a final state
(i.e., fromFL) is visited. The sequencev is accepted byAM , hence belongs toMB, and sincevω = v,
we havev ∈ (MB)ω = Mω, and finallyw ∈ L · Mω. Conversely, letw = u · v

ω, whereu ∈ L and
v ∈ MB. Let q0 ∈ Q0

L, q ∈ FL such thatq0
u
−→ q. Let q′ ∈ Q0, q1, q2, . . . ∈ FL, such that for alli ∈ N

we haveqi
vi−→ qi+1. Thekey, yet simple observation is that for allM star-freeB-regular expression, for all

v ∈ M , (|vn|)n is bounded. This is straightforward by induction onM . Hence, from position|u|, the set
FL is visited infinitely many times, and there is a bound betweentwo consecutive visits. Thusw is accepted
byA.

The following theorem follows from Lemma 5 and Lemma 6.

Theorem 9. NFP has exactly the same expressive power as star-freeωB-regular expressions.

Monadic second-order logic.We now consider monadic second-order logic (MSOL). Terms are either0
or a first-order variablei: t := 0 | i. They will stand for positions. Atomic formulas are of the form, where
t, t′ are terms andX second-order variable:

A := t = t′ | S(t, t′) | t < t′ | t ∈ X | Qa(t) for a ∈ Σ

MSOL formulas are generated by the grammar:

φ := A | φ ∧ φ | φ ∨ φ | ¬φ | ∃i, φ | ∀i, φ | ∃X, φ | ∀X, φ

Languages described by atomic formulas lie inNFP . We now consider closure properties ofNFP

under the logical constructors used inMSOL:

– The closure under conjunction and disjunction follows fromTheorem 8.
– The failure of closure under negation follows from Theorem 8.
– The closure under existential quantification (both first andsecond-order) follows from non-determinacy.
– The closure under universal quantification (both first and second-order) fails:L = {w |

w has an infinite number ofa} /∈ NFP as shown in Example 2, but it can be described using a uni-
versal quantifier and an existential one:L = {w | w |= ∀n, ∃k, k ≥ n ∧ Qa(k)}.

We already saw thatDFP andNFP are not included inLω, thusMSOL is not expressive enough to
describeDFP norNFP , asMSOL describes exactlyLω. MSOLA [BC06] is an extension ofMSOL where
we add theabove bounded quantifierA, whose semantics is:

AX.φ := ∃N ∈ N, ∀X, |X | ≥ N ⇒ φ(X)

MSOLA is the set of formulas containingMSOL and closed under∨,∧, ∀, ∃ andA. MSOLA is equivalent
in expressive power asωB-regular expressions. SinceNFP corresponds to the star-free fragment (The-
orem 9), which is less expressive thanωB-regular expressions, it follows thatMSOLA is strictly more
expressive thanNFP .

Theorem 10. MSOLA is strictly more expressive thanNFP .
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