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Abstract

Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a
Nikon D70 digital SLR camera, we acquired about 5000 six-megapixel images of Okavango Delta of Botswana, a tropical
savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured
unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture,
object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images
are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the
expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths.
This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research
in computer vision, psychophysics of perception, and visual neuroscience.
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Introduction

High-resolution digital cameras are now ubiquitous and

affordable, and are increasingly incorporated into portable

computers, mobile phones and other handheld devices. This

accessibility has led to an explosion of online image databases,

accessible through photo-sharing websites such as Flickr and

SmugMug, social networks such as Facebook, and many other

internet sites. Disciplines such as neuroscience, computer science,

engineering and psychology have profited from research into the

statistical properties of natural image ensembles [1,2], and it might

seem that the side benefit of public photo-sharing websites is an

ample supply of image data for such research. Some research,

however, requires carefully calibrated images that accurately

represent the light that reaches the camera sensor. For example,

to address questions about the early visual system, images should not

deviate systematically from the patterns of light incident onto, and

encoded by, the retina. Specific limitations of uncontrolled

databases that hinder their use in vision research include (i)
compression by lossy algorithms, which distort image structure at

fine scales; (ii) photography with different cameras, which results in

unpredictable quality and incomparable pixel values; (iii) photog-

raphy with different lenses or focal lengths, which may introduce

unknown optical properties to the image incident on the sensor, and

(iv) photography for unspecified purposes, which may bias image

content toward faces, man-made structures, panoramic landscapes,

etc., while under-representing sky, ground, feces, or other more

mundane content.

Due to these limitations, research involving natural images

typically relies on a well-calibrated database [3–5]. Examples

where good image databases are essential include early visual

processing in neural systems [4,6–11], computer vision algorithms

[12–14], and image compression/reconstruction methods [15,16].

In each of these fields, much of the research requires accurate

characterization of the statistics of natural image ensembles.

Natural images exhibit characteristic luminance distributions [17]

and spatial correlations [7,18]. These result from environmental

regularities such as physical laws of projection and image

formation, natural light sources, and the reflective properties of

natural objects. Further, natural images exhibit higher-order

regularities such as edges, shapes, contours and textures that are

perceptually salient, but difficult to quantify [19–24]. To

characterize these regularities in image patches of increasing

spatial extent, the number of image samples required to collect

reliable joint pixel luminance probability distributions scales

exponentially with the number of pixels in the patch, ultimately

limiting the reliability of our estimates. Nevertheless, with sizable

databases one might push the sampling limit to patches of up to

*10|10 pixels discretized into a few luminance levels, and even

at that restricted size interesting results have emerged [25–27].

In this paper we describe a collection of calibrated natural

images, which tries to address the shortcomings of uncontrolled

image databases, while still providing substantial sampling power

for image ensemble research. The database is organized into

themed sub-collections and is broadly annotated with keywords

and tags. The raw images are linear with incident light intensity in
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each of the camera’s three color channels (Red, Green, and Blue).

Further, because much research is concerned with human vision,

we have translated each image into physiological units relevant to

human cone photoreceptors. The raw image data, demosaiced

RGB images, grayscale images representing luminance, and

images in the physiologically relevant cone representation are

available in the database.

Results

Image calibration
We checked (i) that the Nikon D70 camera has a consistent

resolution (in pixels per degree) in the vertical and horizontal

directions; (ii) that its sensor responses are linear across a large

range of incident light intensities; and (iii) that its shutter, aperture,

and ISO settings behave regularly, so that it is possible to estimate

incident photon flux given these settings. We (iv) measured the

spectral response of the camera’s R, G, and B sensors by taking

images of a reflectance standard illuminated by a series of 31

narrowband light sources and verified that these measured

responses allowed us to predict the R, G, and B responses to

spectrally broadband light. We also (v) characterized the ‘‘dark

response’’ of the camera, i.e. the sensor output with no light incident

onto the CCD (charge-coupled device) chip. Finally, we (vi)
measured the spatial modulation transfer function of each of the R,

G, and B sensor planes for broadband incident light. We examined

two separate D70 cameras, and found that they yielded consistent

results and could be used interchangeably, except for a single

constant scaling factor in the CCD sensor response. Taken together,

the camera measurements allow us to transform raw camera RGB

values into standardized RGB response values that are proportional

to incident photon fluxes seen by the three camera sensor types.

Details on the camera characterization are provided in Materials and

Methods: Camera response properties.

With these results in hand, we can further transform the

standardized RGB data into physiologically relevant quantities (see

details in Materials and Methods: Colorimetry). The photon flux

arriving at the human eye is filtered by passage through the ocular

media before entering a cone photoreceptor aperture. There, with

some probability, each photon may cause an isomerization. There

are three classes of cones, the L, M, and S cones. Each contains a

different photopigment, with the spectral sensitivities of the

three photopigments peaking at approximately lS~421 nm,

lM~530 nm, and lL~559 nm, respectively [28]. We have

transformed the RGB images into physiologically-relevant esti-

mates of the isomerization rates that the incident light would

produce in human L, M, and S cones. For this transformation, we

used the Stockman-Sharpe/CIE 2-degree (foveal) estimates of the

cone fundamentals [28,29], together with methods outlined by Yin

et al. [30] to convert nominal cone coordinates to estimates of

photopigment isomerization rates. We have also transformed the

RGB images into grayscale images representing estimates of the

luminance of the incident light (in units of candela per meter

squared with respect to the CIE 2007 two-degree specification for

photopic luminance spectral sensitivity). An important contribu-

tion of this work is to report image data from a biologically

relevant environment in units of cone photopigment isomeriza-

tions, thus characterizing the information available at the first

stage of the human visual processing pathways.

Image ensemble
We have assembled a large database of natural images acquired

with a calibrated camera (see Materials and Methods), and made it

available to the general public through an easy-to-use web interface.

The extensive dataset covers a single environment: a rich riverine /

savanna habitat in the Okavango delta, Botswana, which is home to

the full panoply of vertebrate and invertebrate species, such as lion,

leopard, cheetah, elephant, warthog, antelope, zebra, giraffe,

various bird species etc. This environment was chosen because it

is thought to be similar to the environment where the human eye,

and retina in particular, have evolved. The database consists of

*5000 images, organized into about 100 folders (albums).

Tables 1 and 2 provide an album-by-album summary of the

database content, along with content keywords for each album and

tags that give additional information about how the images were

gathered. Figure 1 shows several examples of images from the

database: baboon habitat, panoramic images that include the

horizon, closeups of the ground, and closeup images that include

the ruler for absolute scale determination.

Figure 2 shows a simple analysis of images from album cd32b.

Images of cloudless sky were taken every 10 minutes, from 6:30

until 18:30. We compute the average luminance as a function of

time, and the LMS color composition of the light incident on the

camera that was pointing up at the homogenous sky.

Figure 3 shows an analysis of 23 images from album cd04b,

where closeups of the grass scrub on the ground were taken from

various distances. We computed the pairwise luminance correla-

tion function as a function of pixel separation, and show how it

varies systematically with distance to the ground. Since the grass

scrub on our images has a preferred scale, the correlation function

should decay faster the farther away from the scene the camera is,

and this is indeed what we see. Scale invariance in natural scenes

presumably emerges because of the distribution of object sizes and

distances from which the objects are viewed [31]. Our image

collection can be used to study the scaling properties of the

ensemble systematically.

The two examples provided above are intended to illustrate the

strengths of our database: calibration and normalization into

physiologically relevant units; organization into thematic (keywords)

and methodological sequences (tags), that explore variations

between the scenery content and variations induced by systematic

changes in controllable parameters; and a thorough sampling that

should suffice for the estimation of higher-order statistics or even

accumulation of image patch probability distributions.

In assembling the database, we could have taken an alternative

approach and built a catalogue of as many objects from the

environment as possible, photographed at a chosen ‘‘standard’’

camera position and controlled illumination, removed from the

natural context and placed on a neutral background. While there

are advantages to exhaustively pursuing this approach, we

regarded it as focusing on natural objects and not on natural scenes.

Nevertheless we provide a limited set of albums in the collection of

Table 2, where closeups of fruit, grass, bark are provided; we

reasoned that some of these closeups would be of use for studying

properties of natural objects such as texture.

Data access
The image database is accessible at http://tofu.psych.upenn.edu/

,upennidb, or through anonymous FTP at ftp://anonymous@tofu.

psych.upenn.edu/fulldb. A standard gallery program for viewing the

images on the web makes browsing and downloading individual

images or whole albums easy [32]. Once images have been added to

the ‘cart’ and the user selects the download option, the database

prompts the user to select the formats for download; the available

formats are (i) NEF (raw camera sensor output, Nikon proprietary

format); (ii) RGB Matlab matrix (demosaiced RGB values before

dark response subtraction); (iii) LMS Matlab matrix (physiological
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units of isomerizations per second in L, M, S cones); (iv) LUM

Matlab matrix (grayscale image in units of cd/m2); and (v) AUX

meta-data Matlab structure (containing camera settings and basic

image statistics). Materials and Methods: Image extraction and data formats

documents the detailed image processing pipeline. After image

format selection has been made, the database prepares a download

folder which contains the selected images in the requested formats

and with the album (directory) structure maintained. The folder is

available for download by (recursive) FTP, for instance by using an

open-source wget tool [33]; in this way large amounts of data, e.g.,

the whole database (*300 Gb of image data for all available formats

combined) can be reliably transferred. A list of requested images is

provided with the image files, and can be used to retrieve the same

selection of images from the database directly; this facilitates the

reproducibility of analyses and uniquely defines each dataset. All

images are distributed under Creative Commons Attribution-

Noncommercial Unported license [34], which prohibits commercial

use but allows free use and information sharing / remixing as long as

authorship is recognized. Images and processing software used to

calibrate the cameras is available upon request.

Materials and Methods

Camera response properties
Two D70 (Nikon, Inc., Tokyo, Japan) cameras are described.

Each was equipped with an AF-S DX Zoom-Nikkor 18–70 mm

f/3.5–4.5G IF-ED lens. To protect the front surface of the lens, a

52 mm DMC (Digital Multi Coated) UV skylight filter was used in

all measurements. One camera, referred to in this document as the

standard camera (serial number 2000a9a7), is characterized in detail.

A subset of the measurements was made with a second D70 camera,

Table 1. Albums 01a–61a of the Botswana dataset.

Album Keywords Tags

cd01a baboons, grass, tress, bushes

cd02a baboons, grass, tress, bushes

cd03a trees sequence: vertical angle

cd04a trees, grass sequence: aperture

cd05a trees, leaves sequence: aperture

cd06a flood plain, grass, trees, sky

cd07a baboons, horizon sequence: aperture

cd08a sand plain, horizon sequence: aperture

cd09a sand plain, bushes, horizon

cd10a bushes, trees sequence: aperture

cd11a forrest sequence: aperture

cd12a forrest, ground

cd13a flood plain, water, horizon

cd14a horizon, sunset sequence: time, short
+long exposure

cd15a leaves, grass, ground

cd16a road, cars, buildings, town

cd17a road, cars, buildings, town

cd18a tree, ground sequence: aperture

cd19a sand plain, ground closeup

cd20a sand plain, horizon sequence: aperture

cd21a sand plain, sand ground, cloudy sky

cd22a baboons, sand ground, horizon sequence: aperture

cd23a leaves, bushes, ground, sky

cd24a leaves sequence: aperture

cd25a plant, leaves closeup

cd26a leaves, bushes sequence: aperture

cd27a flood plain, grass, water, horizon sequence: time,
short+long exposure

cd28a termite mound, horizon sequence: aperture

cd29a sand plain, horizon sequence: aperture

cd30a baboons, sand plain, bushes,
trees, horizon

cd31a bushes, termite mound sequence: scale, sequence:
vertical angle

cd32a flood plain, water, grass, horizon

cd33a flood plain, water, grass, horizon

cd34a forrest, tree, leaves sequence: scale

cd35a grass, trees sequence: scale

cd36a bark closeup, sequence:
aperture

cd37a leaves sequence: aperture

cd38a sand plain, trees, horizon, ground

cd39a sand plain, horizon sequence: aperture

cd40a bark closeup

cd41a forrest, trees, leaves, ground

cd42a fruit, nuts closeup, on table

cd43a grass plain, baboons, water,

cd44a baboons, grass, human

cd45a sand plain, rock sequence: scale

cd46a plain, tree sequence: scale

Album Keywords Tags

cd47a tree trunk, forrest sequence: scale

cd48a tree trunk, sand plain sequence: scale

cd49a tree stump, ground sequence: scale

cd50a fruit, plant closeup, sequence:
aperture

cd51a tree, sky sequence: aperture

cd52a palm tree sequence: aperture

cd53a trees, grass, forest sequence: time (all day)

cd54a sand plain, horizon sequence: time (all day)

cd55a grass plain, horizon sequence: time (all day)

cd56a baboons, grass closeup

cd57a baboons, grass, trees, bushes

cd58a baboons, grass, trees, horizon

cd59a baboons, grass, tree stumps

cd60a horizon sequence: time (sunset),
short+long exposure

cd61a sky, moon sequence: time (night)

Keywords provide a short description of the image content. Tags provide
additional information about how the images were acquired. A ‘‘sequence’’ tag
means that the same scene was taken several times while changing a
parameter, e.g., ‘‘sequence: aperture’’ means that the scene was photographed
while changing the aperture (and simultaneously the exposure time),
‘‘sequence: scale’’ means that the object is photographed at decreasing
distance to the camera, ‘‘sequence: time’’ means that the scene is
photographed at approximately equal time intervals, etc.
doi:10.1371/journal.pone.0020409.t001

Table 1. Cont.
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referred to in this document as the auxiliary camera (serial number

20004b72). Its response properties matched those of the standard

camera after all responses were multiplied by a single constant.

Geometric information. The D70’s sensor provides a raw

resolution of 3040(h)|2014(v) pixels. The angular resolution of

the camera was established by acquiring an image of a meter stick

at a distance of 123 cm. Both horizontal and vertical angular

resolutions were 92 pixels per degree. This resolution is slightly

lower than that of foveal cones, which sample the image at

approximately 120 cones per degree [35].

Image quantization. The camera documentation indicates

that the D70 has native 12-bit-per-pixel intensity resolution [36],

and that the NEF compressed image format supports this resolution.

Nonetheless, the D70 appears not to write the raw 12-bit data to the

NEF file. Rather, some quantization/compression algorithm is

applied which converts the image data from 12 bit to approximately

9:4 bit per pixel resolution [37]. The raw data extraction program,

DCRAW [38], appears to correct for any pixel-wise nonlinearity

introduced by this processing, but it cannot, of course, recover the

full 12-bit resolution. The pixel values in the file extracted by dcraw

range between 0 and 16384 for red and blue, and between 0 and

16380 for the green channel, and these are the values we use for the

analysis. We do not have a direct estimate of the actual precision of

this representation. We used version v5:71 of dcraw; we note that

the output image representation produced by this software is highly

version dependent.

Mosaic pattern and block averaging. The D70 employs a

mosaic photosensor array to provide RGB color images. That is,

each pixel in a raw image corresponds either to an R, G, or B

sensor, as shown in Fig. 4. R, G, and B values can then be

interpolated to each pixel location. This process is known as

demosaicing. The images in the database were demosaiced by

Figure 1. Example images from the Botswana dataset. A–D) Some natural scenes from various albums, including a tree, grass and bushes
environment, the horizon with a large amount of sky, and closeups of the ground; the last image is from the image set containing a ruler than can be
used to infer the absolute scale of objects. E–F) The distributions of L (red), M (green) and S (blue) channel intensities across the image for images A)
and B), respectively. The large sky coverage in B) causes a peak in the S channel at high values. The horizontal axis is log base 10 of pigment
photoisomerizations per cone per second. G–H) Grayscale images showing log luminance corresponding to the images in C) and D), respectively.
doi:10.1371/journal.pone.0020409.g001

Figure 2. The color content and luminance of the sky. A) The luminance in candelas per square meter shows the rise in the morning and decay
in the evening, along with the fluctuations during the day. B) The color content of the sky. To report relative changes in color content corrected for
overall luminance variation, the L, M and S channels have been divided by their reference values at 12:30pm to bring the three separate curves
together at the 12:30pm time point. In addition, all three curves were multiplied by the luminance at 12:30pm and then divided by the luminance at
the time each measurement was taken. At sunrise and sunset, the L (redder) channel is relatively more prominent, and S channel decreases sharply.
doi:10.1371/journal.pone.0020409.g002
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taking each 2 by 2 pixel block and averaging the sensors responses of

each type with that block (one R sensor, 2 G sensors, and 1 B

sensor). This produced demosaiced images of 1519(h)|1007(v)
pixels; these images were used in all measurements reported below.

Dark subtraction. Digital cameras typically respond with

positive sensor values even when there is no light input (i.e. when an

image is acquired with an opaque lens cap in place). This dark

response can vary between color channels, with exposure duration,

with ISO and with temperature. We did not systematically explore

the effect of all these parameters, but we did collect dark images as a

function of exposure time for ISO 400 in an indoor laboratory

environment. Dark image exposures below 1 s generated very small

dark response, with the exception of v0:1% of ‘‘hot pixels’’ that had

high (raw value w200) response. The median dark response below

1 s exposure is less than 11 raw units for all three color channels. For

dark image exposures above 1 s, the dark response jumped to *20
for G and B channels to and *56 for the R channel. The dynamic

range of the camera in each color channel is approximately 0{16 k

raw units. Dark response values were subtracted from image raw

response values as a part of our image preprocessing: for all

exposures below or equal to 1 s, red dark response value was taken

as 1, blue dark response value was taken as 2, and green dark

response value was taken as 8 raw units (these values correspond to

the mean over exposure durations of the median values across pixels

for exposures of less than or equal to 1 s); for exposures above 1 s,

the measured median dark response values across the image frame,

computed separately for each exposure, were subtracted. Raw pixel

values that after dark subtraction yielded negative values were set to

0. Figure 5A shows the dark response that was used for subtraction.

Figure 5B shows the mean response, excluding the ‘‘hot’’ pixels, for

comparison. All measurements reported below are for RGB values

after dark subtraction.

Figure 3. Pairwise correlations in natural scenes. We analyzed 23
images of the same grass scrub scene, taken from different distances
(black – smallest distance, red – largest distance). For every image, we
computed the pixel-to-pixel correlation function in the luminance
channel, and normalized all correlation functions to be 1 at R~0 pixels.
For largest distances, R~256 pixels, the correlations decay to zero. The
decay is faster in images taken from afar (redder lines, the largest
distance image shown as an inset in the lower left corner), than in
images taken close up (darker lines, the smallest distance image shown
as an inset in the upper right corner). All images contain a green ruler
that facilitates the absolute scale determination; for this analysis, we
exclude the lower quarter of the image so that the region containing
the ruler is not included in the sampling.
doi:10.1371/journal.pone.0020409.g003

Table 2. Albums 01b–35b of the Botswana dataset.

Album Keywords Tags

cd01b dirt, ground closeup, sequencescale: scale,
ruler

cd02b sand, ground closeup, sequence: scale, ruler

cd03b salt deposits, ground closeup, sequence: scale, ruler

cd04b scrub, ground closeup, sequence: scale, ruler

cd05b sticky grass closeup, sequence: scale, ruler

cd06b marula nut closeup, sequence: scale, ruler

cd07b sausage fruit closeup, sequence: scale, ruler

cd08b elephant dung closeup, sequence: scale, ruler

cd09b old figs closeup, sequence: scale, ruler

cd10b fresh figs closeup, sequence: scale, ruler

cd11b old jackelberry closeup, sequence: scale, ruler

cd12b woods, ground closeup, sequence: scale, ruler

cd13b fresh buffalo dung closeup, sequence: scale, ruler

cd14b fresh jackelberry closeup, sequence: scale, ruler

cd15b semiold palm nut closeup, sequence: scale, ruler

cd16b old palm nut closeup, sequence: scale, ruler

cd17b fresh palm nut closeup, sequence: scale, ruler

cd18b fresh sausage fruit closeup, sequence: scale, ruler

cd19b semifresh sausage fruit closeup, sequence: scale, ruler

cd20b old buffalo dung closeup, sequence: scale, ruler

cd21b1 marula tree bark closeup, sequence: scale, ruler

cd21b2 palm tree bark closeup, sequence: scale, ruler

cd22b1 fig tree bark closeup, sequence: scale, ruler

cd22b2 jackelberry tree bark closeup, sequence: scale, ruler

cd23b saussage tree bark closeup, sequence: scale, ruler

cd24b1 sage closeup, sequence: scale, ruler

cd24b2 termite mound closeup, sequence: scale, ruler

cd25b woods, horizon, sky sequence: vertical angle

cd26b sand plain, horizon, sky sequence: vertical angle

cd27b flood plain, water, horizon, sky sequence: vertical angle

cd28b bush, sky sequence: vertical angle

cd29b1 sand plain sequence: height

cd29b2 woods sequence: height

cd30b1 flood plain sequence: height

cd30b2 bush sequence: height

cd31b fresh elephant dung closeup, sequence: scale, ruler

cd32b sky, no clouds sequence: time (all day)

cd33b1 horizon sequence: time (sunrise)

cd33b2 horizon sequence: time (sunset)

cd34b1 woods, bushes sequence: time (sunset)

cd34b2 woods, bushes sequence: time (sunrise)

cd35b grass, horizon sequence: time (all day)

Albums with the ‘‘ruler’’ tag have a green ruler present in the scene so that the
absolute size of the objects can be determined.
doi:10.1371/journal.pone.0020409.t002
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Response linearity. Fundamental to digital camera

calibration is a full description of how image values obtained

from the camera relate to the intensity of the light incident on the

sensors. To measure the D70’s intensity-response function, a white

test standard was placed 168 cm from the camera. The aperture

was held constant at f 5,f 11 and f 16. One picture was taken for

each of the 55 possible exposure durations, which ranged from

1=8000 s to 30 s. Response values were obtained by extracting

and averaging RGB values from a 100|100 pixel region of the

image corresponding to light from the white standard. The camera

saturated in at least one channel for longer exposure durations.

The camera responses were linear over the duration range 1=320 s
to 1=3 s for the test light level and all apertures used, and for

aperture f 5 approximate linearity extended down to smallest

available exposure times, as shown in Fig. 6. Deviations from

linearity are seen at short exposure durations for f 11 and f 16.

These presumably reflect a nonlinearity in the sensor intensity-

response function at very low dark subtracted response values.

ISO linearity. To examine the effect of the ISO setting on

the raw camera response, we acquired a series of 10 images of the

white standard with the ISO setting changing from ISO 200 to

ISO 1600 at exposures of 1=125 s and 1=250 s. In the regime

where the sensors did not saturate, the camera response was linear

in ISO for both exposure times, as shown in Fig. 7.

Aperture test. The aperture size (f-number) of a lens affects

the amount of light reaching the camera’s sensors. For the same

light source, the intensity per unit area for f-number x, I(x), relative

to the intensity per unit area for f-number y, I(y) should be given

by: I(x)~(y=x)2I(y). We tested this by measuring the sensor

response as a function of exposure duration for all color channels at

three different aperture sizes (f 5, f 11, and f 16). We measured the

sensor responses to the white test standard at various aperture sizes

to confirm that the response was inversely proportional to the

square of the f-number. The camera was positioned facing the white

test standard illuminated by a slide projector with a tungsten bulb in

an otherwise dark room. The camera exposure time was held at

1=250 s and the ISO setting was 1000. Images of the white test

standard (primary image region) were taken, one for each aperture

setting between f 1:8 and f 22. Because image values were saturated

at the largest apertures (f 1:8 and f 2), we also extracted and

analyzed image values from a less intense region in the same image

series (secondary image region). The measurements, shown in

Fig. 8A for the primary region and Fig. 8B for the secondary region,

confirm that the aperture is operating correctly. There is some

scatter of the measured points around the theoretical lines. This may

be do to mechanical imprecision for each aperture. We did not

pursue this effect in detail, nor attempt to correct for it. Nor did we

investigate whether the slightly steeper slopes found for the blue

channel represent a slight systematic deviation from expectations for

the responses of that channel.

Standardized RGB values. After having verified that the

sensor response scales linearly with ISO setting and the exposure,

and as f {2 with the aperture number f across most of the

camera’s dynamic range, we define the standardized RGB values as

dark-subtracted raw camera RGB values, scaled to the reference

value of ISO 1000, reference aperture of f 1:8 and reference

exposure time of 1 s:

standardized RGB~(raw RGB{dark response)|

1000

ISO

� �
|

f

1:8

� �2

|
1s

exposure

� � ð1Þ

It is the standardized RGB values that provide estimates of the

light incident on the camera across our image database. Our

Figure 4. A fragment of the mosaic pattern that tiles the CCD
sensor. Each pixel is either red (R), green (G), or blue (B). The pixels are
present in ratios 1:2:1 in the CCD array. The upper-left hand corner of
the fragment matches the upper-left hand corner of the raw image data
decoded by DCRAW.
doi:10.1371/journal.pone.0020409.g004

Figure 5. Dark response by color channel. A) Dark response used for dark subtraction during image processing. For image exposure times
below or equal to 1 s, the dark response for a given color channel (red, green, blue; plot colors correspond to the three color channels) was taken as
the median over all the pixels of that color channel and over all dark image exposure times below 1 s; for image exposures above 1 s, we use the
median over all the pixels of the same color channel at the given dark image exposure time. B) The mean value of dark response across all pixels of
the image that are not ‘‘hot’’ (i.e. pixels with raw values v200, more than 99% of pixels in each color channel), for each color channel, as a function of
dark image exposure time. For all dark images, the camera was kept in a dark room with a lens cap on, with the aperture set to minimum (f 22), and
ISO set to 400.
doi:10.1371/journal.pone.0020409.g005
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calibration measurements indicate that these values provide good

estimates over the multiple decades of light intensity encountered

in natural viewing. Scatter of measurements around the fit lines

shown in the figures above does, however, introduce uncertainty of

a few tenths of a log (base 10) unit in intensity estimates. Within

image, optical factors are likely to introduce systematic variation in

sensitivity from the center of the image to the edge, an effect that

we did not characterize or correct for.

Spectral response. Next, we measured the spectral sensitivities

of the camera sensors. A slide projector (Kodak Carousel 440 [39]),

the Nikon D70 Camera, and a spectroradiometer [40] were

positioned in front of the white test standard. Light from the

projector was passed through one of 31 monochromatic filters, which

transmitted narrowband light between 400 nm and 700 nm, at

10 nm intervals. For each filter, a digital picture (f 1:8, ISO 1000, and

varying exposure duration) and a spectroradiometer reading were

taken. The RGB data were dark subtracted and converted to

standardized RGB values, and then compared to the radiant power

read by the spectroradiometer to estimate the three sensor’s spectral

sensitivities. For this purpose, we summed power over wavelength

and treated it as concentrated at the nominal center wavelength of

each narrowband filter. For these images, dark subtraction was

performed with dark images acquired at the same time as the spectral

response images were acquired. These dark images were taken by

occluding the light projected onto the white test standard, so that they

accounted for any stray broadband light in the room as well as for

sensor dark noise. The measured spectral sensitivities are shown in

Fig. 9. These may be used to generate predictions of the camera

sensor response to arbitrary spectral light sources. To compute

predicted standardized RGB values, the input spectral radiance

measured in units of W=(nm:sr:m2) should be integrated against

each spectral sensitivity.

To check the end-to-end accuracy of our camera RGB

calibration, we acquired an image of the Macbeth color checker

chart, extracted the raw RGB values for each of its 24 swatches,

and converted these to the standardized RGB representation. We

then compared these measured values against predictions obtained

from direct measurements of the spectral radiance reflected from

each swatch. The comparison in Fig. 10A shows an excellent fit

between predicted and measured values.

Spatial Modulation Transfer Function. The modulation

transfer function (MTF) describes how well contrast information is

transmitted through an optical system. We estimated the MTF of

our camera for the R, G, and B image planes individually, to

compare the transmission of contrast information at various spatial

Figure 6. Linearity of the camera in exposure time. The mean raw RGB response after dark subtraction of the three color channels (red, green,
blue; shown in corresponding colors) is plotted against the exposure time in seconds. The values are extracted from images of a white test standard
at f 5 (A), f 11 (B) and f 16 (C) and ISO 200 settings. Full plot symbols indicate raw dark subtracted values between 50 and 16100 raw units; these data
points were used to fit linear slopes to each color channel and aperture separately. The fit slopes are 1.01 (R), 1.00 (G), 1.02 (B) for f 5; 1.00, 0.99, 1.02
for f 11, and 1.01, 1.00, 1.02 for f 16.
doi:10.1371/journal.pone.0020409.g006

Figure 7. Linearity of the camera in ISO setting. The mean raw
RGB response of the three color channels (red, green, blue; shown in
corresponding colors) is plotted against the ISO setting after dark
subtraction, for two values of exposure time (solid line, circles = 1=125 s;
dashed line, squares = 1=250 s), and f 2:8 aperture. The lines are linear
regressions through non-saturated data points (solid squares or circles;
raw dark subtracted values between 50 and 16100); the slopes are 0.99
(R), 0.98 (G), 0.99 (B) for 1=125 s exposure and 1.03, 1.02, 1.04 for
1=250 s exposure. The camera saturated in the red channel at longer
exposure; the corresponding data points (empty red circles) are not
included into the linear fit.
doi:10.1371/journal.pone.0020409.g007
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frequencies for light intensity measured in each of the three types

of camera photosensors. To do this, we first imaged a high-

contrast black and white square-wave grating at a set of distances

relative to the camera and extracted a horizontal grating patch

from each image. This was summed over columns to produce a

one-dimensional signal for each image plane. We then used the

fast-fourier transform to find the amplitude and spatial frequency

of the fundamental component of the square wave-grating. In this

procedure, we tried various croppings of the grating and chose the

one that yielded maximum amplitude at the fundamental. This

minimized spread of energy in the frequency domain caused by

spatial sampling. We then reconstructed a one-dimensional spatial

domain image by filtering out all frequencies except for the

fundamental, and computed the image contrast as the difference

between minimum and maximum intensity divided by the sum of

minimum and maximum intensity. Figure 11 plots image contrast

as a function of spatial frequency (cycles / pixel) for each color

channel. At high spatial frequencies, the blue channel is blurred

least and the red channel is blurred most, presumably due to

chromatic aberration in the lens. We did not use these data in our

Figure 8. Camera response as a function of aperture size. The raw dark subtracted response of the camera exposed to a white test standard
(A) and a darker secondary image region (B), in three color channels (red, green, blue, shown in corresponding colors), as a function of the aperture
(f-value), with exposure held constant to 1=250 s and ISO set to 1000. In the regime where the sensors are not saturated and responses are not very
small (solid circles, raw dark subtracted values between 50 and 16100), the lines show a linear fit on a double logarithmic scale constrained to have a
slope of {2 (i.e. y~kx{2). Leaving the slopes as free fit parameters yields slopes of {2:02 (R), {2:04 (G), {2:10 (B) for the primary region (white
standard) in panel A, and {2:00 (R), {2:03 (G), {2:06 (B) for the secondary region in panel B. Data points in the saturated or low response regime
(empty circles) were not used in the fit. The maximum absolute log base 10 deviation of the measurements from the fit lines is 0.1.
doi:10.1371/journal.pone.0020409.g008

Figure 9. Spectral response of the camera. A) The spectral sensitivity curves plotted here convert spectral radiance into standardized camera
RGB values. B) The LMS cone fundamentals [29,45] for L (red), M (green) and S (blue) cones. Note that the fundamentals are normalized to have a
maximum of 1. C) A linear transformation can be found that transforms R,G,B readings from the camera with sensitivities plotted in (A) into
reconstructed fundamentals L’M’S’ shown here, such that L’M’S’ fundamentals are as close as possible (in mean-squared-error sense) to the true LMS
fundamentals shown in (B).
doi:10.1371/journal.pone.0020409.g009
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image processing chain, but fits to the data are available (see

caption of Fig. 11) either to correct for camera blurring for

applications where that is desirable or to estimate the effect of

camera blur on any particular image analysis. It should be noted

that the MTF will depend on a number of factors, including f-stop,

exactly how the image is focussed, and the exact spectral

composition of the incident light. The measurements were made

for f 5:6 and the camera’s auto focus procedure. In addition, the

measurements do not account for affects of lateral chromatic

aberrations, which can produce magnification differences across

the images seen by the three color channels. For these reasons, the

MTF data should be viewed as an approximation.

Camera comparisons. We compared the response

properties of two Nikon D70 cameras – the standard camera

(used for the analysis detailed above), and a second auxiliary

camera. We found that, under identical conditions, the sensor

response of the auxiliary camera was approximately 80%+5% of

the response of the standard camera, across all channels, response

times, and apertures (see e.g. Fig. 12). We compared the two

cameras imaging the white test standard with varying exposure

durations, and for color swatches of the Macbeth color checker.

We found that the ratio of camera responses was relatively

constant throughout the linear range of exposure durations. To

ensure that the response difference was not a result of the slightly

different positions of the tripods on which each camera was

mounted, we also took pictures of the white standard with the

cameras on the same tripod (sequentially), then with the auxiliary

camera 25 cm to the left of the standard camera and visa versa.

The difference in camera responses could not be accounted for by

small positional differences. Therefore, the different camera

response magnitudes probably indicate a characteristic of the

cameras themselves. At very fast or very slow exposure durations,

the responses of both cameras were dominated by dark-response

and sensor saturation, respectively, and the 80% response ratio did

not apply. This analysis suggested that a complete calibration of

the auxiliary camera was unnecessary. Instead, the spectral

sensitivities of R, G, B sensors for the auxiliary camera were

defined to be 0.80 times the spectral sensitivities of the standard

camera; by using this simple multiplicative conversion to bring the

auxiliary and standard cameras into accordance, the remaining

image transformation steps remain unchanged between both

cameras.

Colorimetry. For applications to human vision it is useful to

convert the camera RGB representation to one that characterizes

Figure 10. Checking the camera calibration. Digital images and direct measurements of spectral radiance were obtained for the 24 color
swatches of the Macbeth color checker chart. A) Raw standardized RGB values were obtained from the camera images as described in Materials and
Methods. RGB response was also estimated directly from the radiometric readings via the camera spectral sensitivities shown in Fig. 9A. Plotted is the
comparison of the corresponding 24|3 RGB values; black line denotes equality. B) The luminance in cd=m2 measured directly by the radiometer
compared to the luminance values obtained from the standardized camera RGB values. C) This plot shows the correspondence between the
Stockman-Sharpe/CIE 2-degree LMS cone coordinates estimated from the camera and those obtained from the measured spectra. Plot symbols red,
green and blue indicate L,M,S values respectively, and the data are for the 24 MCC squares.
doi:10.1371/journal.pone.0020409.g010

Figure 11. Camera spatial MTF. Estimated MTF is plotted as a
function of spatial frequency for the red, green, and blue image planes
(shown in corresponding colors). Solid lines show empirical fits to
y~a exp {b(x{d)2

� �
z(1{a) exp ({cx2), where for all xƒd , y is set

to 1 and where any fit values y greater than 1 were also set to 1. The fit
parameters are a~1:00,b~6:96,c~0:50,d~0:10 for red channel,
a~0:52,b~12:37,c~0:02,d~0:11 f o r g r e e n c h a n n e l , a n d
a~1:00,b~2:24,c~0:50,d~0:12 for blue channel. MTF values at
*0:33 cycles/pixel (empty plot symbols) systematically deviated from
the rest and were excluded from the fit.
doi:10.1371/journal.pone.0020409.g011
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how the incident light is encoded by the human visual system. To

this end, we used the camera data to estimate the photopigment

isomerization rates of the human L, M, and S cones produced by

the incident light at each pixel. Because the camera spectral

sensitivities are not a linear transformation of the human cone

spectral sensitivities, the estimates will necessarily contain some

error [41], and different techniques for performing the estimation

will perform better for some ensembles of input spectra than for

others [42–44]. Here we employed a simple estimation method.

We first found the linear transformation of the camera’s spectral

sensitivities that provided the best least-squares approximation to

the Stockman-Sharpe/CIE 2-degree (foveal) estimates of the cone

fundamentals [29,45]. Figure 9B plots the cone fundamentals and

Fig. 9C plots the approximation to these fundamentals obtained

from the camera spectral sensitivities. By applying this same

transformation to the standardized RGB values in an image, we

obtain estimates of the LMS cone coordinates of the incident light.

For each cone class, these are proportional to the photopigment

isomerization rate for that cone class.

To determine the constant of proportionality required to obtain

LMS isomerization rates from the LMS cone coordinates for each

cone class, we estimated photopigment isomerization rates directly

from the measured spectral radiance of the light reflected from the

24 color swatches of the Macbeth color checker. This was done using

software available as part of the Psychophysics Toolbox [30,46]

along with the parameter values for human vision provided in

Table 3. We also computed the response of the LMS cones from

these same measured spectra using the cone response functions

plotted in Fig. 9B. For each cone class, we then regressed the 24

isomerization rates against the 24 corresponding cone coordinates to

obtain the scalar required to transform cone coordinate to

isomerization rate. For the L, M, and S cones respectively, the

scalar values are 1:75:105,1:60:105,3:49:104, with units that yield

isomerizations per human cone per second.

For certain analyses, it is useful to provide grayscale versions of

the images. We thus computed estimates of the luminance Y (in

units of candelas per meter squared with respect to the CIE 2007

two-degree specification for photopic luminance spectral sensitivity

[29]). These were obtained as a weighted sum of the estimated

Stockman-Sharpe/CIE 2-degree LMS cone coordinates:

Y~433:94Lz275:82M{0:09S; these weights yield luminance

in units of cd=m2.

Figure 10B shows the comparison between the luminance for

the Macbeth color checker and the luminance measured directly

using the radiometer. Figure 10C shows the comparison between

the Stockman-Sharpe/CIE 2-degree LMS cone coordinates

estimated from the camera and those computed directly from

the radiometrically measured spectra. Overall the agreement is

good, with the exception of the S-cone coordinates for a few color

checker squares. These deviations occur because the camera

spectral sensitivities are not an exact linear transformation of the

cone fundamentals.

Image extraction and data formats. For each image in

every database album (folder), the following operations are carried

out:

1. Raw image .NEF to .PPM conversion. Images with

name pattern DSC_####.NEF (where # are image serial

numbers) were first extracted from the camera as proprietary

Nikon Electronic Format (NEF) files (approximately 6 Mb in size),

which record ‘‘raw’’ sensor values. These files were converted to

PPM files using dcraw v5.71 [38] in Document Mode (no color

interpolation between RGB sensors) by using the 2d flag, and

written out as 48 bits-per-pixel (16 bits per color channel) PPM

files by using the 24 flag; we note that the behavior of dcraw is

highly version dependent. In addition, we extracted the following

image meta-data from the NEF file: the camera serial number (to

determine whether an image was taken using the standard or

auxilliary camera), exposure duration, f-value, and the ISO setting.

We also extracted JPG formatted images of the NEF images; both

JPG and NEF formats are available from the database as

DSC_####.NEF and DSC_####.JPG.

2. PPM to raw RGB conversion. PPM images were loaded

by our Matlab script as 2014|3038 matrices. Because of the

Figure 12. Comparison between standard and auxiliary
camera. Raw dark subtracted values for three color channels (red,
green, blue; shown in corresponding colors) of the same standard taken
at different exposures using the standard and auxiliary cameras. Black
like is a linear fit on non-saturated points (raw dark subtracted pixel
values between 50 and 16100), with fit slope of 0.84. Images were
acquired at f 5:6 and ISO 400. Similar slopes (0:8+0:05) were found
when positions of cameras imaging the white standard were slightly
changed (see text), and when the camera readouts were compared on
color swatches of the Macbeth color checker (f 2:8, ISO 400).
doi:10.1371/journal.pone.0020409.g012

Table 3. Cone Parameters for LMS Images.

Cone Parameter Value Source

Outer Segment Length 33mm [61] Appendix B

Inner Segment Length 2:3mm [61] Appendix B

Specific Density 0:5 (axial optical density) [61] Appendix B

Lens Transmittance See CVRL database [62]

Macular Transmittance See CVRL database [63]

Pupil Diameter See [64], Eq.1 [64]

Eye Length 16:1mm [61] Appendix B

Photoreceptor
Nomogram

See CVRL database [28]

Photoreceptor Quantal
Efficiency

0.667 [61] page 472

CVRL database is accessible at http://www.cvrl.org/.
doi:10.1371/journal.pone.0020409.t003
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CCD mosaic, pixels in this matrix that have no corresponding

CCD sensor contain zeros. Subsequently, each color plane of the

image was block-averaged in 2|2 blocks into a resulting

1007|1519|3 raw RGB format, where the last dimension

indicates the color channel (R~1,G~2,B~3); red and blue pixels

are weighted by 4 and green pixels by 2, reflecting the number of

sensors for each color in every 2|2 block. The resulting matrix

has raw units spanning the range from 0 to 16384 for red and blue

channels, and from 0 to 16380 for the green channel. It is available

as a Matlab matrix with name pattern DSC_####_RGB.mat

from the image database.
3. Raw RGB to standardized, dark-subtracted RGB. We

next took the resulting block-averaged RGB images and subtracted

the dark response, characteristic for each color channel and for the

image exposure duration, using the dark response values shown in

Fig. 5A. After subtracting the dark response, each image was

multiplied by the scale factor, to yield a RGB dark-subtracted image

standardized to one second exposure duration, ISO 1000 setting, and

f-value of 1.8, as prescribed by Eq (1).
4. Standardized, dark-subtracted RGB to LMS and

Luminance formats. By regressing R,G,B camera sensitivities

(measured in Fig. 9) against known L,M,S cone sensitivities, we

obtain a 3|3 matrix that approximately transforms from the

RGB into the LMS color coordinate system. Each pixel of the

image can thus be transformed into the LMS system. By

multiplying the image in the LMS system with the L,M,S

isomerization rate factors (see Colorimetry above), each image is

now expressed in units of L,M,S isomerizations per second and

saved as a Matlab 1007|1519|3 matrix with name pattern

DSC_####_LMS.mat. In parallel, the image in the LMS

system can be transformed into a grayscale image with pixels in

units of cd/m2, by summing over the three (L, M, S) color

channels of each pixel with appropriate weights (see Colorimetry

above). The grayscale image is saved as a 1007|1519 matrix with

name pattern DSC_####_LUM.mat.
5. Image metadata in AUX files. For each image, the

database contains a small auxiliary Matlab structure saved as

DSC_####_AUX.mat that contains image meta-data: (i) the

EXIF fields extracted from the JPG and NEF images, among

others, the aperture, exposure settings, ISO sensitivity, camera

serial number, and timestamp of the image; (ii) the identifier of

the image in the master database (the image name and album),

(iii) the timestamp when the image processing was done, (iv)
fraction of pixels at saturation in the RGB image, (v) a warning

flag indicating whether the exposure time is out of the linear range

or if too many pixels are either at low (dark-response) intensities or

at saturation, and (vi), several human-assigned annotations (not

available for all images), e.g. the distance to the target, the tripod

setting, qualitative time of day, lighting conditions etc. Most

images are taken in normal, daylight viewing conditions, and

should therefore have no warning flags; some images, however,

especially ones that are part of the exposure or time-of-day series,

can have saturated or dark pixels, and it is up to the database users

to properly handle such images.

Discussion

We have collected a large variety of images that include many

snapshots of what a human observer might conceivably look at,

such as images of the horizon and detailed images of the ground,

trees, bushes, and baboons. This riverine / savanna environment

in Okavango delta was chosen because it is similar to where

human eye is thought to have evolved. The images were taken at

various times of the day, and with various distances between the

camera and the objects in the scene. A subset of albums focuses on

particular objects, such as berries and other edible items, in their

natural context. We also provide close-up images of natural objects

taken from different distances and accompanied by a ruler (from

which an absolute scale of the objects can be inferred). Other

albums can be used to explore systematic variation of the image

statistics with respect to a controllable parameter, for instance, the

variation in the texture of sand viewed from various distances, the

change in color composition of the sky viewed at regular time

intervals during the day, or the same scene viewed at an increasing

angle of the camera from the vertical, from pointing towards the

ground to pointing vertically at the sky. A large fraction of the

database contains images of various types of Botswana scenery

(flood plains, sand plains, woods, grass) sampled without purposely

focusing on any particular object.

Many studies of biological visual systems explore the hypothesis

that certain measurable properties of neural visual processing

systems reflect optimal adaptations to the structure of natural

visual environments [10,11,24,47–54]. The images we have

collected allow for a reliable estimation of the properties of

natural scenes, such as local luminance histograms, spatial two-

point and higher-order correlation functions, scale invariance,

color and texture content, and the statistics of oriented edges (e.g.,

colinearity and cocircularity) [55–60] (see also a topical issue on

natural systems analysis [2]). Currently, we include only images

from a single environment, which allows for adequate sampling of

the relevant statistical features that distinguish these natural scenes

from random ones. In the future, we plan to expand the dataset to

include images of other natural, as well as urban, environments,

some of which have already been acquired. This expanded image

set will allow for sampling of the statistical features that distinguish

different environments.
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24. Tkačik G, Prentice JS, Victor JD, Balasubramanian V (2010) Local statistics in

natural scenes predict the saliency of synthetic textures. Proc Natl Acad Sci U S A
107: 18149–54.

25. Kersten D (1987) Predictability and redundancy of natural images. J Opt Soc
Am A 4: 2395–400.

26. Chandler D, Field D (2007) Estimates of the information content and
dimensionality of natural scenes from proximity distributions. J Opt Soc

Am A Opt Image Sci Vis 24: 922–41.
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