
Sound and Complete Certificates
for Quantitative Termination Analysis

of Probabilistic Programs

Krishnendu Chatterjee1, Amir Kafshdar Goharshady2(B),
Tobias Meggendorfer1, and Ðorđe Žikelić1

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{krishnendu.chatterjee,tobias.meggendorfer,djordje.zikelic}@ist.ac.at

2 The Hong Kong University of Science and Technology (HKUST),
Hong Kong, China

goharshady@cse.ust.hk

Abstract. We consider the quantitative problem of obtaining lower-
bounds on the probability of termination of a given non-deterministic
probabilistic program. Specifically, given a non-termination threshold
p ∈ [0, 1], we aim for certificates proving that the program terminates
with probability at least 1−p. The basic idea of our approach is to find a
terminating stochastic invariant, i.e. a subset SI of program states such
that (i) the probability of the program ever leaving SI is no more than
p, and (ii) almost-surely, the program either leaves SI or terminates.

While stochastic invariants are already well-known, we provide the
first proof that the idea above is not only sound, but also complete for
quantitative termination analysis. We then introduce a novel sound and
complete characterization of stochastic invariants that enables template-
based approaches for easy synthesis of quantitative termination certifi-
cates, especially in affine or polynomial forms. Finally, by combining this
idea with the existing martingale-based methods that are relatively com-
plete for qualitative termination analysis, we obtain the first automated,
sound, and relatively complete algorithm for quantitative termination
analysis. Notably, our completeness guarantees for quantitative termina-
tion analysis are as strong as the best-known methods for the qualitative
variant.

Our prototype implementation demonstrates the effectiveness of our
approach on various probabilistic programs. We also demonstrate that
our algorithm certifies lower bounds on termination probability for prob-
abilistic programs that are beyond the reach of previous methods.

1 Introduction

Probabilistic Programs. Probabilistic programs extend classical imperative
programs with randomization. They provide an expressive framework for specify-
ing probabilistic models and have been used in machine learning [22,39], network

A longer version, including appendices, is available at [12].
Authors are ordered alphabetically.
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 55–78, 2022.
https://doi.org/10.1007/978-3-031-13185-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-13185-1_4

56 K. Chatterjee et al.

analysis [20], robotics [41] and security [4]. Recent years have seen the develop-
ment of many probabilistic programming languages such as Church [23] and
Pyro [6], and their formal analysis is an active topic of research. Probabilistic
programs are often extended with non-determinism to allow for either unknown
user inputs and interactions with environment or abstraction of parts that are
too complex for formal analysis [31].

Termination. Termination has attracted the most attention in the literature on
formal analysis of probabilistic programs. In non-probabilistic programs, it is a
purely qualitative property. In probabilistic programs, it has various extensions:

1. Qualitative: The almost-sure (a.s.) termination problem asks if the program
terminates with probability 1, whereas the finite termination problems asks
if the expected number of steps until termination is finite.

2. Quantitative: The quantitative probabilistic termination problem asks for a
tight lower bound on the termination probability. More specifically, given a
constant p ∈ [0, 1], it asks whether the program will terminate with probabil-
ity at least 1 − p over all possible resolutions of non-determinism.

Previous Qualitative Works. There are many approaches to prove a.s. termi-
nation based on weakest pre-expectation calculus [27,31,37], abstract interpre-
tation [34], type systems [5] and martingales [7,9,11,14,25,26,32,35]. This work
is closest in spirit to martingale-based approaches. The central concept in these
approaches is that of a ranking supermartingale (RSM) [7], which is a probabilis-
tic extension of ranking functions. RSMs are a sound and complete proof rule
for finite termination [21], which is a stricter notion than a.s. termination. The
work of [32] proposed a variant of RSMs that can prove a.s. termination even
for programs whose expected runtime is infinite, and lexicographic RSMs were
studied in [1,13]. A main advantage of martingale-based approaches is that they
can be fully automated for programs with affine/polynomial arithmetic [9,11].

Previous Quantitative Works. Quantitative analyses of probabilistic pro-
grams are often more challenging. There are only a few works that study
the quantitative termination problem: [5,14,40]. The works [14,40] propose
martingale-based proof rules for computing lower-bounds on termination proba-
bility, while [5] considers functional probabilistic programs and proposes a type
system that allows incrementally searching for type derivations to accumulate a
lower-bound on termination probability. See Sect. 8 for a detailed comparison.

Lack of Completeness. While [5,14,40] all propose sound methods to com-
pute lower-bounds on termination probability, none of them are theoretically
complete nor do their algorithms provide relative completeness guarantees. This
naturally leaves open whether one can define a complete certificate for proving
termination with probability at least 1− p ∈ [0, 1], i.e. a certificate that a prob-
abilistic program admits if and only if it terminates with probability at least
1 − p, which allows for automated synthesis. Ideally, such a certificate should
also be synthesized automatically by an algorithm with relative completeness
guarantees, i.e. an algorithm which is guaranteed to compute such a certificate

Sound and Complete Certificates for Quantitative Termination Analysis 57

for a sufficiently general subclass of programs. Note, since the problem of decid-
ing whether a probabilistic program terminates with probability at least 1− p is
undecidable, one cannot hope for a general complete algorithm so the best one
can hope for is relative completeness.

Our Approach. We present the first method for the probabilistic termination
problem that is complete. Our approach builds on that of [14] and uses stochastic
invariants in combination with a.s. reachability certificates in order to compute
lower-bounds on the termination probability. A stochastic invariant [14] is a
tuple (SI , p) consisting of a set SI of program states and an upper-bound p on
the probability of a random program run ever leaving SI . If one computes a
stochastic invariant (SI , p) with the additional property that a random program
run would, with probability 1, either terminate or leave SI , then since SI is
left with probability at most p the program must terminate with probability at
least 1− p. Hence, the combination of stochastic invariants and a.s. reachability
certificates provides a sound approach to the probabilistic termination problem.

While this idea was originally proposed in [14], our method for computing
stochastic invariants is fundamentally different and leads to completeness. In [14],
a stochastic invariant is computed indirectly by computing the set SI together
with a repulsing supermartingale (RepSM), which can then be used to compute
a probability threshold p for which (SI , p) is a stochastic invariant. It was shown
in [40, Section 3] that RepSMs are incomplete for computing stochastic invari-
ants. Moreover, even if a RepSM exists, the resulting probability bound need not
be tight and the method of [14] does not allow optimizing the computed bound
or guiding computation towards a bound that exceeds some specified probability
threshold.

In this work, we propose a novel and orthogonal approach that computes
the stochastic invariant and the a.s. termination certificate at the same time
and is provably complete for certifying a specified lower bound on termina-
tion probability. First, we show that stochastic invariants can be characterized
through the novel notion of stochastic invariant indicators (SI-indicators). The
characterization is both sound and complete. Furthermore, it allows fully auto-
mated computation of stochastic invariants for programs using affine or poly-
nomial arithmetic via a template-based approach that reduces quantitative ter-
mination analysis to constraint solving. Second, we prove that stochastic invari-
ants together with an a.s. reachability certificate, when synthesized in tandem,
are not only sound for probabilistic termination, but also complete. Finally, we
present the first relatively complete algorithm for probabilistic termination. Our
algorithm considers polynomial probabilistic programs and simultaneously com-
putes a stochastic invariant and an a.s. reachability certificate in the form of an
RSM using a template-based approach. Our algorithmic approach is relatively
complete.

While we focus on the probabilistic termination problem in which the goal is
to verify a given lower bound 1− p on the termination probability, we note that
our method may be straightforwardly adapted to compute a lower bound on the
termination probability. In particular, we may perform a binary-search on p and

58 K. Chatterjee et al.

search for the smallest value of p for which 1 − p can be verified to be a lower
bound on the termination probability.
Contributions. Our specific contributions in this work are as follows:

1. We present a sound and complete characterization of stochastic invariants
through the novel notion of stochastic invariant indicators (Sect. 4).

2. We prove that stochastic invariants together with an a.s. reachability certifi-
cate are sound and complete for proving that a probabilistic program termi-
nates with at least a given probability threshold (Sect. 5).

3. We present a relatively complete algorithm for computing SI-indicators, and
hence stochastic invariants over programs with affine or polynomial arith-
metic. By combining it with the existing relatively complete algorithms for
RSM computation, we obtain the first algorithm for probabilistic termination
that provides completeness guarantees (Sect. 6).

4. We implement a prototype of our approach and demonstrate its effectiveness
over various benchmarks (Sect. 7). We also show that our approach can handle
programs that were beyond the reach of previous methods.

2 Overview

Before presenting general theorems and algorithms, we first illustrate our method
on the probabilistic program in Fig. 1. The program models a 1-dimensional
discrete-time random walk over the real line that starts at x = 0 and terminates
once a point with x < 0 is reached. In every time step, x is incremented by a
random value sampled according to the uniform distribution Uniform([−1, 0.5]).
However, if the stochastic process is in a point with x ≥ 100, then the value
of x might also be incremented by a random value independently sampled from
Uniform([−1, 2]). The choice on whether the second increment happens is non-
deterministic. By a standard random walk argument, the program does not ter-
minate almost-surely.

Outline of Our Method. Let p = 0.01. To prove this program terminates
with probability at least 1 − p = 0.99, our method computes the following two
objects:

1. Stochastic invariant. A stochastic invariant is a tuple (SI , p) s.t. SI is a set of
program states that a random program run leaves with probability at most
p.

2. Termination proof for the stochastic invariant. A ranking supermartingale
(RSM) [7] is computed in order to prove that the program will, with proba-
bility 1, either terminate or leave the set SI . Since SI is left with probability
at most p, the program must terminate with probability at least 1 − p.

Sound and Complete Certificates for Quantitative Termination Analysis 59

Fig. 1. Our running example.

Synthesizing SI. To find a stochastic invariant, our method computes a state
function f which assigns a non-negative real value to each reachable program
state. We call this function a stochastic invariant indicator (SI-indicator), and it
serves the following two purposes: First, exactly those states which are assigned
a value strictly less than 1 are considered a part of the stochastic invariant SI .
Second, the value assigned to each state is an upper-bound on the probability
of leaving SI if the program starts from that state. Finally, by requiring that
the value of the SI-indicator at the initial state of the program is at most p, we
ensure a random program run leaves the stochastic invariant with probability at
most p.

In Sect. 4, we will define SI-indicators in terms of conditions that ensure the
properties above and facilitate automated computation. We also show that SI-
indicators serve as a sound and complete characterization of stochastic invari-
ants, which is one of the core contributions of this work. The significance of
completeness of the characterization is that, in order to search for a stochas-
tic invariant with a given probability threshold p, one may equivalently search
for an SI-indicator with the same probability threshold whose computation can
be automated. As we will discuss in Sect. 8, previous approaches to the synthe-
sis of stochastic invariants were neither complete nor provided tight probability
bounds. For Fig. 1, we have the following set SI which will be left with proba-
bility at most p = 0.01 :

SI (�) =

{
(x < 99) if � ∈ {�init , �1, �2, �3, �out}
false otherwise.

(1)

An SI-indicator for this stochastic invariant is:

f(�, x, r1, r2) =

⎧⎪⎪⎨
⎪⎪⎩

x+1
100 if � ∈ {�init , �1, �3, �out} and x < 99
x+1+r1

100 if � = �2 and x < 99
1 otherwise.

(2)

It is easy to check that (SI , 0.01) is a stochastic invariant and that for every
state s = (�, x, r1, r2), the value f(s) is an upper-bound on the probability of
eventually leaving SI if program execution starts at s. Also, s ∈ SI ⇔ f(s) < 1.

60 K. Chatterjee et al.

Synthesizing a Termination Proof. To prove that a probabilistic program
terminates with probability at least 1 − p, our method searches for a stochastic
invariant (SI , p) for which, additionally, a random program run with probability
1 either leaves SI or terminates. This idea is formalized in Theorem2, which
shows that stochastic invariants provide a sound and complete certificate for
proving that a given probabilistic program terminates with probability at least
1 − p. In order to impose this additional condition, our method simultaneously
computes an RSM for the set of states ¬SI ∪ Stateterm , where Stateterm is the
set of all terminal states. RSMs are a classical certificate for proving almost-sure
termination or reachability in probabilistic programs. A state function η is said
to be an RSM for ¬SI ∪ Stateterm if it satisfies the following two conditions:

– Non-negativity. η(�, x, r1, r2) ≥ 0 for any reachable state (�, x, r1, r2) ∈ SI ;
– ε-decrease in expectation. There exists ε > 0 such that, for any reachable

non-terminal state (�, x, r1, r2) ∈ SI , the value of η decreases in expectation
by at least ε after a one-step execution of the program from (�, x, r1, r2).

The existence of an RSM for ¬SI ∪Stateterm implies that the program will, with
probability 1, either terminate or leave SI . As (SI , p) is a stochastic invariant,
we can readily conclude that the program terminates with probability at least
1 − p = 0.99. An example RSM with ε = 0.05 for our example above is:

η(�, x, r1, r2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1.1 if � = �init

x + 1.05 if � = �1

x + 1.2 + r1 if � = �2

x + 1.15 if � = �3

x + 1 if � = �out

100 otherwise.

(3)

Simultaneous Synthesis. Our method employs a template-based approach
and synthesizes the SI and the RSM simultaneously. We assume that our method
is provided with an affine/polynomial invariant I which over-approximates the
set of all reachable states in the program, which is necessary since the defining
conditions of SI-indicators and RSMs are required to hold at all reachable pro-
gram states. Note that invariant generation is an orthogonal and well-studied
problem and can be automated using [10]. For both the SI-indicator and the
RSM, our method first fixes a symbolic template affine/polynomial expression
for each location in the program. Then, all the defining conditions of SI-indicators
and RSMs are encoded as a system of constraints over the symbolic template
variables, where reachability of program states is encoded using the invariant I,
and the synthesis proceeds by solving this system of constraints. We describe
our algorithm in Sect. 6, and show that it is relatively complete with respect to
the provided invariant I and the probability threshold 1−p. On the other hand,
we note that our algorithm can also be adapted to compute lower bounds on the
termination probability by combining it with a binary search on p.

Sound and Complete Certificates for Quantitative Termination Analysis 61

Completeness vs Relative Completeness. Our characterization of stochas-
tic invariants using indicator functions is complete. So is our reduction from
quantitative termination analysis to the problem of synthesizing an SI-indicator
function and a certificate for almost-sure reachability. These are our core theoret-
ical contributions in this work. Nevertheless, as mentioned above, RSMs are com-
plete only for finite termination, not a.s. termination. Moreover, template-based
approaches lead to completeness guarantees only for solutions that match the
template, e.g. polynomial termination certificates of a bounded degree. There-
fore, our end-to-end approach is only relatively complete. These losses of com-
pleteness are due to Rice’s undecidability theorem and inevitable even in qual-
itative termination analysis. In this work, we successfully provide approaches
for quantitative termination analysis that are as complete as the best known
methods for the qualitative case.

3 Preliminaries

We consider imperative arithmetic probabilistic programs with non-determinism.
Our programs allow standard programming constructs such as conditional
branching, while-loops and variable assignments. They also allow two proba-
bilistic constructs – probabilistic branching which is indicated in the syntax by
a command ‘if prob(p) then . . . ’ with p ∈ [0, 1] a real constant, and sampling
instructions of the form x := d where d is a probability distribution. Sampling
instructions may contain both discrete (e.g. Bernoulli, geometric or Poisson) and
continuous (e.g. uniform, normal or exponential) distributions. We also allow
constructs for (demonic) non-determinism. We have non-deterministic branch-
ing which is indicated in the syntax by ‘if � then . . .’, and non-deterministic
assignments represented by an instruction of the form x := ndet([a, b]), where
a, b ∈ R ∪ {±∞} and [a, b] is a (possibly unbounded) real interval from which
the new variable value is chosen non-deterministically. We also allow one or
both sides of the interval to be open. The complete syntax of our programs is
presented in [12, Appendix A].

Notation. We use boldface symbols to denote vectors. For a vector x of dimen-
sion n and 1 ≤ i ≤ n, x[i] denotes the i-th component of x. We write x[i ← a]
to denote an n-dimensional vector y with y[i] = a and y[j] = x[j] for j 	= i.

Program Variables. Variables in our programs are real-valued. Given a finite
set of variables V , a variable valuation of V is a vector x ∈ R

|V |.

Probabilistic Control-Flow Graphs (pCFGs). We model our programs via
probabilistic control-flow graphs (pCFGs) [11,14]. A probabilistic control-flow
graph (pCFG) is a tuple C = (L, V, �init ,xinit ,
→, G,Pr ,Up), where:

– L is a finite set of locations, partitioned into locations of conditional branching
LC , probabilistic branching LP , non-det branching LN and assignment LA.

– V = {x1, . . . , x|V |} is a finite set of program variables;
– �init is the initial program location;

62 K. Chatterjee et al.

– xinit ∈ R
|V | is the initial variable valuation;

–
→⊆ L × L is a finite set of transitions. For each transition τ = (�, �′), we say
that � is its source location and �′ its target location;

– G is a map assigning to each transition τ = (�, �′) ∈
→ with � ∈ LC a guard
G(τ), which is a logical formula over V specifying whether τ can be executed;

– Pr is a map assigning to each transition τ = (�, �′) ∈
→ with � ∈ LP a
probability Pr(τ) ∈ [0, 1]. We require

∑
τ=(�,_) Pr(τ) = 1 for each � ∈ LP ;

– Up is a map assigning to each transition τ = (�, �′) ∈
→ with � ∈ LA an
update Up(τ) = (j, u) where j ∈ {1, . . . , |V |} is a target variable index and u
is an update element which can be:

• the bottom element u = ⊥, denoting no update;
• a Borel-measurable expression u : R|V | → R, denoting a deterministic

variable assignment;
• a probability distribution u = d, denoting that the new variable value is

sampled according to d;
• an interval u = [a, b] ⊆ R ∪ {±∞}, denoting a non-deterministic update.

We also allow one or both sides of the interval to be open.

We assume the existence of the special terminal location denoted by �out . We
also require that each location has at least one outgoing transition, and that each
� ∈ LA has a unique outgoing transition. For each location � ∈ LC , we assume
that the disjunction of guards of all transitions outgoing from � is equivalent to
true, i.e.

∨
τ=(l,_) G(τ) ≡ true. Translation of probabilistic programs to pCFGs

that model them is standard, so we omit the details and refer the reader to [11].
The pCFG for the program in Fig. 1 is provided in [12, Appendix B].

States, Paths and Runs. A state in a pCFG C is a tuple (�,x), where � is a
location in C and x ∈ R

|V | is a variable valuation of V . We say that a transition
τ = (�, �′) is enabled at a state (�,x) if � 	∈ LC or if � ∈ LC and x |= G(τ). We say
that a state (�′,x′) is a successor of (�,x), if there exists an enabled transition
τ = (�, �′) in C such that (�′,x′) can be reached from (�,x) by executing τ , i.e.
we can obtain x′ by applying the updates of τ to x, if any. A finite path in C
is a sequence (�0,x0), (�1,x1), . . . , (�k,xk) of states with (�0,x0) = (�init ,xinit)
and with (�i+1,xi+1) being a successor of (�i,xi) for each 0 ≤ i ≤ k − 1. A state
(�,x) is reachable in C if there exists a finite path in C that ends in (�,x). A
run (or execution) in C is an infinite sequence of states where each finite prefix
is a finite path. We use StateC , FpathC , RunC , ReachC to denote the set of all
states, finite paths, runs and reachable states in C, respectively. Finally, we use
Stateterm to denote the set {(�out ,x) | x ∈ R

|V |} of terminal states.

Schedulers. The behavior of a pCFG may be captured by defining a probabil-
ity space over the set of all runs in the pCFG. For this to be done, however, we
need to resolve non-determinism and this is achieved via the standard notion
of a scheduler. A scheduler in a pCFG C is a map σ which to each finite path
ρ ∈ FpathC assigns a probability distribution σ(ρ) over successor states of the
last state in ρ. Since we deal with programs operating over real-valued vari-
ables, the set FpathC may be uncountable. To that end, we impose an additional

Sound and Complete Certificates for Quantitative Termination Analysis 63

measurability assumption on schedulers, in order to ensure that the semantics
of probabilistc programs with non-determinism is defined in a mathematically
sound way. The restriction to measurable schedulers is standard. Hence, we omit
the formal definition.

Semantics of pCFGs. A pCFG C with a scheduler σ define a stochastic pro-
cess taking values in the set of states of C, whose trajectories correspond to
runs in C. The process starts in the initial state (�init ,xinit) and inductively
extends the run, where the next state along the run is chosen either determin-
istically or is sampled from the probability distribution defined by the current
location along the run and by the scheduler σ. These are the classical opera-
tional semantics of Markov decision processes (MDPs), see e.g. [1,27]. A pCFG
C and a scheduler σ together determine a probability space (RunC ,FC ,Pσ) over
the set of all runs in C. For details, see [12, Appendix C]. We denote by E

σ the
expectation operator on (RunC ,FC ,Pσ). We may analogously define a probabil-
ity space (RunC(�,x),FC(�,x),Pσ

C(�,x)) over the set of all runs in C that start in
some specified state (�,x).

Probabilistic Termination Problem. We now define the termination problem
for probabilistic programs considered in this work. A state (�,x) in a pCFG
C is said to be a terminal state if � = �out . A run ρ ∈ RunC is said to be
terminating if it reaches some terminal state in C. We use Term ⊆ RunC to
denote the set of all terminating runs in RunC . The termination probability of
a pCFG C is defined as infσ P

σ[Term], i.e. the smallest probability of the set
of terminating runs in C with respect to any scheduler in C (for the proof that
Term is measurable, see [40]). We say that C terminates almost-surely (a.s.) if its
termination probability is 1. In this work, we consider the Lower Bound on the
Probability of Termination (LBPT) problem that, given p ∈ [0, 1], asks whether
1 − p is a lower bound for the termination probability of the given probabilistic
program, i.e. whether infσ P

σ[Term] ≥ 1 − p.

4 A Sound and Complete Characterization of SIs

In this section, we recall the notion of stochastic invariants and present our
characterization of stochastic invariants through stochastic indicator functions.
We fix a pCFG C = (L, V, �init ,xinit ,
→, G,Pr ,Up). A predicate function in C is a
map F that to every location � ∈ L assigns a logical formula F (�) over program
variables. It naturally induces a set of states, which we require to be Borel-
measurable for the semantics to be well-defined. By a slight abuse of notation,
we identify a predicate function F with this set of states. Furthermore, we use
¬F to denote the negation of a predicate function, i.e. (¬F)(�) = ¬F (�). An
invariant in C is a predicate function I which additionally over-approximates
the set of reachable states in C, i.e. for every (�,x) ∈ ReachC we have x |= I(�).
Stochastic invariants can be viewed as a probabilistic extension of invariants,
which a random program run leaves only with a certain probability. See Sect. 2
for an example.

64 K. Chatterjee et al.

Definition 1 (Stochastic invariant [14]). Let SI a predicate function in C
and p ∈ [0, 1] a probability. The tuple (SI , p) is a stochastic invariant (SI) if the
probability of a run in C leaving the set of states defined by SI is at most p under
any scheduler. Formally, we require that

supσ P
σ
[
ρ ∈ RunC | ρ reaches some (�,x) with x 	|= SI (�)

]
≤ p.

Key Challenge. If we find a stochastic invariant (SI , p) for which termination
happens almost-surely on runs that do not leave SI , we can immediately conclude
that the program terminates with probability at least 1−p (this idea is formalized
in Sect. 5). The key challenge in designing an efficient termination analysis based
on this idea is the computation of appropriate stochastic invariants. We present
a sound and complete characterization of stochastic invariants which allows for
their effective automated synthesis through template-based methods.

We characterize stochastic invariants through the novel notion of stochastic
invariant indicators (SI-indicators). An SI-indicator is a function that to each
state assigns an upper-bound on the probability of violating the stochastic invari-
ant if we start the program in that state. Since the definition of an SI-indicator
imposes conditions on its value at reachable states and since computing the
exact set of reachable states is in general infeasible, we define SI-indicators with
respect to a supporting invariant with the later automation in mind. In order
to understand the ideas of this section, one may assume for simplicity that the
invariant exactly equals the set of reachable states. A state-function in C is a
function f that to each location � ∈ L assigns a Borel-measurable real-valued
function over program variables f(�) : R|V | → R. We use f(�,x) and f(�)(x)
interchangeably.

Definition 2 (Stochastic invariant indicator). A tuple (fSI , p) comprising
a state function fSI and probability p ∈ [0, 1] is a stochastic invariant indicator
(SI-indicator) with respect to an invariant I, if it satisfies the following conditions:

(C1) Non-negativity. For every location � ∈ L, we have x |= I(�) ⇒
fSI (�,x) ≥ 0.

(C2) Non-increasing expected value. For every location � ∈ L, we have:
(C1

2) If � ∈ LC , then for any transition τ = (�, �′) we have x |= I(�) ∧ G(τ) ⇒
fSI (�,x) ≥ fSI (�′,x).

(C2
2) If � ∈ LP , then x |= I(�) ⇒ fSI (�,x) ≥ ∑

τ=(�,�′)∈ �→ Pr(τ) · fSI (�′,x).
(C3

2) If � ∈ LN , then x |= I(�) ⇒ fSI (�,x) ≥ maxτ=(�,�′)∈ �→ fSI (�′,x).
(C4

2) If � ∈ LA with τ = (�, �′) the unique outgoing transition from �, then:
– If Up(τ) = (j,⊥), x |= I(�) ⇒ f(�,x) ≥ f(�′,x).
– If Up(τ) = (j, u) with u : R|V | → R an expression, we have x |=

I(�) ⇒ f(�,x) ≥ f(�′,x[xj ← u(xi)]).
– If Up(τ) = (j, u) with u = d a distribution, we have x |= I(�) ⇒

f(�,x) ≥ EX∼d[f(�′,x[xj ← X])].
– If Up(τ) = (j, u) with u = [a, b] an interval, we have x |= I(�) ⇒

f(�,x) ≥ supX∈[a,b]{f(�′,x[xj ← X])}.
(C3) Initial condition. We have f(�init ,xinit) ≤ p.

Sound and Complete Certificates for Quantitative Termination Analysis 65

Intuition. (C1) imposes that f is nonnegative at any state contained in the
invariant I. Next, for any state in I, (C2) imposes that the value of f does
not increase in expectation upon a one-step execution of the pCFG under any
scheduler. Finally, the condition (C3) imposes that the initial value of f in C is
at most p. Together, the indicator thus intuitively over-approximates the proba-
bility of violating SI . An example of an SI-indicator for our running example in
Fig. 1 is given in (2). The following theorem formalizes the above intuition and
is our main result of this section. In essence, we prove that (SI , p) is a stochastic
invariant in C iff there exists an SI-indicator (fSI , p) such that SI contains all
states at which fSI is strictly smaller than 1. This implies that, for every stochas-
tic invariant (SI , p), there exists an SI-indicator such that (SI ′, p) defined via
SI ′(�) = (x |= I(�) ∧ fSI (�,x) < 1) is a stochastic invariant that is at least as
tight as (SI , p).

Theorem 1 (Soundness and Completeness of SI-indicators). Let C be
a pCFG, I an invariant in C and p ∈ [0, 1]. For any SI-indicator (fSI , p) with
respect to I, the predicate map SI defined as SI (�) = (x |= I(�) ∧ fSI (�,x) <
1) yields a stochastic invariant (SI , p) in C. Conversely, for every stochastic
invariant (SI , p) in C, there exist an invariant ISI and a state function fSI such
that (fSI , p) is an SI-indicator with respect to ISI and for each � ∈ L we have
SI (�) ⊇ (x |= ISI (�) ∧ fSI (�,x) < 1).

Proof Sketch. Since the proof is technically involved, we present the main
ideas here and defer the details to [12, Appendix E]. First, suppose that I is
an invariant in C and that (fSI , p) is an SI-indicator with respect to I, and
let SI (�) = (x |= I(�) ∧ fSI (�,x) < 1) for each � ∈ L. We need to show that
(SI , p) is a stochastic invariant in C. Let supσ P

σ
(�,x)[Reach(¬SI)] be a state

function that maps each state (�,x) to the probability of reaching ¬SI from
(�,x). We consider a lattice of non-negative semi-analytic state-functions (L,�)
with the partial order defined via f � f ′ if f(�,x) ≤ f ′(�,x) holds for each
state (�,x) in I. See [12, Appendix D] for a review of lattice theory. It follows
from a result in [40] that the probability of reaching ¬SI can be characterized
as the least fixed point of the next-time operator X¬SI : L → L. Away from ¬SI ,
the operator X¬SI simulates a one-step execution of C and maps f ∈ L to its
maximal expected value upon one-step execution of C where the maximum is
taken over all schedulers, and at states contained in ¬SI the operator X¬SI is
equal to 1. It was also shown in [40] that, if a state function f ∈ L is a pre-fixed
point of X¬SI , then it satisfies supσ P

σ
(�,x)[Reach(¬SI)] ≤ f(�,x) for each (�,x) in

I. Now, by checking the defining properties of pre-fixed points and recalling that
fSI satisfies Non-negativity condition (C1) and Non-increasing expected value
condition (C2) in Definition 2, we can show that fSI is contained in the lattice L
and is a pre-fixed point of X¬SI . It follows that supσ P

σ
(�init ,xinit)

[Reach(¬SI)] ≤
fSI (�init ,xinit). On the other hand, by initial condition (C3) in Definition 2 we
know that fSI (�init ,xinit) ≤ p. Hence, we have supσ P

σ
(�init ,xinit)

[Reach(¬SI)] ≤ p

so (SI , p) is a stochastic invariant.

66 K. Chatterjee et al.

Conversely, suppose that (SI , p) is a stochastic invariant in C. We show in
[12, Appendix E] that, if we define ISI to be the trivial true invariant and
define fSI (�,x) = supσ P

σ
(�,x)[Reach(¬SI)], then (fSI , p) forms an SI-indicator

with respect to ISI . The claim follows by again using the fact that fSI is the
least fixed point of the operator X¬SI , from which we can conclude that (fSI , p)
satisfies conditions (C1) and (C2) in Definition 2. On the other hand, the fact
that (SI , p) is a stochastic invariant and our choice of fSI imply that (fSI , p)
satisfies the initial condition (C3) in Definition 2. Hence, (fSI , p) forms an SI-
indicator with respect to ISI . Furthermore, SI (�) ⊇ (x |= ISI (�)∧ fSI (�,x) < 1)
follows since 1 > fSI (�,x) = supσ P

σ
(�,x)[Reach(¬SI)] implies that (�,x) cannot

be contained in ¬SI so x |= SI (�). This concludes the proof. ��
Based on the theorem above, in order to compute a stochastic invariant in

C for a given probability threshold p, it suffices to synthesize a state function
fSI that together with p satisfies all the defining conditions in Definition 2 with
respect to some supporting invariant I, and then consider a predicate function
SI defined via SI (�) = (x |= I(�) ∧ fSI (�,x) < 1) for each � ∈ L. This will be
the guiding principle of our algorithmic approach in Sect. 6.

Intuition on Characterization. Stochastic invariants can essentially be
thought of as quantitative safety specifications in probabilistic programs – (SI , p)
is a stochastic invariant if and only if a random probabilistic program run leaves
SI with probability at most p. However, what makes their computation hard
is that they do not consider probabilities of staying within a specified safe set.
Rather, the computation of stochastic invariants requires computing both the
safe set and the certificate that it is left with at most the given probability.
Nevertheless, in order to reason about them, we may consider SI as an implic-
itly defined safe set. Hence, if we impose conditions on a state function fSI to
be an upper bound on the reachability probability for the target set of states
(x |= I(�)∧fSI (�,x) < 1), and in addition impose that fSI (�init ,xinit) ≤ p, then
these together will entail that p is an upper bound on the probability of ever
leaving SI when starting in the initial state. This is the intuitive idea behind our
construction of SI-indicators, as well as our soundness and completeness proof.
In the proof, we show that conditions (C1) and (C2) in Definition 2 indeed entail
the necessary conditions to be an upper bound on the reachability probability
of the set (x |= I(�) ∧ fSI (�,x) < 1).

5 Stochastic Invariants for LBPT

In the previous section, we paved the way for automated synthesis of stochas-
tic invariants by providing a sound and complete characterization in terms of
SI-indicators. We now show how stochastic invariants in combination with any
a.s. termination certificate for probabilistic programs can be used to compute
lower-bounds on the probability of termination. Theorem 2 below states a gen-
eral result about termination probabilities that is agnostic to the termination
certificate, and shows that stochastic invaraints provide a sound and complete
approach to quantitative termination analysis.

Sound and Complete Certificates for Quantitative Termination Analysis 67

Theorem 2 (Soundness and Completeness of SIs for Quantitative Ter-
mination). Let C = (L, V, �init ,xinit ,
→, G,Pr ,Up) be a pCFG and (SI , p) a
stochastic invariant in C. Suppose that, with respect to every scheduler, a run in
C almost-surely either terminates or reaches a state in ¬SI , i.e.

infσ P
σ
[
Term ∪ Reach(¬SI)

]
= 1. (4)

Then C terminates with probability at least 1 − p. Conversely, if C terminates
with probability at least 1 − p, then there exists a stochastic invariant (SI , p)
in C such that, with respect to every scheduler, a run in C almost-surely either
terminates or reaches a state in ¬SI .

Proof Sketch. The first part (soundness) follows directly from the definition of
SI and (4). The completeness proof is conceptually and technically involved and
presented in [12, Appendix H]. In short, the central idea is to construct, for every
n greater than a specific threshold n0, a stochastic invariant (SI n, p + 1

n) such
that a run almost-surely either terminates or exists SI n. Then, we show that
∩∞

n=n0
SI n is our desired SI . To construct each SI n, we consider the infimum

termination probability at every state (�,x) and call it r(�,x). The infimum is
taken over all schedulers. We then let SI n be the set of states (�,x) for whom
r(�,x) is greater than a specific threshold α. Intuitively, our stochastic invariant
is the set of program states from which the probability of termination is at least
α, no matter how the non-determinism is resolved. Let us call these states likely-
terminating. The intuition is that a random run of the program will terminate
or eventually leave the likely-terminating states with high probability. ��
Quantitative to Qualitative Termination. Theorem 2 provides us with a
recipe for computing lower bounds on the probability of termination once we
are able to compute stochastic invariants: if (SI , p) is a stochastic invariant in
a pCFG C, it suffices to prove that the set of states Stateterm ∪ ¬SI is reached
almost-surely with respect to any scheduler in C, i.e. the program terminates or
violates SI. Note that this is simply a qualitative a.s. termination problem, except
that the set of terminal states is now augmented with ¬SI . Then, since (SI , p)
is a stochastic invariant, it would follow that a terminal state is reached with
probability at least 1−p. Moreover, the theorem shows that this approach is both
sound and complete. In other words, proving quantitative termination, i.e. that
we reach Stateterm with probability at least 1 − p is now reduced to (i) finding
a stochastic invariant (SI , p) and (ii) proving that the program C′ obtained by
adding ¬SI to the set of terminal states of C is a.s. terminating. Note that, to
preserve completeness, (i) and (ii) should be achieved in tandem, i.e. an approach
that first synthesizes and fixes SI and then tries to prove a.s. termination for
¬SI is not complete.

Ranking Supermartingales. While our reduction above is agnostic to the type
of proof/certificate that is used to establish a.s. termination, in this work we use
Ranking Supermartingales (RSMs) [7], which are a standard and classical cer-
tificate for proving a.s. termination and reachability. Let C = (L, V, �init ,xinit ,
→

68 K. Chatterjee et al.

, G,Pr ,Up) be a pCFG and I an invariant in C. Note that as in Definition 2,
the main purpose of the invariant is to allow for automated synthesis and one
can again simply assume it to equal the set of reachable states. An ε-RSM for a
subset T of states is a state function that is non-negative in each state in I, and
whose expected value decreases by at least ε > 0 upon a one-step execution of C
in any state that is not contained in the target set T . Thus, intuitively, a program
run has an expected tendency to approach the target set T where the distance
to T is given by the value of the RSM which is required to be non-negative in
all states in I. The ε-ranked expected value condition is formally captured via
the next-time operator X (See [12, Appendix E]). An example of an RSM for
our running example in Fig. 1 and the target set of states ¬SI ∪ Stateterm with
SI the stochastic invariant in Eq. (1) is given in Eq. (3).

Definition 3 (Ranking supermartingales). Let T be a predicate function
defining a set of target states in C, and let ε > 0. A state function η is said to
be an ε-ranking supermartingale (ε-RSM) for T with respect to the invariant I
if it satisfies the following conditions:

1. Non-negativity. For each location � ∈ L and x ∈ I(�), we have η(�,x) ≥ 0.
2. ε-ranked expected value. For each location � ∈ L and x |= I(�) ∩ ¬T (�), we

have η(�,x) ≥ X(η)(�,x) + ε.

Note that the second condition can be expanded according to location types in
the exact same manner as in condition C2 of Definition 2. The only difference is
that in Definition 2, the expected value had to be non-increasing, whereas here
it has to decrease by ε. It is well-known that the two conditions above entail
that T is reached with probability 1 with respect to any scheduler [7,11].

Theorem 3. (Proof in [12, Appendix I]). Let C be a pCFG, I an invariant
in C and T a predicate function defining a target set of states. If there exist
ε > 0 and an ε-RSM for T with respect to I, then T is a.s. reached under any
scheduler, i.e.

infσ P
σ
(�init ,xinit)

[
Reach(T)

]
= 1.

The following theorem is an immediate corollary of Theorems 2 and 3.

Theorem 4. Let C be a pCFG and I be an invariant in C. Suppose that there
exist a stochastic invariant (SI , p), an ε > 0 and an ε-RSM η for Stateterm ∪¬SI
with respect to I. Then C terminates with probability at least 1 − p.

Therefore, in order to prove that C terminates with probability at least 1 − p,
it suffices to find (i) a stochastic invariant (SI , p) in C, and (ii) an ε-RSM η
for Stateterm ∪ ¬SI with respect to I and some ε > 0. Note that these two
tasks are interdependent. We cannot simply choose any stochastic invariant. For
instance, the trivial predicate function defined via SI = true always yields a
valid stochastic invariant for any p ∈ [0, 1], but it does not help termination
analysis. Instead, we need to compute a stochastic invariant and an RSM for it
simultaneously.

Sound and Complete Certificates for Quantitative Termination Analysis 69

Power of Completeness. We end this section by showing that our approach
certifies a tight lower-bound on termination probability for a program that was
proven in [40] not to admit any of the previously-existing certificates for lower
bounds on termination probability. This shows that our completeness pays off
in practice and our approach is able to handle programs that were beyond the
reach of previous methods. Consider the program in Fig. 2 annotated by an
invariant I. We show that our approach certifies that this program terminates
with probability at least 0.5. Indeed, consider a stochastic invariant (SI , 0.5)
with SI (�) = true if � 	= �3, and SI (�3) = false, and a state function defined via
η(�init , x) = − log(x) + log(2) + 3, η(�1, x) = − log(x) + log(2) + 2, η(�2, x) = 1
and η(�3, x) = η(�out , x) = 0 for each x. Then one can easily check by inspection
that (SI , 0.5) is a stochastic invariant and that η is a (log(2) − 1)-RSM for
Stateterm ∪ ¬SI with respect to I. Therefore, it follows by Theorem 4 that the
program in Fig. 2 terminates with probability at least 0.5.

6 Automated Template-Based Synthesis Algorithm

We now provide template-based relatively complete algorithms for simultaneous
and automated synthesis of SI-indicators and RSMs, in order to solve the quanti-
tative termination problem over pCFGs with affine/polynomial arithmetic. Our
approach builds upon the ideas of [2,9] for qualitative and non-probabilistic
cases.

Fig. 2. A program that was shown in [40] not to admit a repulsing supermartingale [14]
or a gamma-scaled supermartingale [40], but for which our method can certify the tight
lower-bound of 0.5 on the probability of termination.

Input and Assumptions. The input to our algorithms consists of a pCFG C
together with a probability p ∈ [0, 1], an invariant I,� and technical variables δ
and M , which specify polynomial template sizes used by the algorithm and which
will be discussed later. In this section, we limit our focus to affine/polynomial
pCFGs, i.e. we assume that all guards G(τ) in C and all invariants I(�) are
conjunctions of affine/polynomial inequalities over program variables. Similarly,
we assume that every update function u : R|V | → R used in deterministic variable
assignments is an affine/polynomial expression in R[V].
� We assume an invariant is given as part of the input. Invariant generation is an

orthogonal and well-studied problem and can be automated using [10,16].

70 K. Chatterjee et al.

Output. The goal of our algorithms is to synthesize a tuple (f, η, ε) where f is
an SI-indicator function, η is a corresponding RSM, and ε > 0, such that:

– At every location � of C, both f(�) and η(�) are affine/polynomial expressions
of fixed degree δ over the program variables V .

– Having SI (�) := {x | f(�,x) < 1}, the pair (SI , p) is a valid stochastic
invariant and η is an ε-RSM for Stateterm ∪ ¬SI with respect to I.

As shown in Sects. 4 and 5, such a tuple w = (f, η, ε) serves as a certificate that
the probabilistic program modeled by C terminates with probability at least
1 − p. We call w a quantitative termination certificate.

Overview. Our algorithm is a standard template-based approach similar
to [2,9]. We encode the requirements of Definitions 2 and 3 as entailments
between affine/polynomial inequalities with unknown coefficients and then apply
the classical Farkas’ Lemma [17] or Putinar’s Positivstellensatz [38] to reduce the
synthesis problem to Quadratic Programming (QP). Finally, we solve the result-
ing QP using a numerical optimizer or an SMT-solver. Our approach consists of
the four steps below. Step 3 follows [2] exactly. Hence, we refer to [2] for more
details on this step.

Step 1. Setting Up Templates. The algorithm sets up symbolic templates
with unknown coefficients for f, η and ε.

– First, for each location � of C, the algorithm sets up a template for f(�) which
is a polynomial consisting of all possible monomials of degree at most δ over
program variables, each appearing with an unknown coefficient. For example,
consider the program in Fig. 1 of Sect. 2. This program has three variables:
x, r1 and r2. If δ = 1, i.e. if the goal is to find an affine SI-indicator, at every
location �i of the program, the algorithm sets f(�i, x, r1, r2) := ĉi,0 + ĉi,1 ·
x + ĉi,2 · r1 + ĉi,3 · r2. Similarly, if the desired degree is δ = 2, the algorithm
symbolically computes:f(�i, x, r1, r2) := ĉi,0 + ĉi,1 · x + ĉi,2 · r1 + ĉi,3 · r2 +
ĉi,4 · x2 + ĉi,5 · x · r1 + ĉi,6 · x · r2 + ĉi,7 · r21 + ĉi,8 · r1 · r2 + ĉi,9 · r22. Note that
every monomial of degree at most 2 appears in this expression. The goal is
to synthesize suitable real values for each unknown coefficient ĉi,j such that
f becomes an SI-indicator. Throughout this section, we use the .̂ notation
to denote an unknown coefficient whose value will be synthesized by our
algorithm.

– The algorithm creates an unknown variable ε̂ whose final value will serve as
ε.

– Finally, at each location � of C, the algorithm sets up a template for η(�) in
the exact same manner as the template for f(�). The goal is to synthesize
values for ε̂ and the ĉ variables in this template such that η becomes a valid
ε̂-RSM for Stateterm ∪ ¬SI with respect to I.

Step 2. Generating Entailment Constraints. In this step, the algorithm
symbolically computes the requirements of Definition 2, i.e. C1–C3, and their
analogues in Definition 3 using the templates generated in the previous step.

Sound and Complete Certificates for Quantitative Termination Analysis 71

Note that all of these requirements are entailments between affine/polynomial
inequalities over program variables whose coefficients are unknown. In other
words, they are of the form ∀x A(x) ⇒ b(x) where A is a set of affine/polyno-
mial inequalities over program variables whose coefficients contain the unknown
variables ĉ and ε̂ generated in the previous step and b is a single such inequality.
For example, for the program of Fig. 1, the algorithm symbolically computes
condition C1 at line �1 as follows: ∀x I(�1,x) ⇒ f(�1,x) ≥ 0. Assuming that
the given invariant is I(�1,x) := (x ≤ 1) and an affine (degree 1) template was
generated in the previous step, the algorithm expands this to:

∀x 1 − x ≥ 0 ⇒ ĉ1,0 + ĉ1,1 · x + ĉ1,2 · r1 + ĉ1,3 · r2 ≥ 0. (5)

The algorithm generates similar entailment constraints for every location and
every requirement in Definitions 2 and 3.

Step 3. Quantifier Elimination. At the end of the previous step, we have a
system of constraints of the form

∧
i

(∀x Ai(x) ⇒ bi(x)
)
. In this step, the algo-

rithm sets off to eliminate the universal quantification over x in every constraint.
First, consider the affine case. If Ai is a set of linear inequalities over program
variables and bi is one such linear inequality, then the algorithm attempts to
write bi as a linear combination with non-negative coefficients of the inequal-
ities in Ai and the trivial inequality 1 ≥ 0. For example, it rewrites (5) as
λ̂1 · (1 − x) + λ̂2 = ĉ1,0 + ĉ1,1 · x + ĉ1,2 · r1 + ĉ1,3 · r2 where λ̂i’s are new non-
negative unknown variables for which we need to synthesize non-negative real
values. This inequality should hold for all valuations of program variables. Thus,
we can equate the corresponding coefficients on both sides and obtain this equiv-
alent system:

λ̂1 + λ̂2 = ĉ1,0 (the constant factor)
−λ̂1 = ĉ1,1 (coefficient of x)

0 = ĉ1,2 = ĉ1,3 (coefficients of r1 and r2)
(6)

This transformation is clearly sound, but it is also complete due to the well-
known Farkas’ lemma [17]. Now consider the polynomial case. Again, we write
bi as a combination of the polynomials in Ai. The only difference is that instead
of having non-negative real coefficients, we use sum-of-square polynomials as our
multiplicands. For example, suppose our constraint is

∀x g1(x) ≥ 0 ∧ g2(x) ≥ 0 ⇒ g3(x) > 0,

where the gi’s are polynomials with unknown coefficients. The algorithm writes

g3(x) = h0(x) + h1(x) · g1(x) + h2(x) · g2(x), (7)

where each hi is a sum-of-square polynomial of degree at most M. The algorithm
sets up a template of degree M for each hi and adds well-known quadratic
constraints that enforce it to be a sum of squares. See [2, Page 22] for details.
It then expands (7) and equates the corresponding coefficients of the LHS and
RHS as in the linear case. The soundness of this transformation is trivial since

72 K. Chatterjee et al.

each hi is a sum-of-squares and hence always non-negative. Completeness follows
from Putinar’s Positivstellensatz [38]. Since the arguments for completeness of
this method are exactly the same as the method in [2], we refer the reader
to [2] for more details and an extension to entailments between strict polynomial
inequalities.

Step 4. Quadratic Programming. All of our constraints are converted to
Quadratic Programming (QP) over template variables, e.g. see (6). Our algo-
rithm passes this QP instance to an SMT solver or a numerical optimizer. If
a solution is found, it plugs in the values obtained for the ĉ and ε̂ variables
back into the template of Step 1 and outputs the resulting termination witness
(f, η, ε).

We end this section by noting that our algorithm is sound and relatively
complete for synthesizing affine/polynomial quantitative termination certificates.

Theorem 5 (Soundness and Completeness in the Affine Case). Given
an affine pCFG C, an affine invariant I, and a non-termination upper-bound p ∈
[0, 1], if C admits a quantitative termination certificate w = (f, η, ε) in which both
f and η are affine expressions at every location, then w corresponds to a solution
of the QP instance solved in Step 4 of the algorithm above. Conversely, every
such solution, when plugged back into the template of Step 1, leads to an affine
quantitative termination certificate showing that C terminates with probability at
least 1 − p over every scheduler.

Theorem 6 (Soundness and Relative Completeness in the Polynomial
Case). Given a polynomial pCFG C, a polynomial invariant I which is a compact
subset of R|V | at every location �, and a non-termination upper-bound p ∈ [0, 1],
if C admits a quantitative termination certificate w = (f, η, ε) in which both f
and η are polynomial expressions of degree at most δ at every location, then there
exists an M ∈ N, for which w corresponds to a solution of the QP instance solved
in Step 4 of the algorithm above. Conversely, every such solution, when plugged
back into the template of Step 1, leads to a polynomial quantitative termination
certificate of degree at most δ showing that C terminates with probability at least
1 − p over every scheduler.

Proof. Step 2 encodes the conditions of an SI-indicator (Definition 2) and RSM
(Definition 3). Theorem 4 shows that an SI-indicator together with an RSM is a
valid quantitative termination certificate. The transformation in Step 3 is sound
and complete as argued in [2, Theorems 4 and 10]��. The affine version relies on
Farkas’ lemma [17] and is complete with no additional constraints. The polyno-
mial version is based on Putinar’s Positivstellensatz [38] and is only complete
for large enough M , i.e. a high-enough degree for sum-of-square multiplicands.
This is why we call our algorithm relatively complete. In practice, small values
of M are enough to synthesize w and we use M = 2 in all of our experiments. ��

�� We need a more involved transformation for strict inequalities. See [2, Theorem 8].

Sound and Complete Certificates for Quantitative Termination Analysis 73

7 Experimental Results

Implementation. We implemented a prototype of our approach in Python and
used SymPy [33] for symbolic computations and the MathSAT5 SMT Solver [15]
for solving the final QP instances. We also applied basic optimizations, e.g. check-
ing the validity of each entailment and thus removing tautological constraints.

Machine and Parameters. All results were obtained on an Intel Core i9-
10885H machine (8 cores, 2.4GHz, 16MB Cache) with 32GB of RAM running
Ubuntu 20.04. We always synthesized quadratic termination certificates and set
δ = M = 2.

Benchmarks. We generated a variety of random walks with complicated behav-
ior, including nested combinations of probabilistic and non-deterministic branch-
ing and loops. We also took a number of benchmarks from [14]. Due to space
limitations, in Table 1 we only present experimental results on a subset of our
benchmark set, together with short descriptions of these benchmarks. Complete
evaluation as well as details on all benchmarks are provided in [12, Appendix J].

Results and Discussion. Our experimental results are summarized in Table 1,
with complete results provided in [12, Appendix J]. In every case, our approach
was able to synthesize a certificate that the program terminates with probability
at least 1−p under any scheduler. Moreover, our runtimes are consistently small
and less than 6 s per benchmark. Our approach was able to handle programs
that are beyond the reach of previous methods, including those with unbounded
differences and unbounded non-deterministic assignments to which approaches
such as [14] and [40] are not applicable, as was demonstrated in [40]. This adds
experimental confirmation to our theoretical power-of-completeness result at the
end of Sect. 5, which showed the wider applicability of our method. Finally, it
is noteworthy that the termination probability lower-bounds reported in Table 1
are not tight. There are two reasons for this. First, while our theoretical approach
is sound and complete, our algorithm can only synthesize affine/polynomial cer-
tificates for quantitative termination, and the best polynomial certificate of a
certain degree might not be tight. Second, we rely on an SMT-solver to solve
our QP instances. The QP instances often become harder as we decrease p,
leading to the solver’s failure even though the constraints are satisfiable.

8 Related Works

Supermartingale-Based Approaches. In addition to qualitative and quanti-
tative termination analyses, supermartingales were also used for the formal anal-
ysis of other properties in probabilistic programs, such as, liveness and safety
properties [3,8,14,42], cost analysis of probabilistic programs [36,43]. While all
these works demonstrate the effectiveness of supermartingale-based techniques,
below we present a more detailed comparison with other works that consider
automated computation of lower bounds on termination probability.

74 K. Chatterjee et al.

Table 1. Summary of our experimental results on a subset of our benchmark set. See
[12, Appendix J] for benchmark details and for the results on all benchmarks.

Benchmark Short explanation p LBPT
1 − p

Runtime
(s)

Figure 1 Our running example 0.01 0.99 2.38

Figure 7 Nested probabilistic and non-deterministic branches leading
to infinite loop with maximum probability 0.25

0.25 0.75 1.40

Figure 9 An a.s. terminating biased random walk with uniformly
distributed steps

0 1 0.73

Figure 10 A random walk that starts at x = 10 and takes a step of
Uniform(−2, 1) each time. Terminates if x < 0 and loops

forever as soon as x ≥ 100.

0.12 0.88 1.10

Figure 11 A 2-D random walk starting at (50, 50). In each iteration, x

is incremented, while y is increased by Uniform(−1, 1).

Terminates when x > 100. Loops when y ≤ 0.

0.07 0.93 3.52

Figure 14 A 3-D random walk. In each iteration, each of x, y, z are
incremented with a higher probability than decremented.

Terminates when x + y + z < 0.

0.999 0.001 3.22

Figure 15 An example with both probabilistic and non-deterministic
assignments

0.51 0.49 2.73

Figure 16 A variant of Fig. 15 with unbounded non-determinism in an
assignment

0.51 0.49 2.70

Figure 17 A probabilistic branch between an a.s. terminating loop and
a loop with small termination probability

0.4 0.6 5.17

Figure 18 A skewed random walk with two barriers, only one of which
leads to program termination

0.51 0.49 5.26

Figure 19 Taken from [14] and conceptually similar to Fig. 5 0.24 0.76 0.94

Figure 22 A more complicated and non-a.s.-terminating random walk
taken from [14]

0.1 0.9 1.15

Figure 23 A 2-D variant of Fig. 22, also from [14] 0.08 0.92 4.01

Comparison to [14]. The work of [14] introduces stochastic invariants and
demonstrates their effectiveness for computing lower bounds on termination
probability. However, their approach to computing stochastic invariants is based
on repulsing supermartingales (RepSMs), and is orthogonal to ours. RepSMs
were shown to be incomplete for computing stochastic invariants [40, Section 3].
Also, a RepSM is required to have bounded differences, i.e. the absolute difference
of its value is any two successor states needs to be bounded from above by some
positive constant. Given that the algorithmic approach of [14] computes linear
RepSMs, this implies that the applicability of RepSMs is compromised in prac-
tice as well, and is mostly suited to programs in which the quantity that behaves
like a RepSM depends only on variables with bounded increments and sampling
instructions defined by distributions of bounded support. Our approach does not
impose such a restriction, and is the first to provide completeness guarantees.

Comparison to [40]. The work of [40] introduces γ-scaled submartingales and
proves their effectiveness for computing lower bounds on termination probability.
Intuitively, for γ ∈ (0, 1), a state function f is a γ-scaled submartingale if it is a
bounded nonnegative function whose value in each non-terminal state decreases
in expected value at least by a factor of γ upon a one-step execution of the
pCFG. One may think of the second condition as a multiplicative decrease in

Sound and Complete Certificates for Quantitative Termination Analysis 75

expected value. However, this condition is too strict and γ-scaled submartingales
are not complete for lower bounds on termination probability [40, Example 6.6].

Comparison to [5]. The work of [5] proposes a type system for functional
probabilistic programs that allows incrementally searching for type derivations
and accumulating a lower bound on termination probability. In the limit, it finds
arbitrarily tight lower bounds on termination probability, however it does not
provide any completeness or precision guarantees in finite time.

Other Approaches. Logical calculi for reasoning about properties of probabilis-
tic programs (including termination) were studied in [18,19,29] and extended to
programs with non-determinism in [27,28,31,37]. These works consider proof
systems for probabilistic programs based on the weakest pre-expectation cal-
culus. The expressiveness of this calculus allows reasoning about very complex
programs, but the proofs typically require human input. In contrast, we aim for a
fully automated approach for probabilistic programs with polynomial arithmetic.
Connections between martingales and the weakest pre-expectation calculus were
studied in [24]. A sound approach for proving almost-sure termination based on
abstract interpretation is presented in [34].

Cores in MDPs. Cores are a conceptually equivalent notion to stochastic
invariants introduced in [30] for finite MDPs. [30] presents a sampling-based
algorithm for their computation.

9 Conclusion

We study the quantitative probabilistic termination problem in probabilistic pro-
grams with non-determinism and propose the first relatively complete algorithm
for proving termination with at least a given threshold probability. Our approach
is based on a sound and complete characterization of stochastic invariants via
the novel notion of stochastic invariant indicators, which allows for an effective
and relatively complete algorithm for their computation. We then show that
stochastic invariants are sound and complete certificates for proving that a pro-
gram terminates with at least a given threshold probability. Hence, by combining
our relatively complete algorithm for stochastic invariant computation with the
existing relatively complete algorithm for computing ranking supermartingales,
we present the first relatively complete algorithm for probabilistic termination.
We have implemented a prototype of our algorithm and demonstrate its effec-
tiveness on a number of probabilistic programs collected from the literature.

Acknowledgements. This research was partially supported by the ERC CoG 863818
(ForM-SMArt), the HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-
055, the HKUST Startup Grant R9272 and the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie Grant Agree-
ment No. 665385.

76 K. Chatterjee et al.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. In: POPL (2018).
https://doi.org/10.1145/3158122

2. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via Stellensätze. In: PLDI (2021). https://doi.org/10.1145/
3453483.3454076

3. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_3

4. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: LICS (2016). http://doi.acm.org/10.1145/
2933575.2934554

5. Beutner, R., Ong, L.: On probabilistic termination of functional programs with con-
tinuous distributions. In: PLDI (2021). https://doi.org/10.1145/3453483.3454111

6. Bingham, E., et al.: Pyro: Deep universal probabilistic programming. J. Mach.
Learn. Res. (2019). http://jmlr.org/papers/v20/18-403.html

7. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34

8. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9_15

9. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_1

10. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: PLDI (2020). https://doi.
org/10.1145/3385412.3385969

11. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
TOPLAS 40(2), 7:1–7:45 (2018). https://doi.org/10.1145/3174800

12. Chatterjee, K., Goharshady, A., Meggendorfer, T., Žikelić, -D.: Sound and complete
certificates for quantitative termination analysis of probabilistic programs (2022).
https://hal.archives-ouvertes.fr/hal-03675086

13. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Žikelić, -D: On lex-
icographic proof rules for probabilistic termination. In: Huisman, M., Păsăreanu,
C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 619–639. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90870-6_33

14. Chatterjee, K., Novotný, P., Žikelić, -D.: Stochastic invariants for probabilistic ter-
mination. In: POPL (2017). https://doi.org/10.1145/3009837.3009873

15. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
http://doi.acm.org/10.1145/2933575.2934554
http://doi.acm.org/10.1145/2933575.2934554
https://doi.org/10.1145/3453483.3454111
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3174800
https://hal.archives-ouvertes.fr/hal-03675086
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-642-36742-7_7

Sound and Complete Certificates for Quantitative Termination Analysis 77

16. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_39

17. Farkas, J.: Theorie der einfachen ungleichungen. J. für die reine und angewandte
Mathematik 1902(124), 1–27 (1902)

18. Feldman, Y.A.: A decidable propositional dynamic logic with explicit probabilities.
Inf. Control 63(1), 11–38 (1984)

19. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: STOC (1982). https://
doi.org/10.1145/800070.802191

20. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_12

21. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 468–490. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_22

22. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature
521(7553), 452–459 (2015). https://doi.org/10.1038/nature14541

23. Goodman, N.D., et al.: Church: a language for generative models. In: UAI (2008)
24. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.: Aiming low is harder: induction

for lower bounds in probabilistic program verification. In: POPL (2020). https://
doi.org/10.1145/3371105

25. Huang, M., Fu, H., Chatterjee, K.: New approaches for almost-sure termination
of probabilistic programs. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275, pp.
181–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-1_11

26. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. In: OOPSLA (2019). https://
doi.org/10.1145/3360555

27. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018). https://doi.org/10.1145/3208102

28. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gener-
ation for probabilistic programs: automated support for proof-based methods. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 390–406. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1_24

29. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981). https://doi.org/10.1016/0022-0000(81)90036-2

30. Křetínský, J., Meggendorfer, T.: Of cores: a partial-exploration framework for
Markov decision processes. LMCS (2020). https://doi.org/10.23638/LMCS-16(4:
3)2020

31. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

32. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-
sure termination. In: POPL (2018). https://doi.org/10.1145/3158121

33. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci.
(2017). https://doi.org/10.7717/peerj-cs.103

34. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0_7

https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1145/800070.802191
https://doi.org/10.1145/800070.802191
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1038/nature14541
https://doi.org/10.1145/3371105
https://doi.org/10.1145/3371105
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.23638/LMCS-16(4:3)2020
https://doi.org/10.23638/LMCS-16(4:3)2020
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1145/3158121
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/3-540-47764-0_7

78 K. Chatterjee et al.

35. Moosbrugger, M., Bartocci, E., Katoen, J., Kovács, L.: Automated termination
analysis of polynomial probabilistic programs. In: ESOP (2021). https://doi.org/
10.1007/978-3-030-72019-3_18

36. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource anal-
ysis for probabilistic programs. In: PLDI (2018). https://doi.org/10.1145/3192366.
3192394

37. Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recursive
probabilistic programs. In: LICS (2016). https://doi.org/10.1145/2933575.2935317

38. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42(3), 969–984 (1993)

39. Roy, D., Mansinghka, V., Goodman, N., Tenenbaum, J.: A stochastic programming
perspective on nonparametric Bayes. In: ICML (2008)

40. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 5:1–5:46 (2021). https://doi.org/10.1145/3450967

41. Thrun, S.: Probabilistic algorithms in robotics. AI Mag. 21(4), 93–109 (2000).
https://doi.org/10.1609/aimag.v21i4.1534

42. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: PLDI (2021). https://doi.org/
10.1145/3453483.3454102

43. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: PLDI (2019). https://doi.org/10.
1145/3314221.3314581

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1145/3450967
https://doi.org/10.1609/aimag.v21i4.1534
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3314221.3314581
http://creativecommons.org/licenses/by/4.0/

	Sound and Complete Certificates for Quantitative Termination Analysis of Probabilistic Programs
	1 Introduction
	2 Overview
	3 Preliminaries
	4 A Sound and Complete Characterization of SIs
	5 Stochastic Invariants for LBPT
	6 Automated Template-Based Synthesis Algorithm
	7 Experimental Results
	8 Related Works
	9 Conclusion
	References

