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We review recent progress towards a rigorous understanding of the Bogoliubov
approximation for bosonic quantum many-body systems. We focus, in particular,
on the excitation spectrum of a Bose gas in the mean-field (Hartree) limit. A
list of open problems will be discussed at the end. C⃝ 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4881536]

I. INTRODUCTION

Bose–Einstein condensation (BEC) in cold atomic gases was first experimentally realized in
1995.1, 8 In these experiments, a large number of (bosonic) atoms are confined to a trap and cooled
to very low temperatures. Below a critical temperature condensation of a large fraction of particles
into the same one-particle state occurs.

Various interesting quantum phenomena have been explored in these and subsequent exper-
iments, like the appearance of quantized vortices in rotating systems and the related property of
superfluidity. The latter is related to the low-energy excitation spectrum of the system. We refer to
Refs. 2, 5, 7, and 13 for reviews of the recent developments in this field.

BEC was predicted by Einstein in 1924,12 building upon a previous derivation of Planck’s
formula for black-body radiation by Bose.4 Einstein’s considerations were based on an ideal (i.e.,
non-interacting) Bose gas. The presence of particle interactions represents a major difficulty for
a rigorous derivation of this phenomenon, however. One of the key contributions to the theory of
weakly interacting Bose gases is Bogoliubov’s 1947 paper,3 where he introduces an approximate
model (now referred to as the Bogoliubov approximation) to explain its superfluid behavior. In this
paper, we will summarize recent progress made towards a rigorous justification of this approximation.

II. THE BOSE GAS: A QUANTUM MANY-BODY PROBLEM

The quantum-mechanical description of a system of N bosons is given in terms of the Hamilto-
nian, acting as a linear operator in a suitable Hilbert space. For bosons interacting via a pair-interaction
potential denoted by v(x), it is given, in appropriate units, by

HN = −
N∑

i=1

!i +
∑

1≤i< j≤N

v(xi − x j ). (1)

The kinetic energy is described by !, the Laplacian on a suitable domain in R3, which we will
typically take to be a cube of side length L, i.e., [0, L]3. Suitable boundary conditions have to be
imposed, with periodic boundary conditions being a typical example. The subscript i indicates, as
usual, that the second derivative is with respect to xi ∈ R3.

As appropriate for bosons, the Hamiltonian HN acts on the Hilbert space of permutation-
symmetric wave functions "(x1, . . . , xN) in

⊗N L2([0, L]3). The interaction v is assumed to be
short-range, i.e., it decays fast enough to be integrable at infinity, and mostly repulsive to ensure that
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the system behaves like a gas at low density and low temperature. A particularly simple example
is the special case of hard spheres of diameter a > 0, where, formally, v(x) = ∞ for |x| ≤ a, and
v(x) = 0 for |x| > a.

The following quantities, derived from the Hamiltonian HN, will interest us here.

• Ground state energy, defined as the lowest value of the spectrum of the Hamiltonian,

E0(N , L) = inf spec HN . (2)

For large systems, one can take a thermodynamic limit N → ∞, L → ∞ with N/L3 = ϱ fixed,
and consequently define the ground state energy density as

e(ϱ) = lim
L→∞

E0(ϱL3, L)
L3

. (3)

• At positive temperature T = β − 1 > 0, one considers instead the free energy

F(N , L , T ) = − 1
β

ln Tr exp(−βHN ), (4)

and the corresponding free energy density in the thermodynamic limit

f (ϱ, T ) = lim
L→∞

F(ϱL3, L , T )
L3

. (5)

• The ground state wave function "0, being a function of N ≫ 1 variables, is for all practical
purposes too complicated to compute. Instead one considers the corresponding reduced density
matrices of "0, the simplest of which is the one-particle density matrix, given by the integral
kernel

γ0(x, x ′) = N
∫

R3(N−1)
"0(x, x2, . . . , xN )"0(x ′, x2, . . . , xN ) dx2 · · · dxN . (6)

It satisfies 0 ≤ γ 0 ≤ N as an operator, and Tr γ 0 = N. With the aid of creation and annihilation
operators (to be reviewed in Sec. IV below) one can also write

γ0(x, x ′) =
〈
a†(x ′)a(x)

〉
, (7)

and this definition generalizes to arbitrary mixed states as well.
• The diagonal of the one-particle density matrix is the particle density

ϱ0(x) = γ0(x, x) = N
∫

R3(N−1)
|"0(x, x2, . . . , xN )|2dx2 · · · dxN , (8)

with
∫
ϱ0(x)dx = N. For translation invariant systems in the thermodynamic limit, ϱ0 is a

constant and does not depend on x, but for inhomogeneous systems the spatial variation of ϱ0

represents a non-trivial question.
• By definition, Bose–Einstein condensation in a state "0 means that the one-particle density

matrix γ 0 has an eigenvalue of order N, i.e., that ∥γ 0∥∞ ≥ cN for some c > 0 and all (large)
N. The corresponding eigenfunction is called the condensate wave function. BEC is expected
to occur below a critical temperature.
For translation invariant systems with Hamiltonian of the form (1) one always has

∥γ0∥∞ = 1
L3

∫

[0,L]6
γ0(x, x ′)dx dx ′ (9)

in the ground state, or any Gibbs state at positive temperature. This being of the order N = ϱL3

means that γ 0(x, x′) does not decay as |x − x′| → ∞, a property which is also termed long
range order.

• Of particular interest to us will be the structure of the excitation spectrum, i.e., the spectrum
of HN above the ground state energy E0(N), and the relation of the corresponding eigenstates
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to the ground state. For translation invariant systems, HN commutes with the total momentum
operator

P = −i
N∑

j=1

∇ j , (10)

and hence one can look at their joint spectrum. Of particular relevance is the infimum

Eq (N , L) = inf spec HN !P=q , (11)

and one can investigate the limit

eq (ϱ) = lim
L→∞

(
Eq (ϱL3, L) − E0(ϱL3, L)

)
(12)

for fixed ϱ and q. In contrast to the non-interacting case, where eq(ϱ) = 0 for all q and ϱ, one
expects a linear behavior of eq(ϱ) for small q for interacting particles. For a review of various
questions related to the excitation spectrum of Bose gases we refer to Ref. 6.

III. THE IDEAL BOSE GAS

For non-interacting bosons, i.e., in the case v ≡ 0, the free energy can be calculated explicitly
in terms of its Legendre transform. It is given by

f0(ϱ, T ) = sup
µ≤0

[
µϱ + 1

(2π )3β

∫

R3
ln

(
1 − exp(−β(p2 − µ))

)
dp

]
, (13)

and satisfies the simple scaling relation

f0(ϱ, T ) = ϱ5/3 f0(βϱ2/3, 1). (14)

From (13) one can immediately infer the following property: If ϱ exceeds a certain critical density,
namely, if

ϱ ≥ ϱc(β) ≡ 1
(2π )3

∫

R3

1
eβp2 − 1

dp =
(

T
4π

)3/2

ζ (3/2), (15)

(where ζ denotes the Riemann zeta function) the supremum in (13) is achieved at µ = 0, and hence
∂f0/∂ϱ = 0 for ϱ ≥ ϱc. That is, the free energy becomes independent of the density above the critical
density. Because of the scaling relation (14) one can equivalently talk about a critical temperature,
which equals

Tc(ϱ) = 4π

ζ (3/2)2/3
ϱ2/3. (16)

The one-particle density matrix for the ideal Bose gas can also be calculated explicitly, and is
given by

γ0(x, y) = [ϱ − ϱc(β)]+ +
∑

n≥0

eβµϱn

(4πβn)3/2
e−|x−y|2/(4βn). (17)

Here, [ · ]+ = max {0, · } denotes the positive part of a real number, and µϱ ≤ 0 is the µ where the
supremum is achieved in (13). In particular, µϱ = 0 for T ≤ Tc. The last sum in (17) can easily be
seen to decay exponentially in |x − y| if µϱ < 0, while it decays algebraically (like |x − y|− 1,
in fact) for µϱ = 0. We thus conclude the following asymptotic behavior of γ 0 depending on the
temperature:

• For T < Tc or, equivalently, ϱ > ϱc, γ 0 does not decay at infinity, but converges to the positive
number ϱ − ϱc, which equals the condensate density.

• For T > Tc, γ 0 decays exponentially in |x − y|.
• At the critical value T = Tc, γ 0 decays algebraically.
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These features of the ideal Bose gas are expected to be correct even in the presence of interparticle
interactions, with a different value of the critical temperature Tc, but so far no general result of this
kind is known. In the case of purely repulsive interactions, one can show that at large enough
temperature there is always exponential decay.40 That is, one can derive an upper bound on the
critical temperature in this case, but no (non-zero) lower bounds are available to this date.

The ground state energy of the ideal Bose gas is of course identically zero, and also the excitation
spectrum can easily be computed explicitly. It is simply given by all finite sums of the form

∑

p ̸=0

p2n p, (18)

where the sum is over p ∈ ( 2π
L Z)3 and np ∈ {0, 1, 2, . . . } for each p. In particular, one easily checks

that eq(ϱ) defined in (12) is identically zero for all q ∈ R3.

IV. SECOND QUANTIZATION ON FOCK SPACE

In the following, it will be convenient to regard
⊗N

sym L2([0, L]3) as a subspace of the bosonic
Fock space

F =
∞⊕

n=0

n⊗

sym

L2([0, L]3). (19)

On this space, the particle number N is now an operator, which acts simply as multiplication by n
on the subspace

⊗n
sym L2([0, L]3).

A basis of L2([0, L]3) is given by the plane waves L− 3/2eip · x for p ∈ ( 2π
L Z)3, and we introduce

the corresponding creation and annihilation operators, which satisfy the canonical commutation
relations (CCR)

[
ap, aq

]
=

[
a†

p, a†
q

]
= 0 ,

[
ap, a†

q

]
= δp,q . (20)

The Hamiltonian HN is equal to the restriction of

H =
∑

p

|p|2a†
pap + 1

2L3

∑

p

v̂(p)
∑

q,k

a†
q+pa†

k−pak aq (21)

to the subspace
⊗N

sym L2([0, L]3) ⊂ F , where

v̂(p) =
∫

[0,L]3
v(x)e−i px dx (22)

denotes the Fourier transform of v.

V. THE BOGOLIUBOV APPROXIMATION

At low energy, and for sufficiently weak interactions, one expects the occurrence of Bose–
Einstein condensation. That is, the zero momentum mode is expected to be macroscopically occupied,
meaning that a†

0a0 ∼ N . In particular, the p = 0 mode plays a special role.
The Bogoliubov approximation consists of

• dropping all terms in H higher than quadratic in a†
p and ap for p ̸= 0,

• replacing a†
0 and a0 in H by

√
N .

The resulting Hamiltonian is quadratic in the a†
p and ap, and equals (note that the contribution of

p = 0 to the second sum in (21) is exactly equal to N (N − 1)̂v(0)/(2L3), hence the substitution of
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a†
0 and a0 by

√
N was not applied to this term)

HBog = N (N − 1)
2L3

v̂(0)

+
∑

p ̸=0

((
|p|2 + ϱv̂(p)

)
a†

pap + 1
2ϱv̂(p)

(
a†

pa†
−p + apa−p

))
, (23)

with ϱ = N/L3 the particle density. It can be explicitly diagonalized via a Bogoliubov transformation:
Let bp = cosh(αp)ap + sinh(αp)a†

−p, with

tanh(αp) = |p|2 + ϱv̂(p) −
√

|p|4 + 2|p|2ϱv̂(p)
ϱv̂(p)

. (24)

Here, we have to assume that |p|2 + 2ϱv̂(p) ≥ 0 for all p in order for the square root to be well-
defined. The bp and b†

p again satisfy CCR (for any choice of real numbers αp, in fact). A simple
calculation shows that

HBog = EBog
0 +

∑

p ̸=0

epb†
pbp, (25)

where

EBog
0 = N (N − 1)

2L3
v̂(0) − 1

2

∑

p ̸=0

(
|p|2 + ϱv̂(p) −

√
|p|4 + 2|p|2ϱv̂(p)

)
, (26)

and

ep =
√

|p|4 + 2|p|2ϱv̂(p). (27)

Note that in contrast to the non-interacting case, where ep = p2, the function ep in (27) behaves
linearly in p for small p (assuming that v̂ does not vanish near zero, i.e., that v̂(0) > 0).

The Bogoliubov approximation thus predicts that the ground state energy density in the ther-
modynamic limit equals

eBog(ϱ) = 1
2
ϱ2v̂(0) − 1

2(2π )3

∫

R3

(
|p|2 + ϱv̂(p) −

√
|p|4 + 2|p|2ϱv̂(p)

)
dp. (28)

For small ϱ, it turns out that

eBog(ϱ) = 1
2
ϱ2

(
v̂(0) − 1

2(2π )3

∫

R3

|̂v(p)|2

|p|2
dp

)

+ 4π
128

15
√

π

(
ϱv̂(0)

8π

)5/2

+ o(ϱ5/2), (29)

where the numeric factor in the last term arises from the integral

128
15

√
π

= −
√

8
π3

∫

R3

(
|p|2 + 1 −

√
|p|4 + 2|p|2 − 1

2|p|2

)
dp. (30)

The expression v̂(0) − 1
2(2π)3

∫
R3

|̂v(p)|2
|p|2 dp can be identified with the first two terms in the Born series

for 8πa, where a denotes the scattering length of v. The latter can, e.g., be defined as18

a = 1
8π

〈

|v|1/2

∣∣∣∣∣
1

1 + 1
2v1/2 1

p2 |v|1/2

∣∣∣∣∣ v
1/2

〉

, (31)

whenever the operator in question is invertible, i.e., whenever p2 + 1
2v does not have a zero-energy

resonance. Here, v1/2 is defined as v|v|−1/2 if v ̸= 0, and as zero otherwise.
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Since the scattering length is the relevant physical parameter at low energy, this suggests that
the true ground state energy density for small ϱ should be

e(ϱ) = 4πaϱ2
(

1 + 128
15

√
π

√
ϱa3 + o(ϱ1/2)

)
. (32)

This expression for e(ϱ) is known as the Lee–Huang–Yang formula.21 Its rigorous justification is
one of the open problems discussed below in Sec. VIII.

Not only does the Bogoliubov approximation make a prediction about the ground state energy
of the system, it also allows to compute the complete excitation spectrum. In fact, from (25) we see
that the spectrum of HBog − EBog

0 is given by
∑

p

epn p with n p ∈ {0, 1, 2, . . . }, (33)

with ep defined in (27). Moreover, the corresponding eigenstates can be constructed out of the ground
state "0 by elementary excitations of the form

b†
pn

· · · b†
p1

"0, (34)

with b†
p = cosh(αp)a†

p + sinh(αp)a−p, as before.

One can also calculate the ground state energy EBog
q in a sector of total momentum q, and arrives

at

eq (ϱ) = lim
L→∞

(
EBog

q − EBog
0

)
= subadditive hull of ep

= inf∑
p pn p=q

∑

p

epn p. (35)

In particular, also eq(ϱ) behaves linearly in q for small q.
For a detailed discussion of variants of the Bogoliubov approximation we refer the interested

reader to Ref. 46.

VI. VALIDITY OF THE BOGOLIUBOV APPROXIMATION

There are only very few rigorous results concerning the validity of the Bogoliubov
approximation:

• Quite generally, one can show that the pressure in the thermodynamic limit is unaffected by
the substitution of a†

0 and a0 (or any other mode) by complex numbers (called c-numbers in
the physics literature), see Refs. 15, 29, and 42. This is true independent of whether or not
BEC occurs in the system. Moreover, the value of the occupation number a†

0a0 is correctly
predicted, to leading order in the system size, by the approximate model with a†

0 and a0 replaced
by c-numbers.

• The Lieb–Liniger model of one-dimensional bosons with δ-function interaction is defined by
the Hamiltonian

HN =
N∑

j=1

− ∂2

∂z2
j

+ g
∑

1≤i< j≤N

δ(zi − z j ) (36)

on
⊗N

sym L2([0, L]). As shown in Ref. 25, this model is exactly solvable, and various quantities,
like the ground state energy density and the excitation spectrum, can be computed. As far as
the ground state energy is concerned, the Bogoliubov approximation turns out to become exact
in the weak coupling/high density limit g/ϱ → 0. The same is true for parts of the excitation
spectrum, but the exact excitation spectrum has an additional branch (called the Lieb-mode)
which is absent in the Bogoliubov approximation.
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• For charged bosons in a uniform background (also known as the “jellium” model) Foldy’s
law14

e(ϱ) ≈ Cϱ5/4 (37)

for the ground state energy density has been verified in Refs. 30 and 41. Also in this case, the
Bogoliubov approximation becomes exact in the high density limit, i.e., as ϱ → ∞. In this
model, the interaction among the particles is given by the Coulomb potential v(x) = |x |−1. For
charge neutrality, an additional one-particle potential

∑N
i=1 V (xi ) of the form

V (x) = −
∫

[0,L]3

ϱ

|x − y|
dy (38)

is added, as well as a constant to take into account the self-interaction of the background,
1
2ϱ2

∫∫
[0,L]6 |x − y|−1dxdy. The total energy per unit volume then satisfies (37) with an explicit

constant C given by the integral

C = − 1
2(2π )3

∫

R3

(
|p|2 + 4π

|p|2
−

√
|p|4 + 8π

)
dp

= −2
5

+(3/4)
+(5/4)

(
2
π

)1/4

, (39)

which arises from the Bogoliubov approximation in a similar fashion as discussed in Sec. V.
There is also a corresponding result for a two-component charged Bose gas, where the validity
of the Bogoliubov approximation for the ground state energy was rigorously verified.31, 41

• The leading term in the ground state energy of the low density Bose gas,

e(ϱ) ≈ 4πaϱ2, (40)

is rigorously known to be correct for purely repulsive interaction potentials, i.e., for v ≥ 0,
with finite scattering length. An upper bound of the correct form was provided by Dyson
already in 1957,10 while a proof of the lower bound was given only in 1998 by Lieb and
Yngvason.33 For generalizations to partially attractive interactions see Refs. 20 and 44, and
for a corresponding result for the free energy at positive temperature see Refs. 37 and 45. We
emphasize that these results do not, strictly speaking, concern a rigorous justification of the
Bogoliubov approximation, since the latter does not actually predict the correct appearance of
the scattering length, but only yields its first two orders in Born approximation, as discussed
in Sec. V.
An upper bound on the ground state energy density of the conjectured form of the Lee–Huang–
Yang formula

4πaϱ2
(

1 + 128
15

√
π

√
ϱa3 + o(ϱ1/2)

)
(41)

was proved in Ref. 43 for positive, smooth, and sufficiently weak interaction potentials. A
proof of a lower bound of this form is still an outstanding open problem.

• For low density ϱ, the Bogoliubov approximation can only be strictly valid if
◦ the third term in the Born series for the scattering length is negligible,
◦ the second term in the Born series for the scattering length is large compared with a(a3ϱ)1/2.

Consider an interaction potential of the form
a0

R3
v(x/R) (42)

for “nice” v with
∫

v = 8π , and R > 0 an adjustable parameter, which is allowed to depend
on the density of the system, and will be chosen large compared to a0. Then a ≈ a0 to leading
order. In terms of R, the two conditions above are equivalent to

a3

R2
≪ a(a3ϱ)1/2 ≪ a2

R
. (43)
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If we write a/R ∼ (a3ϱ)1/2 − δ for small a3ϱ, this requires δ to satisfy 0 < δ < 1/4. Note that
for this choice of R one has R3ϱ ∼ (a3ϱ)3δ − 1/2. In particular, the range R of the interaction
potential is much smaller than the mean particle spacing ϱ− 1/3 only if δ > 1/6.
In Ref. 16, the validity of the Lee–Huang–Yang formula (41) is proved for interaction potentials
of the form (42) and small enough δ. An extension of this result to a larger range of δ, including
δ slightly larger than 1/6, was announced in Ref. 32.

Most of these results concern the validity of the Bogoliubov approximation for the ground
state energy of the system. Much less is known as far as the excitation spectrum is concerned. The
only case where the Bogoliubov approximation can be rigorously justified even for the excitation
spectrum concerns a system in the mean-field (or Hartree) limit, where the interactions among
the particles are very weak and of long range. These results are fairly recent and we review them
in Sec. VII.

VII. THE MEAN-FIELD (HARTREE) LIMIT

A simpler case where the analysis of the validity of the Bogoliubov approximation can be
extended beyond the ground state energy is the Hartree limit. This is an extreme form of a mean-
field limit where the interaction potential extends over the whole size of the system, but the interaction
is sufficiently weak (of order 1/N) in order for the interaction energy to be of the same order as the
kinetic energy.

We consider again a system of N bosons in a cubic box, with periodic boundary conditions. For
simplicity, let us choose units such that the length of the box L equals 1. The Hamiltonian of the
systems is thus given by

HN = −
N∑

i=1

!i + 1
N − 1

∑

1≤i< j≤N

v(xi − x j ). (44)

Here we wrote the interaction potential as (N − 1)−1v(x), reflecting the weakness of the potential
as mentioned above. The case of fixed, N-independent v corresponds to the mean-field or Hartree
limit.

It is not difficult to see that the ground state energy is determined, to leading order in N for large
N, by minimizing the energy ⟨"|HN|"⟩ over product states of the form

"(x1, . . . , xN ) = φ(x1) · · · φ(xN ). (45)

This has been shown, in a much more general setting than what is discussed here, in Ref. 22. For
a constant φ, corresponding to a homogeneous system, the resulting Hartree energy is then simply
equal to 1

2 N
∫

v.
It is also known that starting from a product state of the form (45), a solution to the time-

dependent Schrödinger equation i∂ t" = HN" stays roughly a product at later times, with the factors
in the limit N → ∞ determined by the time-dependent Hartree equation

i∂tφ = −!φ +
(
|φ|2 ∗ v

)
φ, (46)

where ∗ denotes convolution. For a history of this problem and a review of recent results, we refer
to Ref. 34.

Going beyond the leading order, where the Hartree equation applies, we can ask the following
questions.

• Given that the ground state energy E0(N) = inf spec HN satisfies E0(N ) = 1
2 N v̂(0) + o(N ) for

fixed (i.e., N-independent) v, what is the next order correction? It turns out that it is actually
O(1), and the O(1)-term can be explicitly computed and agrees with the prediction from the
Bogoliubov approximation.

• What is the spectrum of HN − E0(N), i.e., the excitation spectrum of the system? Does it
converge as N → ∞? Is the Bogoliubov approximation valid? The latter predicts a dispersion
law for elementary excitations that is linear for small momentum, as discussed in Sec. V.
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• What fraction of particles is in a Bose–Einstein condensate? Recall that Bose–Einstein con-
densation concerns the largest eigenvalue of the one-particle density matrix γ of a many-body
wave function ", defined via the matrix elements

⟨ f |γ |g⟩

= N
∫

f (x)"(x, x2, . . . , xN )g(y)"(y, x2, . . . , xN ) dx dy dx2 · · · dxN . (47)

For fixed v, the Bogoliubov approximation predicts that ∥γ ∥ ≥ N − O(1) in the ground state,
and this can actually be proved to be correct.

A. Main results

For our analysis of the excitation spectrum, we assume that v(x) is bounded and of positive
type, i.e.,

v(x) =
∑

p∈(2πZ)3

v̂(p)eip·x with v̂(p) ≥ 0 ∀p ∈ (2πZ)3. (48)

Under these assumptions, the following theorem holds.

Theorem 1. The ground state energy E0(N) of HN equals

E0(N ) = N
2

v̂(0) + EBog
0 + O(N−1/2) (49)

with

EBog
0 = −1

2

∑

p ̸=0

(
|p|2 + v̂(p) −

√
|p|4 + 2|p|2v̂(p)

)
. (50)

Moreover, the excitation spectrum of HN − E0(N) below an energy ξ is equal to finite sums of the
form

∑

p∈(2πZ)3\{0}

ep n p + O
(
ξ 3/2 N−1/2) , (51)

where

ep =
√

|p|4 + 2|p|2v̂(p), (52)

and np ∈ {0, 1, 2, . . . } for all p ̸= 0.

Theorem 1 is proved in Ref. 38. The proof consists of constructing a unitary operator U that
makes UHNU† close to the operator:

N
2

v̂(0) + EBog
0 +

∑

p∈(2πZ)3\{0}

ep a†
pap. (53)

In particular, the proof implies that the excited eigenfunctions can be (approximately) obtained by
acting with products of U †a†

pa0U on the ground state.
Let us comment on the error terms in (49) and (51). Both the ground state energy and all

excited energy levels a distance O(1) from the ground state agree with the prediction obtained via
Bogoliubov’s approximation up to errors of order N− 1/2 for large N. Moreover, an excitation energy
a distance ξ from the ground state energy is necessarily of the form

∑
p epnp(1 + o(1)) as long as

ξ 3/2N− 1/2 ≪ ξ , i.e., for ξ ≪ N. That is, the Bogoliubov approximation gives the correct excitation
energies to leading order in a very large window above the ground state energy, whose size has to
be small compared with N. This restriction is presumably optimal. The existence of Bose–Einstein
condensation is only guaranteed for excitation energies small compared to N, and the existence of
BEC is one of the key assumptions entering the Bogoliubov approximation.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
193.170.138.132 On: Thu, 24 Sep 2015 13:28:55



075209-10 Robert Seiringer J. Math. Phys. 55, 075209 (2014)

FIG. 1. Sketch of the parts of the spectrum that are correctly determined by the Bogoliubov approximation in the Hartree
limit.

Theorem 1 implies the following corollary concerning the momentum dependence of the spec-
trum of HN.

Corollary 1. Let EP(N) denote the ground state energy of HN in the sector of total momentum P.
We have

EP (N ) − E0(N ) = min
{n p},

∑
p p n p=P

∑

p ̸=0

ep n p + O
(
|P|3/2 N−1/2) . (54)

In particular,

EP (N ) − E0(N ) ≥ |P| min
p

√
2̂v(p) + |p|2 + O(|P|3/2 N−1/2). (55)

The bound (55) implies that EP(N) − E0(N) behaves linearly in P for not too large P (assuming
that v̂(p) does not vanish for small p). Note that this fact is caused by the interactions among the
particles, non-interacting systems do not show this behavior. The linear behavior is very important
physically and is responsible for the superfluid behavior of the system. According to Landau, the
coefficient in front of |P| is, in fact, the critical velocity for frictionless flow. We refer to Ref. 6 for
further details on this correspondence.

Note that under the unitary transformation

Ũ = exp

⎛

⎝−iq ·
N∑

j=1

x j

⎞

⎠ , q ∈ (2πZ)3, (56)

the Hamiltonian HN transforms as

Ũ † HN Ũ = HN + N |q|2 − 2q · P, (57)

where P = −i
∑N

j=1 ∇ j denotes again the total momentum operator. Hence our results apply equally
also to the parts of the spectrum of HN with excitation energies close to N|q|2, corresponding to
collective excitations where the particles move uniformly with momentum q; cf. Fig. 1.

B. Ideas in the proof

In the language of second quantization, the Hamiltonian HN is the restriction of the operator

H =
∑

p∈(2πZ)3

|p|2a†
pap + 1

2(N − 1)

∑

p

v̂(p)
∑

q,k

a†
q+pa†

k−pak aq (58)

to the N-particle subspace of the Fock space F . Note that N has two different roles here. It determines
the particle number, but also appears as a parameter in the Hamiltonian H.

As discussed in Sec. V, the Bogoliubov approximation consists of

• dropping all terms higher than quadratic in a†
p and ap, p ̸= 0;

• replacing a†
0 and a0 by

√
N .
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The resulting quadratic Hamiltonian is N
2 v̂(0) + HBog, where

HBog =
∑

p ̸=0

((
|p|2 + v̂(p)

)
a†

pap + 1
2 v̂(p)

(
a†

pa†
−p + apa−p

))
. (59)

It is diagonalized via a Bogoliubov transformation of the form

bp = cosh(αp)ap + sinh(αp)a†
−p, (60)

leading to

HBog = EBog
0 +

∑

p ̸=0

epb†
pbp, (61)

with EBog
0 and ep defined in (50) and (52), respectively.

The proof of Theorem 1 consists of two main steps:

1. As a first step, one shows that HN is well approximated by an operator similar to the Bogoliubov
Hamiltonian HBog, but with ap and a†

p replaced by

a†
p → c†

p :=
a†

pa0√
N

, ap → cp :=
apa†

0√
N

. (62)

Note that the operators cp and c†
p conserve the particle number. The resulting Hamiltonian is

quadratic in c†
p and cp and is, in particular, also particle number conserving. Hence, it has a

chance of being close to HN on the subspace of particle number N. The original Bogoliubov
Hamiltonian (59) does not leave this subspace invariant, and hence can not be directly compared
with HN.

2. Mimicking the Bogoliubov transformation (60), we introduce the operators dp = cosh(αp)cp +
sinh(αp)c†

−p. It turns out that the modified Hamiltonian from Step 1 is close to

EBog
0 +

∑

p ̸=0

epd†
pdp, (63)

whose spectrum now has to be analyzed. This analysis is complicated by the fact that the
operators dp and d†

p do not satisfy CCR. It turns out that they do, however, approximately on
the subspace where a†

0a0 is close to N, which is sufficient for our purpose.

In the following, we shall explain these two steps in greater detail. For further details, we refer to
Ref. 38.

1. Step 1: Approximation by a quadratic Hamiltonian

Under our assumptions on the interaction potential v, it is not difficult to see that

N − a†
0a0 ≤ const. [1 + HN − E0(N )] . (64)

This proves that the excitation energy dominates the condensate depletion. In particular, if the
excitation energy is small compared with N, most particles occupy the zero momentum mode, i.e.,
Bose–Einstein condensation occurs.

To show that cubic and quartic terms in a†
p and ap, p ̸= 0, in the Hamiltonian are negligible, one

needs to prove a stronger bound of the form
(

N − a†
0a0

)2
≤ const.

[
1 + (HN − E0(N ))2] , (65)

however. It implies that also the fluctuations in the number of particles outside the condensate are
suitably small.
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The first statement (64) follows easily from positivity of v̂(p). Positivity implies that

∑

p∈(2πZ)3\{0}

v̂(p)

∣∣∣∣∣∣

N∑

j=1

eip·x j

∣∣∣∣∣∣

2

≥ 0, (66)

which can be rewritten as
∑

1≤i< j≤N

v(xi − x j ) ≥ N 2

2
v̂(0) − N

2
v(0). (67)

Thus, HN is bounded from below as

HN ≥ N
2

v̂(0) + T − N
2(N − 1)

(v(0) − v̂(0)) , (68)

where T denotes the kinetic energy

T = −
N∑

i=1

!i . (69)

The statement (64) follows, since T ≥ (2π )2(N − a†
0a0).

For the second statement (65) one has to work a bit more. It turns out to be useful to actually
prove a slightly stronger bound, namely, the inequality

(
N − a†

0a0

)
T ≤ const.

[
1 + (HN − E0(N ))2] . (70)

Since T ≥ (2π )2(N − a†
0a0) (and the two operators commute), this indeed implies the bound (65).

For the proof of (70), let us introduce the notation

N> = N − a†
0a0 =

N∑

i=1

Qi (71)

for the number of particles outside the condensate, where Q denotes the projection onto the subspace
of L2([0, 1]3) of co-dimension one orthogonal to the constant function. For any bosonic (i.e.,
permutation-symmetric) wave function ", we can write

〈
"

∣∣N>T
∣∣"

〉
= N ⟨" |Q1T | "⟩

= N ⟨" |Q1S| "⟩ +
〈
"

∣∣N> (HN − E0(N ))
∣∣"

〉
, (72)

where

S = T − HN + E0(N )

= E0(N ) − (N − 1)−1
∑

i< j

v(xi − x j ). (73)

Using Schwarz’s inequality, the last term in (72) can be bounded as
〈
"

∣∣N> (HN − E0(N ))
∣∣"

〉
≤

〈
"

∣∣(N>)2
∣∣"

〉1/2 〈
"

∣∣(HN − E0(N ))2
∣∣"

〉1/2
. (74)

We split S into two parts, S = Sa + Sb, with

Sa = E0(N ) − 1
N − 1

∑

2≤i< j≤N

v(xi − x j ) (75)

and

Sb = − 1
N − 1

N∑

j=2

v(x1 − x j ). (76)
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Note that Sa does not depend on x1. Using the positivity of v̂(p) as in (66), but with the sum over
j running from 2 to N only, as well as the simple upper bound E0(N ) ≤ N

2 v̂(0) on the ground state
energy, we see that

Sa ≤ 1
2

(̂v(0) + v(0)) . (77)

In particular, this implies that

N ⟨" |Q1Sa| "⟩ ≤ 1
2

(̂v(0) + v(0))
〈
"

∣∣N>
∣∣"

〉
. (78)

To bound the contribution of Sb, we use

−⟨"|Q1Sb|"⟩ = ⟨" |Q1v(x1 − x2)| "⟩ = ⟨" |Q1 Q2v(x1 − x2)|"⟩

+ ⟨" |Q1 P2v(x1 − x2)P2| "⟩

+ ⟨" |Q1 P2v(x1 − x2)Q2| "⟩ , (79)

where P = 1 − Q denotes the rank-one projection onto the constant function in L2([0, 1]3). The
second term on the right side of (79) is positive. For the first and the third, we use Schwarz’s
inequality and ∥v∥∞ = v(0) to conclude that

⟨"|Q1Sb|"⟩ ≤ v(0)⟨"|Q1 Q2|"⟩1/2 + v(0)⟨"|Q1|"⟩. (80)

Since

⟨"|Q1 Q2|"⟩ = ⟨"|N>(N> − 1)|"⟩
N (N − 1)

≤ ⟨"|(N>)2|"⟩
N 2

, (81)

we have thus shown that

〈
"

∣∣N>T
∣∣"

〉
≤ 1

2
(̂v(0) + 3v(0))

〈
"

∣∣N>
∣∣"

〉

+
(
v(0) +

〈
"

∣∣(HN − E0(N ))2
∣∣"

〉1/2
) 〈

"
∣∣(N>)2

∣∣"
〉1/2

. (82)

Using that N> ≤ (2π )− 2T in the last factor, this further implies that

〈
"

∣∣N>T
∣∣"

〉
≤

(
v(0) +

〈
"

∣∣(HN − E0(N ))2
∣∣"

〉1/2

2π

)2

+ (3v(0) + v̂(0))
〈
"

∣∣N>
∣∣"

〉
. (83)

The desired result (70) then follows from (64).

2. An algebraic identity

The inequalities (64) and (70) allow us to conclude that H is, at low energy, well approximated
by

N
2

v̂(0) + 1
2

∑

p ̸=0

[
Ap

(
c†

pcp + c†
−pc−p

)
+ Bp

(
c†

pc†
−p + cpc−p

)]
, (84)
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where Ap = |p|2 + v̂(p) and Bp = v̂(p), and the operators cp are defined in (62). A simple identity,
which does not use the CCR, is

Ap

(
c†

pc
p
+ c†

−pc−p

)
+ Bp

(
c†

pc†
−p + cpc−p

)

=
√

A2
p − B2

p

⎛

⎝

(
c†

p + βpc−p

) (
cp + βpc†

−p

)

1 − β2
p

+

(
c†
−p + βpcp

) (
c−p + βpc†

p

)

1 − β2
p

⎞

⎠

− 1
2

(
Ap −

√
A2

p − B2
p

) (
[cp, c†

p] + [c−p, c†
−p]

)
, (85)

where

βp =
{

1
Bp

(
Ap −

√
A2

p − B2
p

)
if Bp > 0

0 if Bp = 0.
(86)

Note that if the operators cp and c†
p satisfied CCR, the term in the last line of (85) would be a

constant. Its deviation from a constant can be controlled in terms of the condensate depletion, and
the inequality (70) can be used to control the error made by simply replacing it be the value it would
take in the case of CCR.

Introducing the operators

dp =
cp + βpc†

−p√
1 − β2

p

(87)

and their adjoints, we conclude that H is, in fact, close to the operator

N
2

v̂(0) + EBog
0 +

∑

p ̸=0

ep d†
pdp, (88)

where we used that

EBog
0 = −1

2

∑

p ̸=0

(
Ap −

√
A2

p − B2
p

)
(89)

and

ep =
√

A2
p − B2

p. (90)

3. Step 2: The spectrum of d†
pdp

If the operators dp and d†
p satisfied CCR, we could immediately read off the spectrum of the

operator in (88), and we would be done. However, without CCR we do not know the spectrum of
d†

pdp and, moreover, the various summands in (88) do not actually commute in our case.
The usual Bogoliubov transformation (60) is of the form

bp = cosh(αp)ap + sinh(αp)a†
−p = e−X apeX , (91)

where X is the anti-hermitian operator

X = 1
2

∑

p ̸=0

αp

(
a†

pa†
−p − apa−p

)
. (92)

This identity can easily be verified using the CCR [ap, a†
q ] = δp,q . Our operators cp = apa†

0/
√

N ,
on the other hand, satisfy

[
cp, c†

q

]
= δp,q

a0a†
0

N
−

apa†
q

N
. (93)
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We now define, in analogy to (92), the particle-number conserving anti-hermitian operator

X̃ = 1
2

∑

p ̸=0

αp

(
c†

pc†
−p − cpc−p

)
. (94)

In order to compute the spectrum of d†
pdp, we apply the unitary eX̃ , and argue that the resulting

operator is close a†
pap, at least in the subspace of low energy. More precisely, we show that

e−X̃ apeX̃ =

dp︷ ︸︸ ︷
cosh(αp)cp + sinh(αp)c†

−p + Errorp (95)

for suitable small error term. Here it is important that actually the sum over all error terms (depending
on p) is still (relatively) small as long as (N − a†

0a0)2 ≪ N 2. The proof of (95) is somewhat lengthy
and will be skipped here. It proceeds by studying e−t X̃ apet X̃ as a function of t ∈ [0, 1], using a
Grönwall type estimate. The details are presented in Ref. 38.

C. Conclusions and generalizations

The mean-field or Hartree limit may be somewhat unphysical when it comes to the description
of cold atomic gases. It can be used as a toy model, however, which is analytically much easier
to handle than the Gross-Pitaevskii limit of dilute gases,26–28, 39 for instance. The results reviewed
in this section are the first rigorous results concerning the excitation spectrum of an interacting
Bose gas, in a suitable limit of weak, long-range interactions. With the notable exception of exactly
solvable models in one dimension, this is the only model where rigorous results on the excitation
spectrum are available. The results verify Bogoliubov’s prediction that the spectrum consists of
sums of elementary excitations. In the translation invariant case, the excitation energy turns out to
be linear in the momentum for small momentum. In particular, Landau’s criterion for superfluidity
is verified.

The methods presented in this section can be generalized to inhomogeneous systems without
translation invariance. This was shown in Ref. 17, where the excitation spectrum of the Hamiltonian

HN =
N∑

i=1

(−!i + V (xi )) + 1
N − 1

∑

1≤i< j≤N

v(xi − x j ) (96)

on the Hilbert space ⊗N
symL2(R3) was studied, with a trap potential V that is locally bounded and

tends to infinity at infinity, in order to ensure that all the particles are confined and cannot escape
to infinity. To leading order in N, the ground state energy of (96) is determined by minimizing the
Hartree functional

EH(φ) =
∫

R3

(
|∇φ(x)|2 + V (x)|φ(x)|2

)
dx

+ 1
2

∫

R6
|φ(x)|2v(x − y)|φ(y)|2dxdy, (97)

with minimal energy EH = inf{EH(φ) :
∫

|φ|2 = 1}. Under the stated conditions on v and V , it is
not difficult to see that there exists a unique minimizer φ0 (up to a constant phase, of course, which
we can choose such that φ0 is positive) with EH = EH(φ0). The corresponding Euler-Lagrange
equation for the minimizer φ0 can be written as KHφ0 = 0, where KH is the Hartree operator

K H = −! + V (x) + v ∗ |φ0|2(x) − ε0, (98)

with ε0 = EH + 1
2

∫
R6 |φ0(x)|2v(x − y)|φ0(y)|2dxdy and ∗ denoting convolution.

The excitation spectrum of (96) turns out to have a similar structure as in (51), i.e., it consists
of sums of elementary excitations. These are described by an effective one-body operator given by

E =
(√

K H
(
K H + 2W

) √
K H

)1/2
, (99)
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where W denotes the operator with integral kernel φ0(x)v(x − y)φ0(y). More precisely, to leading
order in N the spectrum of HN − E0(N) is of the form

∑
i eini, with ni ∈ {0, 1, 2, . . . } and ei the

(non-zero) eigenvalues of E. We refer to Ref. 17 for details.
By using different techniques, this result was further generalized in Ref. 24, where the validity of

the Bogoliubov approximation in the Hartree limit was shown for a much larger class of Hamiltonians
and interaction potentials. The method of Ref. 24 does not require that v has positive Fourier
transform, for instance, one merely needs to assume that the corresponding Hartree functional has
a unique minimizer and that the Hessian is strictly positive at the minimum. While the result of
Ref. 24 applies to a much larger class of models, it does not yield so precise estimates on the error
terms as the ones obtained in Theorem 1, and is restricted to studying the excitation spectrum in a
window of order one above the ground state energy.

It remains to be seen to what extent the methods in Refs. 17 and 38 or the method in Ref. 24 can
be generalized to the study of less restrictive parameter regimes, away from the Hartree limit. A first
step in this direction was recently taken in Ref. 9, where bounds were given on the maximally allowed
rate at which the system size is allowed to grow with N in order for the Bogoliubov approximation
to remain valid. Equivalently, one can let the interaction potential v depend on N and ask at what
rate it is allowed to tend to a δ-function as N → ∞. Since all error terms in Theorem 1 are explicit,
an estimate of this kind is actually contained in Theorem 1, but the dependence of these error terms
on v was greatly improved in Ref. 9.

Finally, we mention that the validity of the Bogoliubov approximation in the Hartree limit can
also be investigated concerning the dynamics generated by the Hamiltonian HN. We refer to Ref. 23
and the references there for recent results in this direction.

VIII. OPEN PROBLEMS

In this final section, we collect a list of open problems related to the Bogoliubov approximation
for many-boson systems. Some of these problems have already been mentioned in Secs. VI and VII.

• One of the key assumptions motivating the Bogoliubov approximation is the existence of
Bose–Einstein condensation. While this property is easy to demonstrate in the Hartree limit
discussed in Sec. VII, it is not known how to prove it in more general cases. In particular, the
existence of BEC in the usual thermodynamic limit remains an open problem. The only model
where the occurrence of BEC has been proved in the thermodynamic limit is the hard-core
lattice gas at exactly half-filling, which is equivalent to the quantum XY spin model.11, 19 BEC
is also known to occur in the Gross-Pitaevskii limit of dilute trapped gases.26–28, 39

• As discussed in Sec. VI, the ground state energy density of a dilute Bose gas with repulsive
interactions is known to equal 4πaϱ2 to leading order in ϱ, with a denoting the scattering
length of the interaction potential. The first correction term to this expression is expected to be
of the form of the Lee–Huang–Yang formula displayed in Eq. (41) above. In particular, also
this correction term is expected to depend on the interaction v only via its scattering length. It
is an interesting open problem to establish the formula (41) rigorously, i.e., to give a suitable
lower bound on the ground state energy that agrees with (41) up to terms of lower order. As
discussed in Sec. VI, an upper bound of the correct form was recently derived in Ref. 43,
at least for smooth and suitably small interaction potentials such that the Born series for the
scattering length converges. In the more general case, even an upper bound of the right form is
unknown.

• The results in Sec. VII on the excitation spectrum concern the mean-field or Hartree limit,
where the interaction among the particles is very weak and of long range. In fact, the range is
of the same order as the system size. In view of applications to cold atomic gases, a physically
more relevant limit would be the Gross-Pitaevskii limit,26–28, 39 where the interaction potential
takes the form

v(x) = N 2w(N x) (100)
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for some fixed, N-independent function w. As discussed in more detail in Ref. 17, one expects
that in this limit the excitation spectrum is still of the form (51), but with v̂(p) replaced by
8πa, where a denotes the scattering length of w.

• An even more challenging problem concerns the low energy excitation spectrum in the thermo-
dynamic limit, and to study its relation to the property of superfluidity. There are no rigorous
results available up to now, not even rough bounds are known. In fact, not even the absence of
a spectral gap in the thermodynamic limit of an interacting Bose gas is rigorously known. We
refer to Ref. 6 for further discussion of this topic.

• Also in the Hartree limit discussed in Sec. VII there are interesting open problems. One of
them concerns the existence of collective excitations which should be described by solutions
of the Hartree equation

−!φ(x) + V (x)|φ(x)|2 + v ∗ |φ|2(x)φ(x) = µφ(x) (101)

for some µ ∈ Rwhich are different from φ0 and hence correspond to (non-linear) excited states
of the Hartree functional. In the translation invariant case, collective excitations are related to
the ground state via a Galileo transformation, as explained in Sec. VII A. In the absence of
translation invariance, there is no such symmetry, and the existence of such states is therefore
an open problem in general.
Moreover, the results in Refs. 9, 17, 24, and 38 are all limited to the case where the Hartree
functional (97) has a unique minimizer (up to a constant phase). However, at least in the case of
attractive interactions, uniqueness will not hold, in general. Even with repulsive interactions,
uniqueness can fail in the presence of magnetic fields or, equivalently, the case of rotating
Bose gases.35, 36 In this case, there can even be uncountably many minimizers. This happens,
for instance, in rotating systems if the system is rotation invariant with respect to the axis of
rotation, and the rotation speed is large enough for quantized vortices to form. If there is more
than one such vortex, the rotation symmetry is necessarily broken in the minimizer, and hence
there are infinitely many minimizers, which are all related via rotation. It would be nice to
extend the results about the excitation spectrum in the Hartree limit to the case of multiple
Hartree minimizers.

Note added in proof: For recent progress in this direction, see Ref. 47.
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